101
|
Jurczak P, Sikorska E, Czaplewska P, Rodziewicz-Motowidlo S, Zhukov I, Szymanska A. The Influence of the Mixed DPC:SDS Micelle on the Structure and Oligomerization Process of the Human Cystatin C. MEMBRANES 2020; 11:17. [PMID: 33374409 PMCID: PMC7824358 DOI: 10.3390/membranes11010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022]
Abstract
Human cystatin C (hCC), a member of the superfamily of papain-like cysteine protease inhibitors, is the most widespread cystatin in human body fluids. Physiologically active hCC is a monomer, which dimerization and oligomerization lead to the formation of the inactive, insoluble amyloid form of the protein, strictly associated with cerebral amyloid angiopathy, a severe state causing death among young patients. It is known, that biological membranes may accelerate the oligomerization processes of amyloidogenic proteins. Therefore, in this study, we describe an influence of membrane mimetic environment-mixed dodecylphosphocholine:sodium dodecyl sulfate (DPC:SDS) micelle (molar ratio 5:1)-on the effect of the hCC oligomerization. The hCC-micelle interactions were analyzed with size exclusion chromatography, circular dichroism, and nuclear magnetic resonance spectroscopy. The experiments were performed on the wild-type (WT) cystatin C, and two hCC variants-V57P and V57G. Collected experimental data were supplemented with molecular dynamic simulations, making it possible to highlight the binding interface and select the residues involved in interactions with the micelle. Obtained data shows that the mixed DPC:SDS micelle does not accelerate the oligomerization of protein and even reverses the hCC dimerization process.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG & MUG, University of Gdańsk, Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | | | - Igor Zhukov
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (S.R.-M.)
| |
Collapse
|
102
|
Filippou PS, Outeiro TF. Cancer and Parkinson's Disease: Common Targets, Emerging Hopes. Mov Disord 2020; 36:340-346. [PMID: 33346940 DOI: 10.1002/mds.28425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer and neurodegeneration are two major leading causes of morbidity and death worldwide. At first sight, the two fields do not seem to share much in common and, if anything, might be placed on opposite ends of a spectrum. Although neurodegeneration results in excessive neuronal cell death, cancer emerges from increased proliferation and resistance to cell death. Therefore, one might expect significant differences in the underlying pathophysiological mechanisms. However, the more we deepen our understanding of these two types of diseases, the more we appreciate the unexpected overlap between them. Although most epidemiological studies support an inverse association between the risk for development of neurodegenerative diseases and cancer, increasing evidence points to a positive correlation between specific types of cancer, like melanoma, and neurodegenerative diseases, like Parkinson's disease (PD). We believe that deciphering the molecular processes and pathways underlying one of these diseases may significantly increase our understanding about the other. Therefore, the identification of novel biomarkers and therapeutic approaches in cancer, may lead to improved diagnosis and treatment of neurodegeneration, and vice versa. In this Viewpoint, we summarize recent findings connecting both diseases and speculate that insights from one disease may inform on mechanisms, and help identify novel biomarkers and targets for intervention, possibly leading to improved management of both diseases. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Panagiota S Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
103
|
Staats R, Michaels TCT, Flagmeier P, Chia S, Horne RI, Habchi J, Linse S, Knowles TPJ, Dobson CM, Vendruscolo M. Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter. Commun Chem 2020; 3:191. [PMID: 36703335 PMCID: PMC9814678 DOI: 10.1038/s42004-020-00412-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
The aggregation of α-synuclein is a central event in Parkinsons's disease and related synucleinopathies. Since pharmacologically targeting this process, however, has not yet resulted in approved disease-modifying treatments, there is an unmet need of developing novel methods of drug discovery. In this context, the use of chemical kinetics has recently enabled accurate quantifications of the microscopic steps leading to the proliferation of protein misfolded oligomers. As these species are highly neurotoxic, effective therapeutic strategies may be aimed at reducing their numbers. Here, we exploit this quantitative approach to develop a screening strategy that uses the reactive flux toward α-synuclein oligomers as a selection parameter. Using this approach, we evaluate the efficacy of a library of flavone derivatives, identifying apigenin as a compound that simultaneously delays and reduces the formation of α-synuclein oligomers. These results demonstrate a compound selection strategy based on the inhibition of the formation of α-synuclein oligomers, which may be key in identifying small molecules in drug discovery pipelines for diseases associated with α-synuclein aggregation.
Collapse
Affiliation(s)
- Roxine Staats
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Thomas C. T. Michaels
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK ,grid.38142.3c000000041936754XPaulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Patrick Flagmeier
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Sean Chia
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Robert I. Horne
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Johnny Habchi
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Sara Linse
- grid.4514.40000 0001 0930 2361Department of Chemistry, Division for Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden
| | - Tuomas P. J. Knowles
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Christopher M. Dobson
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| |
Collapse
|
104
|
Yao Y, Tang Y, Wei G. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. ACS Chem Neurosci 2020; 11:4351-4361. [PMID: 33186020 DOI: 10.1021/acschemneuro.0c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of fibrillar aggregates of α-synuclein (α-syn) into Lewy bodies are the major hallmarks of Parkinson's disease (PD) for which there is no cure yet. Disrupting preformed α-syn fibrils is considered one of the rational therapeutic strategies to combat PD. Experimental studies reported that epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, can disrupt α-syn fibrils into benign amorphous aggregates. However, the molecular mechanism of action is poorly understood. Herein, we performed molecular dynamics simulations on a newly released Greek-key-like α-syn fibril with or without EGCG to investigate the influence of EGCG on α-syn fibril. Our simulations show that EGCG disrupts the local β-sheet structure, E46-K80 salt-bridge crucial for the stabilization of the Greek-key-like structure, and hydrophobic interactions stabilizing the inter-protofibril interface and destabilizes the global structure of the α-syn fibril. Interaction analyses reveal that hydrophobic and hydrogen-bonding interactions between EGCG and α-syn fibrils play important roles in the destabilization of the fibril. We find that the disruption of the E46-K80 salt-bridge closely correlates with the formation of hydrogen-bonds (H-bonds) between EGCG and E46/K80. Our results provide mechanistic insights into the disruption modes of α-syn fibril by EGCG, which may pave the way for designing drug candidates targeting α-syn fibrillization to treat PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
105
|
Paul A, Huber A, Rand D, Gosselet F, Cooper I, Gazit E, Segal D. Naphthoquinone–Dopamine Hybrids Inhibit α‐Synuclein Aggregation, Disrupt Preformed Fibrils, and Attenuate Aggregate‐Induced Toxicity. Chemistry 2020; 26:16486-16496. [DOI: 10.1002/chem.202003374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Adi Huber
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Fabien Gosselet
- UR 2465 Blood-brain barrier Laboratory (LBHE) Artois University 62300 Lens France
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Sagol Interdisciplinary School of Neuroscience Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| |
Collapse
|
106
|
Caldwell KA, Willicott CW, Caldwell GA. Modeling neurodegeneration in Caenorhabditis elegans. Dis Model Mech 2020; 13:13/10/dmm046110. [PMID: 33106318 PMCID: PMC7648605 DOI: 10.1242/dmm.046110] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The global burden of neurodegenerative diseases underscores the urgent need for innovative strategies to define new drug targets and disease-modifying factors. The nematode Caenorhabditis elegans has served as the experimental subject for multiple transformative discoveries that have redefined our understanding of biology for ∼60 years. More recently, the considerable attributes of C. elegans have been applied to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease. Transgenic nematodes with genes encoding normal and disease variants of proteins at the single- or multi-copy level under neuronal-specific promoters limits expression to select neuronal subtypes. The anatomical transparency of C. elegans affords the use of co-expressed fluorescent proteins to follow the progression of neurodegeneration as the animals age. Significantly, a completely defined connectome facilitates detailed understanding of the impact of neurodegeneration on organismal health and offers a unique capacity to accurately link cell death with behavioral dysfunction or phenotypic variation in vivo. Moreover, chemical treatments, as well as forward and reverse genetic screening, hasten the identification of modifiers that alter neurodegeneration. When combined, these chemical-genetic analyses establish critical threshold states to enhance or reduce cellular stress for dissecting associated pathways. Furthermore, C. elegans can rapidly reveal whether lifespan or healthspan factor into neurodegenerative processes. Here, we outline the methodologies employed to investigate neurodegeneration in C. elegans and highlight numerous studies that exemplify its utility as a pre-clinical intermediary to expedite and inform mammalian translational research. Summary: While unsurpassed as an experimental system for fundamental biology, Caenorhabditis elegans remains undervalued for its translational potential. Here, we highlight significant outcomes from, and resources available for, C. elegans-based research into neurodegenerative disorders.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA .,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey W Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
107
|
Peña-Díaz S, Pujols J, Pinheiro F, Santos J, Pallarés I, Navarro S, Conde-Gimenez M, García J, Salvatella X, Dalfó E, Sancho J, Ventura S. Inhibition of α-Synuclein Aggregation and Mature Fibril Disassembling With a Minimalistic Compound, ZPDm. Front Bioeng Biotechnol 2020; 8:588947. [PMID: 33178678 PMCID: PMC7597392 DOI: 10.3389/fbioe.2020.588947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Synucleinopathies are a group of disorders characterized by the accumulation of α-Synuclein amyloid inclusions in the brain. Preventing α-Synuclein aggregation is challenging because of the disordered nature of the protein and the stochastic nature of fibrillogenesis, but, at the same time, it is a promising approach for therapeutic intervention in these pathologies. A high-throughput screening initiative allowed us to discover ZPDm, the smallest active molecule in a library of more than 14.000 compounds. Although the ZPDm structure is highly related to that of the previously described ZPD-2 aggregation inhibitor, we show here that their mechanisms of action are entirely different. ZPDm inhibits the aggregation of wild-type, A30P, and H50Q α-Synuclein variants in vitro and interferes with α-Synuclein seeded aggregation in protein misfolding cyclic amplification assays. However, ZPDm distinctive feature is its strong potency to dismantle preformed α-Synuclein amyloid fibrils. Studies in a Caenorhabditis elegans model of Parkinson's Disease, prove that these in vitro properties are translated into a significant reduction in the accumulation of α-Synuclein inclusions in ZPDm treated animals. Together with previous data, the present work illustrates how different chemical groups on top of a common molecular scaffold can result in divergent but complementary anti-amyloid activities.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irantzu Pallarés
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Conde-Gimenez
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, and Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Esther Dalfó
- Medicine, M2, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, and Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
108
|
Torpey JH, Meade RM, Mistry R, Mason JM, Madine J. Insights Into Peptide Inhibition of Alpha-Synuclein Aggregation. Front Neurosci 2020; 14:561462. [PMID: 33177976 PMCID: PMC7594713 DOI: 10.3389/fnins.2020.561462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein (aSyn) aggregation is an attractive target for therapeutic development for a range of neurodegenerative conditions, collectively termed synucleinopathies. Here, we probe the mechanism of action of a peptide 4554W, (KDGIVNGVKA), previously identified through intracellular library screening, to prevent aSyn aggregation and associated toxicity. We utilize NMR to probe association and identify that 4554W associates with a "partially aggregated" form of aSyn, with enhanced association occurring over time. We also report the ability of 4554W to undergo modification through deamidation of the central asparagine residue, occurring on the same timescale as aSyn aggregation in vitro, with peptide modification enhancing its association with aSyn. Additionally, we report that 4554W can act to reduce fibril formation of five Parkinson's disease associated aSyn mutants. Inhibitory peptide binding to partially aggregated forms of aSyn, as identified here, is particularly attractive from a therapeutic perspective, as it would eliminate the need to administer the therapy at pre-aggregation stages, which are difficult to diagnose. Taken together the data suggest that 4554W could be a suitable candidate for future therapeutic development against wild-type, and most mutant aSyn aggregation.
Collapse
Affiliation(s)
- James H Torpey
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard M Meade
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Ravina Mistry
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
109
|
Vittorio S, Adornato I, Gitto R, Peña-Díaz S, Ventura S, De Luca L. Rational design of small molecules able to inhibit α-synuclein amyloid aggregation for the treatment of Parkinson's disease. J Enzyme Inhib Med Chem 2020; 35:1727-1735. [PMID: 32924648 PMCID: PMC7534360 DOI: 10.1080/14756366.2020.1816999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative disorders in elderly age. One of the mechanisms involved in the neurodegeneration appears related to the aggregation of the presynaptic protein alpha synuclein (α-syn) into toxic oligomers and fibrils. To date, no highly effective treatment is currently available; therefore, there is an increasing interest in the search of new therapeutic tools. The modulation of α-syn aggregation represents an emergent and promising disease-modifying strategy for reducing or blocking the neurodegenerative process. Herein, by combining in silico and in vitro screenings we initially identified 3-(cinnamylsulfanyl)-5-(4-pyridinyl)-1,2,4-triazol-4-amine (3) as α-syn aggregation inhibitor that was then considered a promising hit for the further design of a new series of small molecules. Therefore, we rationally designed new hit-derivatives that were synthesised and evaluated by biological assays. Lastly, the binding mode of the newer inhibitors was predicted by docking studies.
Collapse
Affiliation(s)
- Serena Vittorio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Palatucci, Messina, Italy
| | - Ilenia Adornato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Palatucci, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Palatucci, Messina, Italy
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Spain.,ICREA, Passeig Lluis Companys 23, Barcelona, Spain
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Palatucci, Messina, Italy
| |
Collapse
|
110
|
Adão R, Cruz PF, Vaz DC, Fonseca F, Pedersen JN, Ferreira-da-Silva F, Brito RM, Ramos CH, Otzen D, Keller S, Bastos M. DIBMA nanodiscs keep α-synuclein folded. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183314. [DOI: 10.1016/j.bbamem.2020.183314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
|
111
|
Ross A, Xing V, Wang TT, Bureau SC, Link GA, Fortin T, Zhang H, Hayley S, Sun H. Alleviating toxic α-Synuclein accumulation by membrane depolarization: evidence from an in vitro model of Parkinson's disease. Mol Brain 2020; 13:108. [PMID: 32736645 PMCID: PMC7395353 DOI: 10.1186/s13041-020-00648-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the formation of toxic, fibrillar form alpha-synuclein (α-Syn) protein aggregates in dopaminergic neurons. Accumulating evidence has shown a multifactorial interplay between the intracellular calcium elevation and α-Syn dynamics. However, whether membrane depolarization regulates toxic α-Syn aggregates remains unclear. To understand this better, we used an in vitro α-Syn preformed fibrils (PFF) model of PD in human neural cells. We demonstrated functional membrane depolarization in differentiated SH-SY5Y cells induced by two independent treatments: high extracellular K+ and the GABAA receptor blocker picrotoxin. We then observed that these treatments significantly alleviated toxic α-Syn aggregation in PFF-treated SH-SY5Y cells. Moreover, clinically relevant direct current stimulation (DCS) also remarkably decreased toxic α-Syn aggregation in PFF-treated SH-SY5Y cells. Taken together, our findings suggest that membrane depolarization plays an important role in alleviating PFF-induced toxic α-Syn aggregates, and that it may represent a novel therapeutic mechanism for PD.
Collapse
Affiliation(s)
- Alysia Ross
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Viktoria Xing
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Samantha C Bureau
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Giovana A Link
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Teresa Fortin
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Hui Zhang
- Department of Neurology, SUNY Downstate Medical center, Brooklyn, NY, 11226, USA
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hongyu Sun
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
112
|
Dominguez-Meijide A, Vasili E, König A, Cima-Omori MS, Ibáñez de Opakua A, Leonov A, Ryazanov S, Zweckstetter M, Griesinger C, Outeiro TF. Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization. Sci Rep 2020; 10:12827. [PMID: 32732936 PMCID: PMC7393090 DOI: 10.1038/s41598-020-69744-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are common neurodegenerative disorders of the elderly and, therefore, affect a growing number of patients worldwide. Both diseases share, as a common hallmark, the accumulation of characteristic protein aggregates, known as Lewy bodies (LB) in PD, and neurofibrillary tangles in AD. LBs are primarily composed of misfolded α-synuclein (aSyn), and neurofibrillary tangles are primarily composed of tau protein. Importantly, upon pathological evaluation, most AD and PD/Lewy body dementia cases exhibit mixed pathology, with the co-occurrence of both LB and neurofibrillary tangles, among other protein inclusions. Recent studies suggest that both aSyn and tau pathology can spread and propagate through neuronal connections. Therefore, it is important to investigate the mechanisms underlying aggregation and propagation of these proteins for the development of novel therapeutic strategies. Here, we assessed the effects of different pharmacological interventions on the aggregation and internalization of tau and aSyn. We found that anle138b and fulvic acid decrease aSyn and tau aggregation, that epigallocatechin gallate decreases aSyn aggregation, and that dynasore reduces tau internalization. Establishing the effects of small molecules with different chemical properties on the aggregation and spreading of aSyn and tau will be important for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany.,Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany
| | - Maria-Sol Cima-Omori
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Andrei Leonov
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Sergey Ryazanov
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Christian Griesinger
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany. .,Max Planck Institute for Experimental Medicine, Göttingen, Germany. .,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
113
|
Palomino-Hernandez O, Buratti FA, Sacco PS, Rossetti G, Carloni P, Fernandez CO. Role of Tyr-39 for the Structural Features of α-Synuclein and for the Interaction with a Strong Modulator of Its Amyloid Assembly. Int J Mol Sci 2020; 21:ijms21145061. [PMID: 32709107 PMCID: PMC7404028 DOI: 10.3390/ijms21145061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/03/2022] Open
Abstract
Recent studies suggest that Tyr-39 might play a critical role for both the normal function and the pathological dysfunction of α-synuclein (αS), an intrinsically disordered protein involved in Parkinson’s disease. We perform here a comparative analysis between the structural features of human αS and its Y39A, Y39F, and Y39L variants. By the combined application of site-directed mutagenesis, biophysical techniques, and enhanced sampling molecular simulations, we show that removing aromatic functionality at position 39 of monomeric αS leads to protein variants populating more compact conformations, conserving its disordered nature and secondary structure propensities. Contrasting with the subtle changes induced by mutations on the protein structure, removing aromaticity at position 39 impacts strongly on the interaction of αS with the potent amyloid inhibitor phthalocyanine tetrasulfonate (PcTS). Our findings further support the role of Tyr-39 in forming essential inter and intramolecular contacts that might have important repercussions for the function and the dysfunction of αS.
Collapse
Affiliation(s)
- Oscar Palomino-Hernandez
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; (O.P.-H.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
- Institute of Life Science, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Fiamma A. Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina; (F.A.B.); (P.S.S.)
| | - Pamela S. Sacco
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina; (F.A.B.); (P.S.S.)
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; (O.P.-H.); (G.R.)
- Department of Oncology, Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; (O.P.-H.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany
- Institute for Neuroscience and Medicine (INM-11) Forschungszentrum Jülich, 52425 Jülich, Germany
- Correspondence: (P.C.); (C.O.F.); Tel.: +54-341-4237868 (ext. 752) (C.O.F)
| | - Claudio O. Fernandez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina; (F.A.B.); (P.S.S.)
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
- Correspondence: (P.C.); (C.O.F.); Tel.: +54-341-4237868 (ext. 752) (C.O.F)
| |
Collapse
|
114
|
Gabr MT, Peccati F. Dual Targeting of Monomeric Tau and α-Synuclein Aggregation: A New Multitarget Therapeutic Strategy for Neurodegeneration. ACS Chem Neurosci 2020; 11:2051-2057. [PMID: 32579329 DOI: 10.1021/acschemneuro.0c00281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Development of efficient multitargeted therapeutic strategies is crucial in facing the multifaceted nature of neurodegenerative diseases. Parkinson's disease (PD) and Alzheimer's disease (AD), the two most common neurodegenerative disorders, share a common hallmark of accumulation of misfolded protein aggregates which are Lewy bodies (LBs) and neurofibrillary tangles (NFTs), respectively. Tau protein and α-synuclein (α-syn), the precursors of LBs and NFTs, have demonstrated synergistic aggregation and neurotoxicity in both in vitro and in vivo models. Herein, we validate for the first time dual targeting of monomeric tau and α-syn aggregation as an efficient platform for development of multitarget therapeutics for neurological disorders. Cellular fluorescence resonance energy transfer (FRET)-based high-throughput screening for tau-binding compounds, followed by additional screening of the hits for their ability to impede α-syn aggregation identified MG-2119 as a potential lead. The high binding affinity of MG-2119 to monomeric tau was verified using cellular FRET assay, isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), and microscale thermophoresis (MSH). Moreover, MG-2119 inhibited α-syn aggregation as revealed by thioflavin T (ThT) assay and dynamic light scattering (DLS) measurements. Interestingly, MG-2119 was capable of rescuing combined tau and α-syn-induced cytotoxicity in SH-SY5Y neuroblastoma cells in a dose-dependent manner. Less pronounced cell-rescuing effects were observed for single-targeted tau and α-syn aggregation inhibitors showcasing the superiority of the multitargeted approach described in this study. The satisfactory pharmacokinetic profile and low toxicity of MG-2119 hold promise for future optimization to develop potential therapeutics for neurological disorders.
Collapse
Affiliation(s)
- Moustafa T. Gabr
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
115
|
Hatton C, Reeve A, Lax NZ, Blain A, Ng YS, El-Agnaf O, Attems J, Taylor JP, Turnbull D, Erskine D. Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: the role of Lewy bodies. Acta Neuropathol Commun 2020; 8:103. [PMID: 32646480 PMCID: PMC7346628 DOI: 10.1186/s40478-020-00985-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurons of the nucleus basalis of Meynert (nbM) are vulnerable to Lewy body formation and neuronal loss, which is thought to underlie cognitive dysfunction in Lewy body dementia (LBD). There is continued debate about whether Lewy bodies exert a neurodegenerative effect by affecting mitochondria, or whether they represent a protective mechanism. Therefore, the present study sought to determine whether the nbM is subject to mitochondrial dysfunctional in LBD and the association of Lewy body formation with such changes. Post-mortem nbM tissue was stained for Complex I or IV and quantitated relative to porin with immunofluorescence using confocal microscopy of individual cells from LBD (303 neurons, 8 cases), control (362 neurons, 8 cases) and asymptomatic incidental LBD (iLBD) cases (99 neurons, 2 cases). Additionally, α-synuclein, tau and amyloid-β pathology were analysed using quantitative immunohistochemistry, and respiratory chain markers were compared in cells with Lewy bodies (N = 134) and unaffected cells (N = 272). The expression of Complex I normalised to mitochondrial mass was significantly lower in LBD compared to control and iLBD cases and this was unrelated to local neuropathological burdens but trended toward a relationship with neuronal loss. Furthermore, Complex I expression was higher in cells with Lewy bodies compared to adjacent cells without α-synuclein aggregates. These findings suggest that Complex I deficits in the nbM occur in symptomatic LBD cases and may relate to neuronal loss, but that contrary to the view that Lewy body formation underlies neuronal dysfunction and damage in LBD, Lewy bodies are associated with higher Complex I expression than neurons without Lewy bodies. One could speculate that Lewy bodies may provide a mechanism to encapsulate damaged mitochondria and/or α-synuclein oligomers, thus protecting neurons from their cytotoxic effects.
Collapse
|
116
|
Li Y, Yang C, Wang S, Yang D, Zhang Y, Xu L, Ma L, Zheng J, Petersen RB, Zheng L, Chen H, Huang K. Copper and iron ions accelerate the prion-like propagation of α-synuclein: A vicious cycle in Parkinson's disease. Int J Biol Macromol 2020; 163:562-573. [PMID: 32629061 DOI: 10.1016/j.ijbiomac.2020.06.274] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Protein fibrils drive the onset and progression of many diseases in a prion-like manner, i.e. they transcellular propagate through the extracellular space to health cells to initiate toxic aggregation as seeds. The conversion of native α-synuclein into filamentous aggregates in Lewy bodies is a hallmark of Parkinson's disease (PD). Copper and iron ions accumulate in PD brains, however, whether they influence the prion-like propagation of α-synuclein remain unclear. Here, we reported that copper/iron ions accelerate prion-like propagation of α-synuclein fibrils by promoting cellular internalization of α-synuclein fibrils, intracellular α-synuclein aggregation and the subsequent release of mature fibrils to the extracellular space to induce further propagation. Mechanistically, copper/iron ions enhanced α-synuclein fibrils internalization was mediated by negatively charged membrane heparan sulfate proteoglycans (HSPGs). α-Synuclein fibrils formed in the presence of copper/iron ions were more cytotoxic, causing increased ROS production, cell apoptosis, and shortened the lifespan of a C. elegans PD model overexpressing human α-synuclein. Notably, these deleterious effects were ameliorated by two clinically used chelators, triethylenetetramine and deferiprone. Together, our results suggest a new role for heavy metal ions, e.g. copper and iron, in the pathogenesis of PD through accelerating prion-like propagation of α-synuclein fibrils.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Shilin Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Li Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430012, China
| | - Jiaojiao Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant 48858, MI, USA
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| |
Collapse
|
117
|
Tira R, De Cecco E, Rigamonti V, Santambrogio C, Barracchia CG, Munari F, Romeo A, Legname G, Prosperi D, Grandori R, Assfalg M. Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. Int J Biol Macromol 2020; 154:206-216. [DOI: 10.1016/j.ijbiomac.2020.03.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|
118
|
Hanif S, Muhammad P, Chesworth R, Rehman FU, Qian RJ, Zheng M, Shi BY. Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol Sin 2020; 41:936-953. [PMID: 32467570 PMCID: PMC7468531 DOI: 10.1038/s41401-020-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Central nervous system (CNS) disorders represent a broad spectrum of brain ailments with short- and long-term disabilities, and nanomedicine-based approaches provide a new therapeutic approach to treating CNS disorders. A variety of potential drugs have been discovered to treat several neuronal disorders; however, their therapeutic success can be limited by the presence of the blood-brain barrier (BBB). Furthermore, unique immune functions within the CNS provide novel target mechanisms for the amelioration of CNS diseases. Recently, various therapeutic approaches have been applied to fight brain-related disorders, with moderate outcomes. Among the various therapeutic strategies, nanomedicine-based immunotherapeutic systems represent a new era that can deliver useful cargo with promising pharmacokinetics. These approaches exploit the molecular and cellular targeting of CNS disorders for enhanced safety, efficacy, and specificity. In this review, we focus on the efficacy of nanomedicines that utilize immunotherapy to combat CNS disorders. Furthermore, we detailed summarize nanomedicine-based pathways for CNS ailments that aim to deliver drugs across the BBB by mimicking innate immune actions. Overview of how nanomedicines can utilize multiple immunotherapy pathways to combat CNS disorders. ![]()
Collapse
|
119
|
Soto-Rojas LO, Martínez-Dávila IA, Luna-Herrera C, Gutierrez-Castillo ME, Lopez-Salas FE, Gatica-Garcia B, Soto-Rodriguez G, Bringas Tobon ME, Flores G, Padilla-Viveros A, Bañuelos C, Blanco-Alvarez VM, Dávila-Ayala J, Reyes-Corona D, Garcés-Ramírez L, Hidalgo-Alegria O, De La Cruz-lópez F, Martinez-Fong D. Unilateral intranigral administration of β-sitosterol β-D-glucoside triggers pathological α-synuclein spreading and bilateral nigrostriatal dopaminergic neurodegeneration in the rat. Acta Neuropathol Commun 2020; 8:56. [PMID: 32321590 PMCID: PMC7178762 DOI: 10.1186/s40478-020-00933-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 02/05/2023] Open
Abstract
The spreading and accumulation of α-synuclein and dopaminergic neurodegeneration, two hallmarks of Parkinson’s disease (PD), have been faithfully reproduced in rodent brains by chronic, oral administration of β-sitosterol β-D-glucoside (BSSG). We investigated whether a single injection of BSSG (6 μg BSSG/μL DMSO) in the left substantia nigra of Wistar rats causes the same effects. Mock DMSO injections and untreated rats formed control groups. We performed immunostainings against the pathological α-synuclein, the dopaminergic marker tyrosine hydroxylase (TH), the neuroskeleton marker β-III tubulin, the neurotensin receptor type 1 (NTSR1) as non-dopaminergic phenotype marker and Fluro-Jade C (F-J C) label for neurodegeneration. Using β-galactosidase (β-Gal) assay and active caspase-3 immunostaining, we assessed cell death mechanisms. Golgi-Cox staining was used to measure the density and types of dendritic spines of striatal medium spiny neurons. Motor and non-motor alterations were also evaluated. The study period comprised 15 to 120 days after the lesion. In the injured substantia nigra, BSSG caused a progressive α-synuclein aggregation and dopaminergic neurodegeneration caused by senescence and apoptosis. The α-synuclein immunoreactivity was also present within microglia cells. Decreased density of dopaminergic fibers and dendritic spines also occurred in the striatum. Remarkably, all the histopathological changes also appeared on the contralateral nigrostriatal system, and α-synuclein aggregates were present in other brain regions. Motor and non-motor behavioral alterations were progressive. Our data show that the stereotaxic BSSG administration reproduces PD α-synucleinopathy phenotype in the rat. This approach will aid in identifying the spread mechanism of α-synuclein pathology and validate anti-synucleinopathy therapies.
Collapse
|
120
|
Advances in the development of imaging probes and aggregation inhibitors for alpha-synuclein. Acta Pharmacol Sin 2020; 41:483-498. [PMID: 31586134 PMCID: PMC7470848 DOI: 10.1038/s41401-019-0304-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Abnormal protein aggregation has been linked to many neurodegenerative diseases, including Parkinson’s disease (PD). The main pathological hallmark of PD is the formation of Lewy bodies (LBs) and Lewy neurites, both of which contain the presynaptic protein alpha-synuclein (α-syn). Under normal conditions, native α-syn exists in a soluble unfolded state but undergoes misfolding and aggregation into toxic aggregates under pathological conditions. Toxic α-syn species, especially oligomers, can cause oxidative stress, membrane penetration, synaptic and mitochondrial dysfunction, as well as other damage, leading to neuronal death and eventually neurodegeneration. Early diagnosis and treatments targeting PD pathogenesis are urgently needed. Given its critical role in PD, α-syn is an attractive target for the development of both diagnostic tools and effective therapeutics. This review summarizes the progress toward discovering imaging probes and aggregation inhibitors for α-syn. Relevant strategies and techniques in the discovery of α-syn-targeted drugs are also discussed.
Collapse
|
121
|
Jia L, Zhao W, Wei W, Guo X, Wang W, Wang Y, Sang J, Lu F, Liu F. Expression and purification of amyloid β-protein, tau, and α-synuclein in Escherichia coli: a review. Crit Rev Biotechnol 2020; 40:475-489. [PMID: 32202164 DOI: 10.1080/07388551.2020.1742646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Misfolding and accumulation of amyloidogenic proteins into various forms of aggregated intermediates and insoluble amyloid fibrils is associated with more than 50 human diseases. Large amounts of high-quality amyloid proteins are required for better probing of their aggregation and neurotoxicity. Due to their intrinsic hydrophobicity, it is a challenge to obtain amyloid proteins with high yield and purity, and they have attracted the attention of researchers from all over the world. The rapid development of bioengineering technology provides technical support for obtaining large amounts of recombinant amyloidogenic proteins. This review discusses the available expression and purification methods for three amyloid proteins including amyloid β-protein, tau, and α-synuclein in microbial expression systems, especially Escherichia coli, and discusses the advantages and disadvantages of these methods. Importantly, these protocols can also be referred to for the expression and purification of other hydrophobic proteins.
Collapse
Affiliation(s)
- Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenping Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wei Wei
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiao Guo
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjuan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ying Wang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Jingcheng Sang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
122
|
Naturally occurring cinnamic acid derivatives prevent amyloid transformation of alpha-synuclein. Biochimie 2020; 170:128-139. [DOI: 10.1016/j.biochi.2020.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
|
123
|
Pujols J, Peña-Díaz S, Pallarès I, Ventura S. Chemical Chaperones as Novel Drugs for Parkinson's Disease. Trends Mol Med 2020; 26:408-421. [PMID: 32277934 DOI: 10.1016/j.molmed.2020.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and the accumulation of deposits of α-synuclein (α-syn) in the brain. The pivotal role of α-syn aggregation in PD makes it an attractive target for potential disease-modifying therapies. However, the disordered nature of the protein, its multistep aggregation mechanism, and the lack of structural information on intermediate species complicate the discovery of modulators of α-syn amyloid deposition. Despite these difficulties, small molecules have been shown to block the misfolding and aggregation of α-syn, and can even disentangle mature α-syn amyloid fibrils. In this review we provide an updated overview of these leading small compounds and discuss how these chemical chaperones hold great promise to alter the course of PD progression.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
124
|
Afitska K, Priss A, Yushchenko DA, Shvadchak VV. Structural Optimization of Inhibitors of α-Synuclein Fibril Growth: Affinity to the Fibril End as a Crucial Factor. J Mol Biol 2020; 432:967-977. [DOI: 10.1016/j.jmb.2019.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/23/2023]
|
125
|
Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson's disease. J Neural Transm (Vienna) 2020; 127:131-147. [PMID: 31993732 DOI: 10.1007/s00702-020-02150-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease has been considered as a motor neuron disease with dopamine (DA) deficit caused by neuronal loss in the substantia nigra, but now proposed as a multi-system disorder associated with α-synuclein accumulation in neuronal and non-neuronal systems. Neuroprotection in Parkinson's disease has intended to halt or reverse cell death of nigro-striatal DA neurons and prevent the disease progression, but clinical studies have not presented enough beneficial results, except the trial of rasagiline by delayed start design at low dose of 1 mg/day only. Now strategy of disease-modifying therapy should be reconsidered taking consideration of accumulation and toxicity of α-synuclein preceding the manifest of motor symptoms. Hitherto neuroprotective therapy has been aimed to mitigate non-specific risk factors; oxidative stress, mitochondrial dysfunction, apoptosis, deficits of neurotrophic factors (NTFs), inflammation and accumulation of pathogenic protein. Future disease-modify therapy should target more specified pathogenic factors, including deregulated mitochondrial homeostasis, deficit of NTFs and α-synuclein toxicity. Selegiline and rasagiline, inhibitors of type B monoamine oxidase, have been proved to exhibit potent neuroprotective function: regulation of mitochondrial apoptosis system, maintenance of mitochondrial function, increased expression of genes coding antioxidant enzymes, anti-apoptotic Bcl-2 and pro-survival NTFs, and suppression of oligomerization and aggregation of α-synuclein and the toxicity in cellular and animal experiments. However, the present available pharmacological therapy starts too late to reverse disease progression, and future disease-modifying therapy should include also non-pharmacological complementary therapy during the prodromal stage.
Collapse
|
126
|
Goya ME, Xue F, Sampedro-Torres-Quevedo C, Arnaouteli S, Riquelme-Dominguez L, Romanowski A, Brydon J, Ball KL, Stanley-Wall NR, Doitsidou M. Probiotic Bacillus subtilis Protects against α-Synuclein Aggregation in C. elegans. Cell Rep 2020; 30:367-380.e7. [PMID: 31940482 PMCID: PMC6963774 DOI: 10.1016/j.celrep.2019.12.078] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/23/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Recent discoveries have implicated the gut microbiome in the progression and severity of Parkinson's disease; however, how gut bacteria affect such neurodegenerative disorders remains unclear. Here, we report that the Bacillus subtilis probiotic strain PXN21 inhibits α-synuclein aggregation and clears preformed aggregates in an established Caenorhabditis elegans model of synucleinopathy. This protection is seen in young and aging animals and is partly mediated by DAF-16. Multiple B. subtilis strains trigger the protective effect via both spores and vegetative cells, partly due to a biofilm formation in the gut of the worms and the release of bacterial metabolites. We identify several host metabolic pathways differentially regulated in response to probiotic exposure, including sphingolipid metabolism. We further demonstrate functional roles of the sphingolipid metabolism genes lagr-1, asm-3, and sptl-3 in the anti-aggregation effect. Our findings provide a basis for exploring the disease-modifying potential of B. subtilis as a dietary supplement.
Collapse
Affiliation(s)
- María Eugenia Goya
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, Scotland
| | - Feng Xue
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, Scotland
| | | | | | | | - Andrés Romanowski
- University of Edinburgh, School of Biological Sciences, Edinburgh, Scotland
| | - Jack Brydon
- University of Edinburgh, Institute of Genetics & Molecular Medicine, Edinburgh, Scotland
| | - Kathryn L Ball
- University of Edinburgh, Institute of Genetics & Molecular Medicine, Edinburgh, Scotland
| | | | - Maria Doitsidou
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, Scotland.
| |
Collapse
|
127
|
Pena-Diaz S, Pujols J, Ventura S. Small molecules to prevent the neurodegeneration caused by α-synuclein aggregation. Neural Regen Res 2020; 15:2260-2261. [PMID: 32594046 PMCID: PMC7749473 DOI: 10.4103/1673-5374.284993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Samuel Pena-Diaz
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
128
|
Peña-Díaz S, Pujols J, Conde-Giménez M, Čarija A, Dalfo E, García J, Navarro S, Pinheiro F, Santos J, Salvatella X, Sancho J, Ventura S. ZPD-2, a Small Compound That Inhibits α-Synuclein Amyloid Aggregation and Its Seeded Polymerization. Front Mol Neurosci 2019; 12:306. [PMID: 31920537 PMCID: PMC6928008 DOI: 10.3389/fnmol.2019.00306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
α-Synuclein (α-Syn) forms toxic intracellular protein inclusions and transmissible amyloid structures in Parkinson’s disease (PD). Preventing α-Syn self-assembly has become one of the most promising approaches in the search for disease-modifying treatments for this neurodegenerative disorder. Here, we describe the capacity of a small molecule (ZPD-2), identified after a high-throughput screening, to inhibit α-Syn aggregation. ZPD-2 inhibits the aggregation of wild-type α-Syn and the A30P and H50Q familial variants in vitro at substoichiometric compound:protein ratios. In addition, the molecule prevents the spreading of α-Syn seeds in protein misfolding cyclic amplification assays. ZPD-2 is active against different α-Syn strains and blocks their seeded polymerization. Treating with ZPD-2 two different PD Caenorhabditis elegans models that express α-Syn either in muscle or in dopaminergic (DA) neurons substantially reduces the number of α-Syn inclusions and decreases synuclein-induced DA neurons degeneration. Overall, ZPD-2 is a hit compound worth to be explored in order to develop lead molecules for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - María Conde-Giménez
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Anita Čarija
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Esther Dalfo
- Faculty of Medicine, M2, Universitat Autonoma de Barcelona, Barcelona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia, Vic, Spain
| | - Jesús García
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institute for Research and Advance Studies, Barcelona, Spain
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain.,Catalan Institute for Research and Advance Studies, Barcelona, Spain
| |
Collapse
|
129
|
Moro-Velazquez L, Gomez-Garcia JA, Godino-Llorente JI, Grandas-Perez F, Shattuck-Hufnagel S, Yagüe-Jimenez V, Dehak N. Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson's Disease. Sci Rep 2019; 9:19066. [PMID: 31836744 PMCID: PMC6910953 DOI: 10.1038/s41598-019-55271-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/24/2019] [Indexed: 11/18/2022] Open
Abstract
Literature documents the impact of Parkinson’s Disease (PD) on speech but no study has analyzed in detail the importance of the distinct phonemic groups for the automatic identification of the disease. This study presents new approaches that are evaluated in three different corpora containing speakers suffering from PD with two main objectives: to investigate the influence of the different phonemic groups in the detection of PD and to propose more accurate detection schemes employing speech. The proposed methodology uses GMM-UBM classifiers combined with a technique introduced in this paper called phonemic grouping, that permits observation of the differences in accuracy depending on the manner of articulation. Cross-validation results reach accuracies between 85% and 94% with AUC ranging from 0.91 to 0.98, while cross-corpora trials yield accuracies between 75% and 82% with AUC between 0.84 and 0.95, depending on the corpus. This is the first work analyzing the generalization properties of the proposed approaches employing cross-corpora trials and reaching high accuracies. Among the different phonemic groups, results suggest that plosives, vowels and fricatives are the most relevant acoustic segments for the detection of PD with the proposed schemes. In addition, the use of text-dependent utterances leads to more consistent and accurate models.
Collapse
Affiliation(s)
- Laureano Moro-Velazquez
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, 21218, USA.
| | - Jorge A Gomez-Garcia
- Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación, Madrid, 28031, Spain
| | - Juan I Godino-Llorente
- Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación, Madrid, 28031, Spain
| | | | | | - Virginia Yagüe-Jimenez
- Consejo Superior de Investigaciones Científicas, Centro de Tecnologías Físicas Leonardo Torres Quevedo, Madrid, 28006, Spain
| | - Najim Dehak
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, 21218, USA
| |
Collapse
|
130
|
Jia L, Zhao W, Sang J, Wang W, Wei W, Wang Y, Zhao F, Lu F, Liu F. Inhibitory Effect of a Flavonoid Dihydromyricetin against Aβ40 Amyloidogenesis and Its Associated Cytotoxicity. ACS Chem Neurosci 2019; 10:4696-4703. [PMID: 31596069 DOI: 10.1021/acschemneuro.9b00480] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Misfolding and fibrillogenesis of amyloid-β protein (Aβ) play a key role in the onset and progression of Alzheimer's disease (AD). Screening for inhibitors against Aβ amyloidogenesis is helpful for rational designing and developing new anti-AD drugs and therapeutic strategies. Dihydromyricetin, a natural flavonoid extracted from a Chinese herb, Ampelopsis grossedentata, has been proven with antioxidative, anti-inflammatory, and neuroprotective effects against neurodegenerative disease. Herein, we found that dihydromyricetin could inhibit Aβ40 aggregation, impede the protofibril formation, disassemble preformed Aβ40 fibrils, and protect PC12 cells from the Aβ40-induced cytotoxicity using a series of biochemical and biophysical assays, including thioflavin T fluorescence, atomic force microscopy, and cell toxicity assays. Circular dichroism spectroscopy data proved that dihydromyricetin delayed the Aβ40 conformational conversion. In addition, the results of molecular dynamics simulations indicated that the interaction between dihydromyricetin and Aβ40 trimer is mainly nonpolar interactions. Key residues (i.e., V18, A21, and D23) of the Aβ40 interacting with dihydromyricetin were also identified. This study suggested that dihydromyricetin shows great potential to be developed as a novel Aβ40 inhibitor.
Collapse
Affiliation(s)
- Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenping Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjuan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wei Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fang Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
131
|
Naskhi A, Jabbari S, Othman GQ, Aziz FM, Salihi A, Sharifi M, Sari S, Akhtari K, Abdulqadir SZ, Alasady AA, Abou-Zied OK, Hasan A, Falahati M. Vitamin K1 As A Potential Molecule For Reducing Single-Walled Carbon Nanotubes-Stimulated α-Synuclein Structural Changes And Cytotoxicity. Int J Nanomedicine 2019; 14:8433-8444. [PMID: 31749617 PMCID: PMC6818677 DOI: 10.2147/ijn.s223182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
Aims Different kinds of vitamins can be used as promising candidates to mitigate the structural changes of proteins and associated cytotoxicity stimulated by NPs. Therefore, the structural changes of α-syn molecules and their associated cytotoxicity in the presence of SWCNTs either alone or co-incubated with vitamin K1 were studied by spectroscopic, bioinformatical, and cellular assays. Methods Intrinsic and ThT fluorescence, CD, and Congo red absorption spectroscopic approaches as well as TEM investigation, molecular docking, and molecular dynamics were used to explore the protective effect of vitamin K1 on the structural changes of α-syn induced by SWCNTs. The cytotoxicity of α-syn/SWCNTs co-incubated with vitamin K1 against SH-SY5Y cells was also carried out by MTT, LDH, and caspase-3 assays. Results Fluorescence spectroscopy showed that vitamin K1 has a significant effect in reducing SWCNT-induced fluorescence quenching and aggregation of α- syn. CD, Congo red adsorption, and TEM investigations determined that co-incubation of α- syn with vitamin K1 inhibited the propensity of α-syn into the structural changes and amorphous aggregation in the presence of SWCNT. Docking studies determined the occupation of preferred docked site of SWCNT by vitamin K1 on α- syn conformation. A molecular dynamics study also showed that vitamin K1 reduced the structural changes of α- syn induced by SWCNT. Cellular data exhibited that the cytotoxicity of α- syn co-incubated with vitamin K1 in the presence of SWCNTs is less than the outcomes obtained in the absence of the vitamin K1. Conclusion It may be concluded that vitamin K1 decreases the propensity of α- syn aggregation in the presence of SWCNTs and induction of cytotoxicity.
Collapse
Affiliation(s)
- Amitis Naskhi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sanaz Jabbari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Goran Qader Othman
- Department of Medical Laboratory, Health Technical College, Erbil Polytechnic University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.,Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Shang Ziyad Abdulqadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Asaad Ab Alasady
- Anatomy, Histology, and Embryology Unit, College of Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Osama K Abou-Zied
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.,Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
132
|
Liu F, Wang Y, Sang J, Wei W, Zhao W, Chen B, Zhao F, Jia L, Lu F. Brazilin Inhibits α-Synuclein Fibrillogenesis, Disrupts Mature Fibrils, and Protects against Amyloid-Induced Cytotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11769-11777. [PMID: 31575115 DOI: 10.1021/acs.jafc.9b04558] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The inhibitory effect of brazilin against α-synuclein (α-syn) fibrillogenesis, disruption effect against mature fibrils, and the following cytotoxicity were examined by systematical biochemical, biophysical, cellular biological, and molecular simulation experiments. It is found that brazilin inhibited α-syn fibrillogenesis and disrupted the performed fibrils with a concentration-dependent manner. Moreover, cellular experimental data showed that brazilin effectively reduced the cytotoxicity induced by α-syn aggregates. Finally, molecular dynamics simulations were performed to explore the interactions between brazilin and α-syn pentamer. It is found that brazilin directly interacts with α-syn pentamer, and the hydrophobic interactions are favorable for brazilin binding with the α-syn pentamer, while the electrostatic part provides adverse effects. Three binding regions were identified to inhibit α-syn fibrillogenesis or disrupt the preformed aggregates. Furthermore, six important residues (i.e., G51, V52, A53, E61, V66, and K80) of α-syn were also identified. We expected that brazilin is an effective agent against α-syn fibrillogenesis and associated cytotoxicity.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , P. R. China
| | | | | | | | | | | | | | | | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , P. R. China
| |
Collapse
|
133
|
Ziaunys M, Smirnovas V. Additional Thioflavin-T Binding Mode in Insulin Fibril Inner Core Region. J Phys Chem B 2019; 123:8727-8732. [PMID: 31580671 DOI: 10.1021/acs.jpcb.9b08652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloidogenic protein aggregation into fibrils is linked to several neurodegenerative disorders, such as Alzheimer's or Parkinson's disease. An amyloid specific fluorescent dye thioflavin-T (ThT) is often used to track the formation of these fibrils in vitro. Despite its wide application, it is still unknown how many types of ThT binding modes to amyloids exist, with multiple studies indicating varying numbers. In this work, we examine the binding of ThT to insulin fibrils generated at pH 2.4 and reveal a possible inner core binding mode which is not accessible to the dye molecule after aggregation occurs.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center , Vilnius University , Vilnius LT-10257 , Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center , Vilnius University , Vilnius LT-10257 , Lithuania
| |
Collapse
|
134
|
González N, Gentile I, Garro HA, Delgado-Ocaña S, Ramunno CF, Buratti FA, Griesinger C, Fernández CO. Metal coordination and peripheral substitution modulate the activity of cyclic tetrapyrroles on αS aggregation: a structural and cell-based study. J Biol Inorg Chem 2019; 24:1269-1278. [PMID: 31486955 DOI: 10.1007/s00775-019-01711-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022]
Abstract
The discovery of aggregation inhibitors and the elucidation of their mechanism of action are key in the quest to mitigate the toxic consequences of amyloid formation. We have previously characterized the antiamyloidogenic mechanism of action of sodium phtalocyanine tetrasulfonate ([Na4(H2PcTS)]) on α-Synuclein (αS), demonstrating that specific aromatic interactions are fundamental for the inhibition of amyloid assembly. Here we studied the influence that metal preferential affinity and peripheral substituents may have on the activity of tetrapyrrolic compounds on αS aggregation. For the first time, our laboratory has extended the studies in the field of the bioinorganic chemistry and biophysics to cellular biology, using a well-established cell-based model to study αS aggregation. The interaction scenario described in our work revealed that both N- and C-terminal regions of αS represent binding interfaces for the studied compounds, a behavior that is mainly driven by the presence of negatively or positively charged substituents located at the periphery of the macrocycle. Binding modes of the tetrapyrrole ligands to αS are determined by the planarity and hydrophobicity of the aromatic ring system in the tetrapyrrolic molecule and/or the preferential affinity of the metal ion conjugated at the center of the macrocyclic ring. The different capability of phthalocyanines and meso-tetra (N-methyl-4-pyridyl) porphine tetrachloride ([H2PrTPCl4]) to modulate αS aggregation in vitro was reproduced in cell-based models of αS aggregation, demonstrating unequivocally that the modulation exerted by these compounds on amyloid assembly is a direct consequence of their interaction with the target protein.
Collapse
Affiliation(s)
- Nazareno González
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Iñaki Gentile
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Hugo A Garro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina.,Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, CP 5700, San Luis, Argentina
| | - Susana Delgado-Ocaña
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Carla F Ramunno
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Fiamma A Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK, Rosario, Argentina. .,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
135
|
The triphenylmethane dye brilliant blue G is only moderately effective at inhibiting amyloid formation by human amylin or at disaggregating amylin amyloid fibrils, but interferes with amyloid assays; Implications for inhibitor design. PLoS One 2019; 14:e0219130. [PMID: 31404073 PMCID: PMC6690547 DOI: 10.1371/journal.pone.0219130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The development of inhibitors of islet amyloid formation is important as pancreatic amyloid deposition contributes to type-2 diabetes and islet transplant failure. The Alzheimer's Aβ peptide and human amylin (h-amylin), the polypeptide responsible for amyloid formation in type-2 diabetes, share common physio-chemical features and some inhibitors of Aβ also inhibit amyloid formation by h-amylin and vice versa. Thus, a popular and potentially useful strategy to find lead compounds for anti-amylin amyloid agents is to examine compounds that have effects on Aβ amyloid formation. The triphenylmethane dye, brilliant blue G (BBG, Sodium;3-[[4-[(E)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-N-ethyl-3-methylanilino]methyl]benzenesulfonate) has been shown to modulate Aβ amyloid formation and inhibit Aβ induced toxicity. However, the effects of BBG on h-amylin have not been examined, although other triphenylmethane derivatives inhibit h-amylin amyloid formation. The compound has only a modest impact on h-amylin amyloid formation unless it is added in significant excess. BBG also remodels preformed h-amylin amyloid fibrils if added in excess, however BBG has no significant effect on h-amylin induced toxicity towards cultured β-cells or cultured CHO-T cells except at high concentrations. BBG is shown to interfere with standard thioflavin-T assays of h-amylin amyloid formation and disaggregation, highlighting the difficulty of interpreting such experiments in the absence of other measurements. BBG also interferes with ANS based assays of h-amylin amyloid formation. The work highlights the differences between inhibition of Aβ and h-amylin amyloid formation, illustrates the limitation of using Aβ inhibitors as leads for h-amylin amyloid inhibitors, and reinforces the difficulties in interpreting dye binding assays of amyloid formation.
Collapse
|
136
|
Ho G, Takamatsu Y, Waragai M, Wada R, Sugama S, Takenouchi T, Fujita M, Ali A, Hsieh MHI, Hashimoto M. Current and future clinical utilities of Parkinson's disease and dementia biomarkers: can they help us conquer the disease? Expert Rev Neurother 2019; 19:1149-1161. [PMID: 31359797 DOI: 10.1080/14737175.2019.1649141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Biomarkers for Parkinson's disease and Alzheimer's disease are essential, not only for disease detection, but also provide insight into potential disease relationships leading to better detection and therapy. As metabolic disease is known to increase neurodegeneration risk, such mechanisms may reveal such novel targets for PD and AD. Moreover, metabolic disease, including insulin resistance, offer novel biomarker and therapeutic targets for neurodegeneration, including glucagon-like-peptide-1, dipeptidyl peptidase-4 and adiponectin. Areas covered: The authors reviewed PubMed-listed research articles, including ours, on a number of putative PD, AD and neurodegenerative disease targets of interest, focusing on the relevance of metabolic syndrome and insulin resistance mechanisms, especially type II diabetes, to PD and AD. We highlighted various issues surrounding the current state of knowledge and propose avenues for future development. Expert opinion: Biomarkers for PD and AD are indispensable for disease diagnosis, prognostication and tracking disease severity, especially for clinical therapy trials. Although no validated PD biomarkers exist, their potential utility has generated tremendous interest. Combining insulin-resistance biomarkers with other core biomarkers or using them to predict non-motor symptoms of PD may be clinically useful. Collectively, although still unclear, potential biomarkers and therapies can aid in shedding new light on novel aspects of both PD and AD.
Collapse
Affiliation(s)
- Gilbert Ho
- PCND Neuroscience Research Institute , Poway , CA , USA
| | | | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School , Tokyo , Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization , Tsukuba , Japan
| | - Masayo Fujita
- Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Alysha Ali
- PCND Neuroscience Research Institute , Poway , CA , USA
| | | | | |
Collapse
|
137
|
Caballero AB, Espargaró A, Pont C, Busquets MA, Estelrich J, Muñoz-Torrero D, Gamez P, Sabate R. Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods. Curr Protein Pept Sci 2019; 20:563-576. [PMID: 30924417 DOI: 10.2174/1389203720666190329120007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
Abstract
Amyloid aggregation is linked to an increasing number of human disorders from nonneurological pathologies such as type-2 diabetes to neurodegenerative ones such as Alzheimer or Parkinson's diseases. Thirty-six human proteins have shown the capacity to aggregate into pathological amyloid structures. To date, it is widely accepted that amyloid folding/aggregation is a universal process present in eukaryotic and prokaryotic cells. In the last decade, several studies have unequivocally demonstrated that bacterial inclusion bodies - insoluble protein aggregates usually formed during heterologous protein overexpression in bacteria - are mainly composed of overexpressed proteins in amyloid conformation. This fact shows that amyloid-prone proteins display a similar aggregation propensity in humans and bacteria, opening the possibility to use bacteria as simple models to study amyloid aggregation process and the potential effect of both anti-amyloid drugs and pro-aggregative compounds. Under these considerations, several in vitro and in cellulo methods, which exploit the amyloid properties of bacterial inclusion bodies, have been proposed in the last few years. Since these new methods are fast, simple, inexpensive, highly reproducible, and tunable, they have aroused great interest as preliminary screening tools in the search for anti-amyloid (beta-blocker) drugs for conformational diseases. The aim of this mini-review is to compile recently developed methods aimed at tracking amyloid aggregation in bacteria, discussing their advantages and limitations, and the future potential applications of inclusion bodies in anti-amyloid drug discovery.
Collapse
Affiliation(s)
- Ana B Caballero
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Alba Espargaró
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Caterina Pont
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Joan Estelrich
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Patrick Gamez
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Raimon Sabate
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
138
|
De Simone A, Naldi M, Tedesco D, Milelli A, Bartolini M, Davani L, Widera D, Dallas ML, Andrisano V. Investigating in Vitro Amyloid Peptide 1-42 Aggregation: Impact of Higher Molecular Weight Stable Adducts. ACS OMEGA 2019; 4:12308-12318. [PMID: 31460348 PMCID: PMC6682006 DOI: 10.1021/acsomega.9b01531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 05/21/2023]
Abstract
The self-assembly of amyloid peptides (Aβ), in particular Aβ1-42, into oligomers and fibrils is one of the main pathological events related to Alzheimer's disease. Recent studies have demonstrated the ability of carbon monoxide-releasing molecules (CORMs) to protect neurons and astrocytes from Aβ1-42 toxicity. In fact, CORMs are able to carry and release controlled levels of CO and are known to exert a wide range of anti-inflammatory and anti-apoptotic activities at physiologically relevant concentrations. In order to investigate the direct effects of CORMs on Aβ1-42, we studied the reactivity of CORM-2 and CORM-3 with Aβ1-42 in vitro and the potential inhibition of its aggregation by mass spectrometry (MS), as well as fluorescence and circular dichroism spectroscopies. The application of an electrospray ionization-MS (ESI-MS) method allowed the detection of stable Aβ1-42/CORMs adducts, involving the addition of the Ru(CO)2 portion of CORMs at histidine residues on the Aβ1-42 skeleton. Moreover, CORMs showed anti-aggregating properties through formation of stable adducts with Aβ1-42 as demonstrated by a thioflavin T fluorescence assay and MS analysis. As further proof, comparison of the CD spectra of Aβ1-42 recorded in the absence and in the presence of CORM-3 at a 1:1 molar ratio showed the ability of CORM-3 to stabilize the peptide in its soluble, unordered conformation, thereby preventing its misfolding and aggregation. This multi-methodological investigation revealed novel interactions between Aβ1-42 and CORMs, contributing new insights into the proposed neuroprotective mechanisms mediated by CORMs and disclosing a new strategy to divert amyloid aggregation and toxicity.
Collapse
Affiliation(s)
- Angela De Simone
- Department
for Life Quality Studies, Alma Mater Studiorum
Università di Bologna, Rimini 47921, Italy
| | - Marina Naldi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum Università di Bologna, Bologna 40126, Italy
- Center
for Applied Biomedical Research (C.R.B.A.) S. Orsola-Malpighi Hospital, Bologna 40126, Italy
| | - Daniele Tedesco
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum Università di Bologna, Bologna 40126, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum
Università di Bologna, Rimini 47921, Italy
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum Università di Bologna, Bologna 40126, Italy
| | - Lara Davani
- Department
for Life Quality Studies, Alma Mater Studiorum
Università di Bologna, Rimini 47921, Italy
| | - Darius Widera
- Reading
School of Pharmacy, University of Reading, Reading RG6 6UB, U.K.
| | - Mark L. Dallas
- Reading
School of Pharmacy, University of Reading, Reading RG6 6UB, U.K.
| | - Vincenza Andrisano
- Department
for Life Quality Studies, Alma Mater Studiorum
Università di Bologna, Rimini 47921, Italy
- E-mail:
| |
Collapse
|
139
|
Liu H, Chen L, Zhou F, Zhang YX, Xu J, Xu M, Bai SP. Anti-oligomerization sheet molecules: Design, synthesis and evaluation of inhibitory activities against α-synuclein aggregation. Bioorg Med Chem 2019; 27:3089-3096. [PMID: 31196755 DOI: 10.1016/j.bmc.2019.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022]
Abstract
Aggregation of α-synuclein (α-Syn) play a key role in the development of Parkinson Disease (PD). One of the effective approaches is to stabilize the native, monomeric protein with suitable molecule ligands. We have designed and synthesized a series of sheet-like conjugated compounds which possess different skeletons and various heteroatoms in the two blocks located at both ends of linker, which have good π-electron delocalization and high ability of hydrogen-bond formation. They have shown anti-aggregation activities in vitro towards α-Syn with IC50 down to 1.09 μM. The molecule is found binding in parallel to the NACore within NAC domain of α-Syn, interfering aggregation of NAC region within different α-Syn monomer, and further inhibiting or slowing down the formation of α-Syn oligomer nuclei at lag phase. The potential inhibitor obtained by our strategy is considered to be highly efficient to inhibit α-Syn aggregation.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Li Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Fei Zhou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Yun-Xiao Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| | - Ji Xu
- School of Basic Medical Science, Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| | - Meng Xu
- Department of Information of the First Affiliated Hospital, Zhengzhou University, Jianshe Road 1, 450052 Zhengzhou, China
| | - Su-Ping Bai
- College of Pharmacy, Xinxiang Medical University, Jinsui Road 601, 453003 Xinxiang, China.
| |
Collapse
|
140
|
Pan BB, Yang Y, Liu HZ, Li YH, Su XC. Coordination of Platinum to α-Synuclein Inhibits Filamentous Aggregation in Solution. Chembiochem 2019; 20:1953-1958. [PMID: 30958607 DOI: 10.1002/cbic.201900224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of filamentous aggregates of α-synuclein (AS) in Lewy bodies and neurites is characteristic of neurodegenerative diseases such as Parkinson's disease. Inhibition of AS fibrillation is helpful for understanding of AS aggregate structure and for developing chemical therapies. Herein, we report that the PtII -containing antitumor drug cisplatin suppresses filamentous aggregation of AS in solution. PtII thus contrasts strongly with reported transition-metal ions such as MnII , FeIII , and CuII , which accelerate AS aggregation. Interaction between PtII and the side chains of methionine and histidine residues was essential for inhibition of AS fibrillation. Binding of PtII to AS did not change the protein's overall random coil structure, as indicated by solution-state two-dimensional NMR and circular dichroism spectroscopy; and a solution of the AS⋅PtII complex remained free of filamentous aggregates. Our results constitute interesting new information about the biological chemistry of metal ions in Parkinson's disease and might open new lines of research into the suppression of filamentous aggregation.
Collapse
Affiliation(s)
- Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Zhong Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Hua Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
141
|
Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins. Biomolecules 2019; 9:biom9040146. [PMID: 30979035 PMCID: PMC6523529 DOI: 10.3390/biom9040146] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered proteins (IDP) are abundant in the human genome and have recently emerged as major therapeutic targets for various diseases. Unlike traditional proteins that adopt a definitive structure, IDPs in free solution are disordered and exist as an ensemble of conformations. This enables the IDPs to signal through multiple signaling pathways and serve as scaffolds for multi-protein complexes. The challenge in studying IDPs experimentally stems from their disordered nature. Nuclear magnetic resonance (NMR), circular dichroism, small angle X-ray scattering, and single molecule Förster resonance energy transfer (FRET) can give the local structural information and overall dimension of IDPs, but seldom provide a unified picture of the whole protein. To understand the conformational dynamics of IDPs and how their structural ensembles recognize multiple binding partners and small molecule inhibitors, knowledge-based and physics-based sampling techniques are utilized in-silico, guided by experimental structural data. However, efficient sampling of the IDP conformational ensemble requires traversing the numerous degrees of freedom in the IDP energy landscape, as well as force-fields that accurately model the protein and solvent interactions. In this review, we have provided an overview of the current state of computational methods for studying IDP structure and dynamics and discussed the major challenges faced in this field.
Collapse
|
142
|
Martial B, Lefèvre T, Buffeteau T, Auger M. Vibrational Circular Dichroism Reveals Supramolecular Chirality Inversion of α-Synuclein Peptide Assemblies upon Interactions with Anionic Membranes. ACS NANO 2019; 13:3232-3242. [PMID: 30811930 DOI: 10.1021/acsnano.8b08932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Parkinson's disease is an incurable neurodegenerative disorder caused by the aggregation of α-synuclein (AS). This amyloid protein contains a 12-residue-long segment, AS71-82, that triggers AS pathological aggregation. This peptide is then essential to better understand the polymorphism and the dynamics of formation of AS fibrillar structures. In this work, vibrational circular dichroism showed that AS71-82 is random coil in solution and forms parallel β-sheet fibrillar aggregates in the presence of anionic vesicles. Vibrational circular dichroism, with transmission electronic microscopy, revealed that the fibrillar structures exhibit a nanoscale tape-like morphology with a preferential supramolecular helicity. Whereas the structure handedness of some other amyloid peptides has been shown to be driven by pH, that of AS71-82 is controlled by peptide concentration and peptide-to-lipid (P:L) molar ratio. At low concentrations and low P:L molar ratios, AS71-82 assemblies have a left-twisted handedness, whereas at high concentrations and high P:L ratios, a right-twisted handedness is adopted. Left-twisted assemblies interconvert into right-twisted ones with time, suggesting a maturation of the amyloid structures. As fibril species with two chiralities have also been reported previously in Parkinson's disease Lewy bodies and fibrils, the present results seem relevant to better understand AS amyloid assembly and fibrillization in vivo. From a diagnosis or therapeutic point of view, it becomes essential that future fibril probes, inhibitors, or breakers target pathological assemblies with specific chirality and morphology, in particular, because they may change with the stage of the disease.
Collapse
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| | - Thierry Buffeteau
- Université Bordeaux , Institut des Sciences Moléculaires, CNRS UMR 5255, 33405 Talence , France
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF) , Université Laval , Québec , QC G1 V 0A6 , Canada
| |
Collapse
|
143
|
Mohammad-Beigi H, Hosseini A, Adeli M, Ejtehadi MR, Christiansen G, Sahin C, Tu Z, Tavakol M, Dilmaghani-Marand A, Nabipour I, Farzadfar F, Otzen DE, Mahmoudi M, Hajipour MJ. Mechanistic Understanding of the Interactions between Nano-Objects with Different Surface Properties and α-Synuclein. ACS NANO 2019; 13:3243-3256. [PMID: 30810027 DOI: 10.1021/acsnano.8b08983] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aggregation of the natively unfolded protein α-synuclein (α-syn) is key to the development of Parkinson's disease (PD). Some nanoparticles (NPs) can inhibit this process and in turn be used for treatment of PD. Using simulation strategies, we show here that α-syn self-assembly is electrostatically driven. Dimerization by head-to-head monomer contact is triggered by dipole-dipole interactions and subsequently stabilized by van der Waals interactions and hydrogen bonds. Therefore, we hypothesized that charged nano-objects could interfere with this process and thus prevent α-syn fibrillation. In our simulations, positively and negatively charged graphene sheets or superparamagnetic iron oxide NPs first interacted with α-syn's N/C terminally charged residues and then with hydrophobic residues in the non-amyloid-β component (61-95) region. In the experimental setup, we demonstrated that the charged nano-objects have the capacity not only to strongly inhibit α-syn fibrillation (both nucleation and elongation) but also to disaggregate the mature fibrils. Through the α-syn fibrillation process, the charged nano-objects induced the formation of off-pathway oligomers.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- Interdisciplinary Nanoscience Centre (iNANO) , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
| | - Atiyeh Hosseini
- Institute for Nanoscience and Nanotechnology (INST) , Sharif University of Technology , Tehran 1458889694 , Iran
- Center of Excellence in Complex Systems and Condensed Matter (CSCM) , Sharif University of Technology , Tehran 1458889694 , Iran
| | - Mohsen Adeli
- Faculty of Science , Lorestan University , Khorramabad , Iran
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry , Freie University Berlin , 14195 Berlin , Germany
| | - Mohammad Reza Ejtehadi
- School of Nano Science , Institute for Research in Fundamental Sciences (IPM) , P.O. Box 19395-5531, Tehran , Iran
- Department of Physics , Sharif University of Technology , P.O. Box 11155-9161, Tehran 1245 , Iran
| | - Gunna Christiansen
- Department of Biomedicine-Medical Microbiology and Immunology , Aarhus University , 8000 Aarhus C , Denmark
| | - Cagla Sahin
- Interdisciplinary Nanoscience Centre (iNANO) , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| | - Zhaoxu Tu
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry , Freie University Berlin , 14195 Berlin , Germany
| | - Mahdi Tavakol
- Department of Mechanical Engineering , Sharif University of Technology , Tehran 1245 , Iran
| | - Arezou Dilmaghani-Marand
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute , Tehran University of Medical Sciences , Tehran 1411713137 , Iran
| | - Iraj Nabipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute , Bushehr University of Medical Sciences , Bushehr 75147 , Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute , Tehran University of Medical Sciences , Tehran 1411713137 , Iran
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO) , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
- Department of Molecular Biology and Genetics , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C , Denmark
| | - Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Mohammad Javad Hajipour
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute , Tehran University of Medical Sciences , Tehran 1411713137 , Iran
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute , Bushehr University of Medical Sciences , Bushehr 75147 , Iran
| |
Collapse
|
144
|
Paul A, Zhang BD, Mohapatra S, Li G, Li YM, Gazit E, Segal D. Novel Mannitol-Based Small Molecules for Inhibiting Aggregation of α-Synuclein Amyloids in Parkinson's Disease. Front Mol Biosci 2019; 6:16. [PMID: 30968030 PMCID: PMC6438916 DOI: 10.3389/fmolb.2019.00016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 11/16/2022] Open
Abstract
The aggregation of the amyloidogenic protein α-synuclein (α-Syn) into toxic oligomers and mature fibrils is the major pathological hallmark of Parkinson's disease (PD). Small molecules that inhibit α-Syn aggregation thus may be useful therapeutics for PD. Mannitol and naphthoquinone-tryptophan (NQTrp) have been shown in the past to inhibit α-Syn aggregation by different mechanisms. Herein, we tested whether the conjugation of Mannitol and NQTrp may result in enhance efficacy toward α-Syn. The molecules were conjugated either by a click linker or via a PEG linker. The effect of the conjugate molecules on α-Syn aggregation in vitro was monitored using Thioflavin T fluorescence assay, circular dichroism, transmission electron microscopy, and Congo red birefringence assay. One of the conjugate molecules was found to be more effective than the two parent molecules and as effective as a mixture of the two. The conjugate molecules attenuated the disruptive effect of α-Syn on artificial membrane of Large Unilamellar Vesicles as monitored by dye leakage assay. The conjugates were found to be have low cytotoxicity and reduced toxicity of α-Syn toward SH-SY5Y neuroblastoma cells. These novel designed entities can be attractive scaffold for the development of therapeutic agents for PD.
Collapse
Affiliation(s)
- Ashim Paul
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Bo-Dou Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Satabdee Mohapatra
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gao Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yan-Mei Li
- Department of Chemistry, Tsinghua University, Beijing, China.,Institute of Parkinson Disease, Beijing Institute for Brain Disorders, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Ehud Gazit
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Segal
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
145
|
Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 2019; 568:420-423. [PMID: 30894745 PMCID: PMC6472968 DOI: 10.1038/s41586-019-1026-5] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that is associated with repetitive head impacts or exposure to blast waves. First described as punch-drunk syndrome and dementia pugilistica in retired boxers1-3, CTE has since been identified in former participants of other contact sports, ex-military personnel and after physical abuse4-7. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. CTE is defined by an abundance of hyperphosphorylated tau protein in neurons, astrocytes and cell processes around blood vessels8,9. This, together with the accumulation of tau inclusions in cortical layers II and III, distinguishes CTE from Alzheimer's disease and other tauopathies10,11. However, the morphologies of tau filaments in CTE and the mechanisms by which brain trauma can lead to their formation are unknown. Here we determine the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 Å, using cryo-electron microscopy. We show that filament structures are identical in the three cases but are distinct from those of Alzheimer's and Pick's diseases, and from those formed in vitro12-15. Similar to Alzheimer's disease12,14,16-18, all six brain tau isoforms assemble into filaments in CTE, and residues K274-R379 of three-repeat tau and S305-R379 of four-repeat tau form the ordered core of two identical C-shaped protofilaments. However, a different conformation of the β-helix region creates a hydrophobic cavity that is absent in tau filaments from the brains of patients with Alzheimer's disease. This cavity encloses an additional density that is not connected to tau, which suggests that the incorporation of cofactors may have a role in tau aggregation in CTE. Moreover, filaments in CTE have distinct protofilament interfaces to those of Alzheimer's disease. Our structures provide a unifying neuropathological criterion for CTE, and support the hypothesis that the formation and propagation of distinct conformers of assembled tau underlie different neurodegenerative diseases.
Collapse
|
146
|
Dong H, Qin Y, Huang Y, Ji D, Wu F. Poloxamer 188 rescues MPTP-induced lysosomal membrane integrity impairment in cellular and mouse models of Parkinson's disease. Neurochem Int 2019; 126:178-186. [PMID: 30904670 DOI: 10.1016/j.neuint.2019.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Rupture of lysosome is a major cellular stress condition leading to cell death in PD. We have previously shown that environmental oxidative toxins could impair autophagic flux and lysosomal functions in PD. Poloxamer 188 (P188) is an amphipathic polymer which has cytoprotective effect in traumatic brain injury and stroke. But whether Dyrk1A could rescue lysosome malfunction-mediated DA neuron death and α-synuclein aggregation in PD is still unknown. In the present study, MPTP mice models and MPP+-treated SH-SY5Y cells were used for study, and we found that P188 rescued MPP+-induced lysosomal dysfunction and impaired autophagy flux in mild MPP+-treated SH-SY5Y cells. P188 administration significantly restored lysosomal membrane integrity and prevented cathepsins leakage from the lysosomes into the cytoplasm, which triggered caspase-dependent apoptotic cell death in sub-acute MPTP mouse model and MPP+-treated SH-SY5Y cells. Furthermore, P188 ameliorated α-synuclein accumulation and behavioral impairment in chronic MPTP mouse model with MPTP and probenecid treatment. P188 could alleviate MPTP-induced DA neurons damage by restoring lysosome function.
Collapse
Affiliation(s)
- Hongli Dong
- Encephalopathy Department, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Yuanyuan Qin
- Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Yuyu Huang
- Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Dongliang Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
147
|
Amyloid found in human cataracts with two-dimensional infrared spectroscopy. Proc Natl Acad Sci U S A 2019; 116:6602-6607. [PMID: 30894486 DOI: 10.1073/pnas.1821534116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UV light and other factors damage crystallin proteins in the eye lens, resulting in cataracts that scatter light and affect vision. Little information exists about protein structures within these disease-causing aggregates. We examined postmortem lens tissue from individuals with and without cataracts using 2D infrared (2DIR) spectroscopy. Amyloid β-sheet secondary structure was detected in cataract lenses along with denatured structures. No amyloid structures were found in lenses from juveniles, but mature lenses with no cataract diagnosis also contained amyloid, indicating that amyloid structures begin forming before diagnosis. Light scatters more strongly in regions with amyloid structure, and UV light induces amyloid β-sheet structures, linking the presence of amyloid structures to disease pathology. Establishing that age-related cataracts involve amyloid structures gives molecular insight into a common human affliction and provides a possible structural target for pharmaceuticals as an alternative to surgery.
Collapse
|
148
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
149
|
Sárkány Z, Rocha F, Damas AM, Macedo-Ribeiro S, Martins PM. Chemical Kinetic Strategies for High-Throughput Screening of Protein Aggregation Modulators. Chem Asian J 2019; 14:500-508. [DOI: 10.1002/asia.201801703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Zsuzsa Sárkány
- LEPABE-Departamento de Engenharia Química; Faculdade de Engenharia da Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Fernando Rocha
- LEPABE-Departamento de Engenharia Química; Faculdade de Engenharia da Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Ana M. Damas
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; 4050-313 Porto Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; 4200-135 Porto Portugal
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto; 4200-135 Porto Portugal
| | - Pedro M. Martins
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; 4200-135 Porto Portugal
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto; 4200-135 Porto Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; 4050-313 Porto Portugal
| |
Collapse
|
150
|
Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:201-246. [DOI: 10.1016/bs.pbr.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|