101
|
Mahmood M, Taufiq I, Mazhar S, Hafeez F, Malik K, Afzal S. Revolutionizing personalized cancer treatment: the synergy of next-generation sequencing and CRISPR/Cas9. Per Med 2024; 21:175-190. [PMID: 38708901 DOI: 10.1080/17410541.2024.2341610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
In the context of cancer heterogeneity, the synergistic action of next-generation sequencing (NGS) and CRISPR/Cas9 plays a promising role in the personalized treatment of cancer. NGS enables high-throughput genomic profiling of tumors and pinpoints specific mutations that primarily lead to cancer. Oncologists use this information obtained from NGS in the form of DNA profiling or RNA analysis to tailor precision strategies based on an individual's unique molecular signature. Furthermore, the CRISPR technique enables precise editing of cancer-specific mutations, allowing targeted gene modifications. Harnessing the potential insights of NGS and CRISPR/Cas9 heralds a remarkable frontier in cancer therapeutics with unprecedented precision, effectiveness and minimal off-target effects.
Collapse
Affiliation(s)
- Muniba Mahmood
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Izza Taufiq
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Sana Mazhar
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Faiqa Hafeez
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Samia Afzal
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| |
Collapse
|
102
|
Lyu X, Gupta L, Tholouli E, Chinoy H. Chimeric antigen receptor T cell therapy: a new emerging landscape in autoimmune rheumatic diseases. Rheumatology (Oxford) 2024; 63:1206-1216. [PMID: 37982747 PMCID: PMC11065442 DOI: 10.1093/rheumatology/kead616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy, an innovative immune cell therapy, has revolutionized the treatment landscape of haematological malignancies. The past 2 years has witnessed the successful application of CD19-targeting CAR constructs in refractory cases of autoimmune rheumatic diseases, including systemic lupus erythematosus, systemic sclerosis and anti-synthetase syndrome. In comparison with existing B cell depletion therapies, targeting CD19 has demonstrated a more rapid and profound therapeutic effect, enabling drug-free remission with manageable adverse events. These promising results necessitate validation through long-term, large-sample randomized controlled studies. Corroborating the role of CAR-T therapy in refractory rheumatological disorders and affirming safety, efficacy and durability of responses are the aims of future clinical studies. Optimizing the engineering strategies and better patient selection are also critical to further refining the successful clinical implementation of CAR-T therapy.
Collapse
MESH Headings
- Humans
- Rheumatic Diseases/therapy
- Rheumatic Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Immunotherapy, Adoptive/methods
- Antigens, CD19/immunology
- Antigens, CD19/therapeutic use
- Lupus Erythematosus, Systemic/therapy
- Lupus Erythematosus, Systemic/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Scleroderma, Systemic/therapy
- Scleroderma, Systemic/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Xia Lyu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Epidemiology and Public Health Group, School of Health Sciences, The University of Manchester, Manchester, UK
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Latika Gupta
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | - Eleni Tholouli
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Hector Chinoy
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
| |
Collapse
|
103
|
Lowenstein PR, Varela ML, Castro MG. Three recent breakthroughs in CAR T cells for the treatment of glioblastoma: Is it the light at the end of the tunnel? Mol Ther 2024; 32:1187-1189. [PMID: 38631354 PMCID: PMC11081917 DOI: 10.1016/j.ymthe.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109, USA.
| | - Maria Luisa Varela
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
104
|
Sheykhhasan M, Ahmadieh-Yazdi A, Vicidomini R, Poondla N, Tanzadehpanah H, Dirbaziyan A, Mahaki H, Manoochehri H, Kalhor N, Dama P. CAR T therapies in multiple myeloma: unleashing the future. Cancer Gene Ther 2024; 31:667-686. [PMID: 38438559 PMCID: PMC11101341 DOI: 10.1038/s41417-024-00750-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
In recent years, the field of cancer treatment has witnessed remarkable breakthroughs that have revolutionized the landscape of care for cancer patients. While traditional pillars such as surgery, chemotherapy, and radiation therapy have long been available, a cutting-edge therapeutic approach called CAR T-cell therapy has emerged as a game-changer in treating multiple myeloma (MM). This novel treatment method complements options like autologous stem cell transplants and immunomodulatory medications, such as proteasome inhibitors, by utilizing protein complexes or anti-CD38 antibodies with potent complement-dependent cytotoxic effects. Despite the challenges and obstacles associated with these treatments, the recent approval of the second FDA multiple myeloma CAR T-cell therapy has sparked immense promise in the field. Thus far, the results indicate its potential as a highly effective therapeutic solution. Moreover, ongoing preclinical and clinical trials are exploring the capabilities of CAR T-cells in targeting specific antigens on myeloma cells, offering hope for patients with relapsed/refractory MM (RRMM). These advancements have shown the potential for CAR T cell-based medicines or combination therapies to elicit greater treatment responses and minimize side effects. In this context, it is crucial to delve into the history and functions of CAR T-cells while acknowledging their limitations. We can strategize and develop innovative approaches to overcome these barriers by understanding their challenges. This article aims to provide insights into the application of CAR T-cells in treating MM, shedding light on their potential, limitations, and strategies employed to enhance their efficacy.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Amirhossein Ahmadieh-Yazdi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi, University of Medical Sciences, Yazd, Iran
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Dirbaziyan
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Paola Dama
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
105
|
Gao C, Li X, Xu Y, Zhang T, Zhu H, Yao D. Recent advances in CAR-T cell therapy for acute myeloid leukaemia. J Cell Mol Med 2024; 28:e18369. [PMID: 38712978 PMCID: PMC11075639 DOI: 10.1111/jcmm.18369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.
Collapse
Affiliation(s)
- Chi Gao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Xin Li
- College of BiotechnologyTianjin University of Science and TechnologyTianjinChina
| | - Yao Xu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Tongcun Zhang
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
- Institute of Biology and MedicineWuhan University of Science and TechnologyWuhanChina
| | - Haichuan Zhu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Di Yao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
106
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
107
|
Hassan SH, Alshahrani MY, Saleh RO, Mohammed BA, Kumar A, Almalki SG, Alkhafaji AT, Ghildiyal P, Al-Tameemi AR, Elawady A. A new vision of the efficacy of both CAR-NK and CAR-T cells in treating cancers and autoimmune diseases. Med Oncol 2024; 41:127. [PMID: 38656354 DOI: 10.1007/s12032-024-02362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Chimeric Antigen Receptor (CAR) based therapies are becoming increasingly important in treating patients. CAR-T cells have been shown to be highly effective in the treatment of hematological malignancies. However, harmful therapeutic barriers have been identified, such as the potential for graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome (CRS). As a result, CAR NK-cell therapy is expected to be a new therapeutic option. NK cells act as cytotoxic lymphocytes, supporting the innate immune response against autoimmune diseases and cancer cells by precisely detecting and eliminating malignant cells. Genetic modification of these cells provides a dual approach to the treatment of AD and cancer. It can be used through both CAR-independent and CAR-dependent mechanisms. The use of CAR-based cell therapies has been successful in treating cancer patients, leading to further investigation of this innovative treatment for alternative diseases, including AD. The complementary roles of CAR T and CAR NK cells have stimulated exploration in this area. Our study examines the latest research on the therapeutic effectiveness of these cells in treating both cancer and ADs.
Collapse
Affiliation(s)
- Salim Hussein Hassan
- Community Health Department, Technical Institute of Karbala, AL-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
108
|
Montoya M, Gallus M, Phyu S, Haegelin J, de Groot J, Okada H. A Roadmap of CAR-T-Cell Therapy in Glioblastoma: Challenges and Future Perspectives. Cells 2024; 13:726. [PMID: 38727262 PMCID: PMC11083543 DOI: 10.3390/cells13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Su Phyu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Jeffrey Haegelin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
109
|
Blüm P, Kayser S. Chimeric Antigen Receptor (CAR) T-Cell Therapy in Hematologic Malignancies: Clinical Implications and Limitations. Cancers (Basel) 2024; 16:1599. [PMID: 38672680 PMCID: PMC11049267 DOI: 10.3390/cancers16081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has become a powerful treatment option in B-cell and plasma cell malignancies, and many patients have benefited from its use. To date, six CAR T-cell products have been approved by the FDA and EMA, and many more are being developed and investigated in clinical trials. The whole field of adoptive cell transfer has experienced an unbelievable development process, and we are now at the edge of a new era of immune therapies that will have its impact beyond hematologic malignancies. Areas of interest are, e.g., solid oncology, autoimmune diseases, infectious diseases, and others. Although much has been achieved so far, there is still a huge effort needed to overcome significant challenges and difficulties. We are witnessing a rapid expansion of knowledge, induced by new biomedical technologies and CAR designs. The era of CAR T-cell therapy has just begun, and new products will widen the therapeutic landscape in the future. This review provides a comprehensive overview of the clinical applications of CAR T-cells, focusing on the approved products and emphasizing their benefits but also indicating limitations and challenges.
Collapse
Affiliation(s)
- Philipp Blüm
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany;
| | - Sabine Kayser
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany;
- NCT Trial Center, National Center of Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
110
|
Simon S, Bugos G, Prins R, Rajan A, Palani A, Heyer K, Stevens A, Zeng L, Thompson K, Price JP, Kluesner MK, Jaeger-Ruckstuhl C, Shabaneh TB, Olson JM, Su X, Riddell SR. Sensitive bispecific chimeric T cell receptors for cancer therapy. RESEARCH SQUARE 2024:rs.3.rs-4253777. [PMID: 38746248 PMCID: PMC11092799 DOI: 10.21203/rs.3.rs-4253777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The expression of a synthetic chimeric antigen receptor (CAR) to redirect antigen specificity of T cells is transforming the treatment of hematological malignancies and autoimmune diseases [1-7]. In cancer, durable efficacy is frequently limited by the escape of tumors that express low levels or lack the target antigen [8-12]. These clinical results emphasize the need for immune receptors that combine high sensitivity and multispecificity to improve outcomes. Current mono- and bispecific CARs do not faithfully recapitulate T cell receptor (TCR) function and require high antigen levels on tumor cells for recognition [13-17]. Here, we describe a novel synthetic chimeric TCR (ChTCR) that exhibits superior antigen sensitivity and is readily adapted for bispecific targeting. Bispecific ChTCRs mimic TCR structure, form classical immune synapses, and exhibit TCR-like proximal signaling. T cells expressing Bi-ChTCRs more effectively eliminated tumors with heterogeneous antigen expression in vivo compared to T cells expressing optimized bispecific CARs. The Bi-ChTCR architecture is resilient and can be designed to target multiple B cell lineage and multiple myeloma antigens. Our findings identify a broadly applicable approach for engineering T cells to target hematologic malignancies with heterogeneous antigen expression, thereby overcoming the most frequent mechanism of relapse after current CAR T therapies.
Collapse
Affiliation(s)
- Sylvain Simon
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grace Bugos
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Rachel Prins
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Anusha Rajan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arulmozhi Palani
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kersten Heyer
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew Stevens
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Longhui Zeng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Kirsten Thompson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jason P Price
- Seattle Children's Research Institute, Ben Towne Center For Childhood Cancer Research, Seattle, WA 98105, USA
| | - Mitchell K Kluesner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carla Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James M Olson
- Seattle Children's Research Institute, Ben Towne Center For Childhood Cancer Research, Seattle, WA 98105, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Stanley R Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
111
|
Brown SR, Vomhof-DeKrey EE. Current Immunotherapy Treatments of Primary Breast Cancer Subtypes. Biomedicines 2024; 12:895. [PMID: 38672249 PMCID: PMC11048522 DOI: 10.3390/biomedicines12040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer receives the most funding when compared to any other cancer type, according to a global study conducted by The Lancet. Nevertheless, this malignancy remains the most diagnosed cancer among women and relies heavily on a neoadjuvant treatment regimen of chemotherapy and targeted therapy. After standard treatment, 25-30% of breast cancer patients still develop disease recurrence and must undergo cytoreductive debulking surgery followed by intensive chemotherapy. An array of targeted therapies are currently being utilized and developed to alleviate negative side effects, eradicate cancer growth, and diminish disease recurrence. Immunotherapy is a promising cancer therapy that upregulates one's immune system to stimulate a therapeutic effect and is utilized for cancer management among other ailments such as immunodeficiencies, hypersensitivity reactions, autoimmune diseases, inflammatory disorders, tissue and organ transplantation, and infectious diseases. This review highlights the five primary subtypes of breast cancer, provides a brief history of immunotherapy, evaluates the current landscape of treating breast cancer with immunotherapy, analyzes selected ongoing or recently completed immunotherapy clinical trials for hormone receptor-positive, HER2-enriched, and triple-negative breast cancer, and examines future trends for the treatment of breast cancer with immunotherapeutic techniques. This review provides a formal summary categorized by breast cancer subtype rather than types of immunotherapeutic treatment.
Collapse
Affiliation(s)
- Savannah R. Brown
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Emilie E. Vomhof-DeKrey
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
112
|
Hay ZL, Kim DD, Cimons JM, Knapp JR, Kohler ME, Quansah M, Zúñiga TM, Camp FA, Fujita M, Wang XJ, O’Connor BP, Slansky JE. Granzyme F: Exhaustion Marker and Modulator of Chimeric Antigen Receptor T Cell-Mediated Cytotoxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1381-1391. [PMID: 38416029 PMCID: PMC10984789 DOI: 10.4049/jimmunol.2300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024]
Abstract
Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.
Collapse
Affiliation(s)
- Zachary L.Z. Hay
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dale D. Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer M. Cimons
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer R. Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - M. Eric Kohler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado and Department of Pediatrics, Aurora, CO, USA
| | - Mary Quansah
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tiffany M. Zúñiga
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faye A. Camp
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mayumi Fujita
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA and Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| | - Xiao-Jing Wang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA and Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA, and since moved to Department of Pathology and Laboratory Medicine, University of California Davis, CA, USA
| | - Brian P. O’Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
113
|
Lin K, Xia B, Wang X, He X, Zhou M, Lin Y, Qiao Y, Li R, Chen Q, Li Y, Feng J, Chen T, Chen C, Li X, Zhang H, Lu L, Liu B, Zhang X. Development of nanobodies targeting hepatocellular carcinoma and application of nanobody-based CAR-T technology. J Transl Med 2024; 22:349. [PMID: 38610029 PMCID: PMC11015683 DOI: 10.1186/s12967-024-05159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR-T) cell therapy, as an emerging anti-tumor treatment, has garnered extensive attention in the study of targeted therapy of multiple tumor-associated antigens in hepatocellular carcinoma (HCC). However, the suppressive microenvironment and individual heterogeneity results in downregulation of these antigens in certain patients' cancer cells. Therefore, optimizing CAR-T cell therapy for HCC is imperative. METHODS In this study, we administered FGFR4-ferritin (FGFR4-HPF) nanoparticles to the alpaca and constructed a phage library of nanobodies (Nbs) derived from alpaca, following which we screened for Nbs targeting FGFR4. Then, we conducted the functional validation of Nbs. Furthermore, we developed Nb-derived CAR-T cells and evaluated their anti-tumor ability against HCC through in vitro and in vivo validation. RESULTS Our findings demonstrated that we successfully obtained high specificity and high affinity Nbs targeting FGFR4 after screening. And the specificity of Nbs targeting FGFR4 was markedly superior to their binding to other members of the FGFR family proteins. Furthermore, the Nb-derived CAR-T cells, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in both experiments when in vitro and in vivo. CONCLUSIONS In summary, the results of this study suggest that the CAR-T cells derived from high specificity and high affinity Nbs, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This is an exploration of FGFR4 in the field of Nb-derived CAR-T cell therapy for HCC, holding promise for enhancing safety and effectiveness in the clinical treatment of HCC in the future.
Collapse
Affiliation(s)
- Keming Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Baijin Xia
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xuemei Wang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yidan Qiao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Rong Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qier Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yuzhuang Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jinzhu Feng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Tao Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinyu Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lijuan Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Avenue, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Xu Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
114
|
Yuan S, Almagro J, Fuchs E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer 2024; 24:274-286. [PMID: 38347101 PMCID: PMC11077468 DOI: 10.1038/s41568-023-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
Cancer has long been viewed as a genetic disease of cumulative mutations. This notion is fuelled by studies showing that ageing tissues are often riddled with clones of complex oncogenic backgrounds coexisting in seeming harmony with their normal tissue counterparts. Equally puzzling, however, is how cancer cells harbouring high mutational burden contribute to normal, tumour-free mice when allowed to develop within the confines of healthy embryos. Conversely, recent evidence suggests that adult tissue cells expressing only one or a few oncogenes can, in some contexts, generate tumours exhibiting many of the features of a malignant, invasive cancer. These disparate observations are difficult to reconcile without invoking environmental cues triggering epigenetic changes that can either dampen or drive malignant transformation. In this Review, we focus on how certain oncogenes can launch a two-way dialogue of miscommunication between a stem cell and its environment that can rewire downstream events non-genetically and skew the morphogenetic course of the tissue. We review the cells and molecules of and the physical forces acting in the resulting tumour microenvironments that can profoundly affect the behaviours of transformed cells. Finally, we discuss possible explanations for the remarkable diversity in the relative importance of mutational burden versus tumour microenvironment and its clinical relevance.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
115
|
Melino G, Knight RA, Mak TW, Piacentini M, Simon HU, Shi Y. The birth of death, 30 years ago. Cell Death Differ 2024; 31:379-386. [PMID: 38600322 PMCID: PMC11043065 DOI: 10.1038/s41418-024-01276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy.
| | - Richard A Knight
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Tak Wah Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- Department of Pathology, University of Hong Kong, Hong Kong, Pok Fu Lam, 999077, Hong Kong
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
116
|
Stucchi A, Maspes F, Montee-Rodrigues E, Fousteri G. Engineered Treg cells: The heir to the throne of immunotherapy. J Autoimmun 2024; 144:102986. [PMID: 36639301 DOI: 10.1016/j.jaut.2022.102986] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.
Collapse
Affiliation(s)
- Adriana Stucchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Maspes
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ely Montee-Rodrigues
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Cambridge Epigenetix, Cambridge, Cambridgeshire, United Kingdom
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
117
|
Rathod RJ, Sukumaran RK, Kedia N, Kumar J, Nair R, Chandy M, Gandikota L, Radhakrishnan VS. Chimeric Antigen Receptor T-cell based cellular therapies for cancer: An introduction and Indian perspective. Indian J Cancer 2024; 61:204-214. [PMID: 39152647 DOI: 10.4103/ijc.ijc_433_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/19/2021] [Indexed: 08/19/2024]
Abstract
Using one's own immune system for curing cancer has been an active field of research in cancer biology and therapeutics. One such opportunity in cellular immunotherapy is adoptive cell transfers. With the recent approval of CAR-T therapy as a cancer treatment, a whole new paradigm of cancer treatment has opened-up, with a ray of hope for relapsed/refractory cancer patients. Despite promising clinical outcomes, the therapy is in its early phase and remains out of reach for most patients due to its high cost and logistic challenges. In India, these therapies are unavailable and further confounded by the economic challenges and a large population. In this review, we discuss various aspects of T-cell immunotherapies with a special focus on CAR-T in the Indian scenario. We touch upon the basic scientific aspects, mechanism of action, manufacturing, clinical aspects and commercial aspects of the CAR-Tcell therapies and its future worldwide and in India.
Collapse
Affiliation(s)
- Reena J Rathod
- Cell and Gene Therapy Division, Intas Pharmaceuticals, Ahmedabad, Gujarat, India
| | - Reghu K Sukumaran
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Neelam Kedia
- Cell and Gene Therapy Division, Intas Pharmaceuticals, Ahmedabad, Gujarat, India
| | - Jeevan Kumar
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Reena Nair
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Mammen Chandy
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | | | | |
Collapse
|
118
|
Gahvari Z, Brunner M, Schmidt T, Callander NS. Update on the current and future use of CAR-T to treat multiple myeloma. Eur J Haematol 2024; 112:493-503. [PMID: 38099401 DOI: 10.1111/ejh.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 03/19/2024]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has become an important intervention in the management of relapsed and relapsed/refractory multiple myeloma (MM). Currently, B-cell maturation antigen (BCMA) is the most targeted surface protein due to its ubiquitous expression on plasma cells, with increasing expression of this essential transmembrane protein on malignant plasma cells as patients develop more advanced disease. This review will explore the earliest CAR-T trials in myeloma, discuss important issues involved in CAR-T manufacturing and processing, as well as review current clinical trials that led to the approval of the two commercially available CAR-T products, Idecabtagene vicleucel and ciltacabtagene autoleucel. The most recent data from trials investigating the use of CAR-T as an earlier line of therapy will be presented. Finally, the problem of relapses after CAR-T will be presented, including several theories as to why CAR-T therapies fail and possible clinical caveats. The next generation of MM-specific CAR-T will likely include new targets such as G-protein-coupled receptor class C, Group 5, member D (GPRC5D) and signaling lymphocyte activation molecular Family 7 (SLAMF7). The role of CAR-T in the treatment of MM will undoubtedly increase exponentially in the next decade.
Collapse
Affiliation(s)
- Zhubin Gahvari
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Brunner
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy Schmidt
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Natalie S Callander
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
119
|
Mohammadi V, Maleki AJ, Nazari M, Siahmansouri A, Moradi A, Elahi R, Esmaeilzadeh A. Chimeric Antigen Receptor (CAR)-Based Cell Therapy for Type 1 Diabetes Mellitus (T1DM); Current Progress and Future Approaches. Stem Cell Rev Rep 2024; 20:585-600. [PMID: 38153634 DOI: 10.1007/s12015-023-10668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that destroys insulin-producing pancreatic β-cells. Insulin replacement therapy is currently the mainstay of treatment for T1DM; however, treatment with insulin does not ameliorate disease progression, as dysregulated immune response and inflammation continue to cause further pancreatic β-cell degradation. Therefore, shifting therapeutic strategies toward immunomodulating approaches could be effective to prevent and reverse disease progression. Different immune-modulatory therapies could be used, e.g., monoclonal-based immunotherapy, mesenchymal stem cell, and immune cell therapy. Since immune-modulatory approaches could have a systemic effect on the immune system and cause toxicity, more specific treatment options should target the immune response against pancreatic β-cells. In this regard, chimeric antigen receptor (CAR)-based immunotherapy could be a promising candidate for modulation of dysregulated immune function in T1DM. CAR-based therapy has previously been approved for a number of hematologic malignancies. Nevertheless, there is renewed interest in CAR T cells' " off-the-shelf " treatment for T1DM. Several pre-clinical studies demonstrated that redirecting antigen-specific CAR T cells, especially regulatory CAR T cells (CAR Tregs), toward the pancreatic β-cells, could prevent diabetes onset and progression in diabetic mice models. Here, we aim to review the current progress of CAR-based immune-cell therapy for T1DM and the corresponding challenges, with a special focus on designing CAR-based immunomodulatory strategies to improve its efficacy in the treatment of T1DM.
Collapse
Affiliation(s)
- Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
120
|
Strassl I, Podar K. The preclinical discovery and clinical development of ciltacabtagene autoleucel (Cilta-cel) for the treatment of multiple myeloma. Expert Opin Drug Discov 2024; 19:377-391. [PMID: 38369760 DOI: 10.1080/17460441.2024.2319672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Despite remarkable therapeutic advances over the last two decades, which have resulted in dramatic improvements in patient survival, multiple myeloma (MM) is still considered an incurable disease. Therefore, there is a high need for new treatment strategies. Genetically engineered/redirected chimeric antigen receptor (CAR) T cells may represent the most compelling modality of immunotherapy for cancer treatment in general, and MM in particular. Indeed, unprecedented response rates have led to the recent approvals of the first two BCMA-targeted CAR T cell products idecabtagene-vicleucel ('Ide-cel') and ciltacabtagene-autoleucel ('Cilta-Cel') for the treatment of heavily pretreated MM patients. In addition, both are emerging as a new standard-of-care also in earlier lines of therapy. AREAS COVERED This article briefly reviews the history of the preclinical development of CAR T cells, with a particular focus on Cilta-cel. Moreover, it summarizes the newest clinical data on Cilta-cel and discusses strategies to further improve its activity and reduce its toxicity. EXPERT OPINION Modern next-generation immunotherapy is continuously transforming the MM treatment landscape. Despite several caveats of CAR T cell therapy, including its toxicity, costs, and limited access, prolonged disease-free survival and potential cure of MM are finally within reach.
Collapse
Affiliation(s)
- Irene Strassl
- Division of Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Department of Internal Medicine I, Ordensklinikum Linz Hospital, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Austria
- Division of Molecular Oncology and Hematology, Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
121
|
Jin Y, Wu H, Liu J, Cho WC, Song G. Application and progress of CRISPR/Cas9 gene editing in B-cell lymphoma: a narrative review. Transl Cancer Res 2024; 13:1584-1595. [PMID: 38617522 PMCID: PMC11009809 DOI: 10.21037/tcr-23-1146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024]
Abstract
Background and Objective Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) gene editing and CRISPR/Cas9 screening libraries are hot topics, and have high application values in the diagnosis and treatment of genetic diseases, and the improvement of prognosis. The major treatment of B-cell lymphoma is chemotherapy combined with biological therapy. Due to the individual specificity and the emergence of drug resistance, the therapeutic efficacy varies. The objective of this article is to explore potential targets to enhance therapeutic effects, optimize treatment plans, and improve the prognosis of patients with B-cell lymphoma. Methods We undertook a comprehensive, narrative review of the latest literature to define the current application and progress of CRISPR/Cas9 in B-cell lymphoma. Key Content and Findings The concepts of CRISPR/Cas9, the mechanism of gene editing, and the procedures of CRISPR/Cas9 screening libraries are investigated for candidate genes. We mainly focus on application and progress of CRISPR/Cas9 in B-cell lymphoma and screen out some genes, signaling pathways, and cytokines, which may become potential targets for clinical treatment. Conclusions CRISPR/Cas9 gene editing has great promise in the treatment of B-cell lymphoma. This article reviews some genes, signaling pathways, and cytokines related to the progression and prognosis of B-cell lymphoma to provide a strong theoretical basis.
Collapse
Affiliation(s)
- Ying Jin
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Haiyi Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianzhao Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Dalian Medical University, Dalian, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
122
|
Yu X, Li W, Li Z, Wu Q, Sun S. Influence of Microbiota on Tumor Immunotherapy. Int J Biol Sci 2024; 20:2264-2294. [PMID: 38617537 PMCID: PMC11008264 DOI: 10.7150/ijbs.91771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
The role of the microbiome in immunotherapy has recently garnered substantial attention, with molecular studies and clinical trials providing emerging evidence on the pivotal influence of the microbiota in enhancing therapeutic outcomes via immune response modulation. However, the impact of microbial communities can considerably vary across individuals and different immunotherapeutic approaches, posing prominent challenges in harnessing their potential. In this comprehensive review, we outline the current research applications in tumor immunotherapy and delve into the possible mechanisms through which immune function is influenced by microbial communities in various body sites, encompassing those in the gut, extraintestinal barrier, and intratumoral environment. Furthermore, we discuss the effects of diverse microbiome-based strategies, including probiotics, prebiotics, fecal microbiota transplantation, and the targeted modulation of specific microbial taxa, and antibiotic treatments on cancer immunotherapy. All these strategies potentially have a profound impact on immunotherapy and pave the way for personalized therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, P. R. China
| | - Zhi Li
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
123
|
Hou F, Guo Z, Ho MT, Hui Y, Zhao CX. Particle-Based Artificial Antigen-Presenting Cell Systems for T Cell Activation in Adoptive T Cell Therapy. ACS NANO 2024; 18:8571-8599. [PMID: 38483840 DOI: 10.1021/acsnano.3c10180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
T cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells in vitro. Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions. Due to their vast clinical utility, aAPCs have been employed as an off-the-shelf technology for T cell activation in FDA-approved ACTs, and the development of aAPCs is constantly advancing with the emergence of aAPCs with more sophisticated designs and additional functionalities. Here, we review the recent advancements in particle-based aAPCs for T cell activation in ACTs. Following a brief introduction, we first describe the manufacturing processes of ACT products. Next, the design and synthetic strategies for micro- and nanoparticle-based aAPCs are discussed separately to emphasize their features, advantages, and limitations. Then, the impact of design parameters of aAPCs, such as size, shape, ligand density/mobility, and stiffness, on their functionality and biomedical performance is explored to provide deeper insights into the design concepts and principles for more efficient and safer aAPCs. The review concludes by discussing current challenges and proposing future perspectives for the development of more advanced aAPCs.
Collapse
Affiliation(s)
- Fei Hou
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zichao Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Minh Trang Ho
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yue Hui
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
124
|
Giraudo MF, Jackson Z, Das I, Abiona OM, Wald DN. Chimeric Antigen Receptor (CAR)-T Cell Therapy for Non-Hodgkin's Lymphoma. Pathog Immun 2024; 9:1-17. [PMID: 38550613 PMCID: PMC10972674 DOI: 10.20411/pai.v9i1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/28/2024] [Indexed: 04/15/2024] Open
Abstract
This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.
Collapse
Affiliation(s)
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
125
|
Ito Y, Inoue S, Kagoya Y. Gene editing technology to improve antitumor T-cell functions in adoptive immunotherapy. Inflamm Regen 2024; 44:13. [PMID: 38468282 PMCID: PMC10926667 DOI: 10.1186/s41232-024-00324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Adoptive immunotherapy, in which tumor-reactive T cells are prepared in vitro for adoptive transfer to the patient, can induce an objective clinical response in specific types of cancer. In particular, chimeric antigen receptor (CAR)-redirected T-cell therapy has shown robust responses in hematologic malignancies. However, its efficacy against most of the other tumors is still insufficient, which remains an unmet medical need. Accumulating evidence suggests that modifying specific genes can enhance antitumor T-cell properties. Epigenetic factors have been particularly implicated in the remodeling of T-cell functions, including changes to dysfunctional states such as terminal differentiation and exhaustion. Genetic ablation of key epigenetic molecules prevents the dysfunctional reprogramming of T cells and preserves their functional properties.Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based gene editing is a valuable tool to enable efficient and specific gene editing in cultured T cells. A number of studies have already identified promising targets to improve the therapeutic efficacy of CAR-T cells using genome-wide or focused CRISPR screening. In this review, we will present recent representative findings on molecular insights into T-cell dysfunction and how genetic modification contributes to overcoming it. We will also discuss several technical advances to achieve efficient gene modification using the CRISPR and other novel platforms.
Collapse
Affiliation(s)
- Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
126
|
Zhu C, Wu Q, Sheng T, Shi J, Shen X, Yu J, Du Y, Sun J, Liang T, He K, Ding Y, Li H, Gu Z, Wang W. Rationally designed approaches to augment CAR-T therapy for solid tumor treatment. Bioact Mater 2024; 33:377-395. [PMID: 38059121 PMCID: PMC10696433 DOI: 10.1016/j.bioactmat.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.
Collapse
Affiliation(s)
- Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Qing Wu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tao Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jicheng Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaixin He
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
127
|
Sert B, Gulden G, Teymur T, Ay Y, Turan RD, Unaldi OM, Guzenge E, Erdil HE, Isik S, Oz P, Bozkurt I, Ozer S, Yurdakul T, Kamali O, Ovali E, Tarhan N, Tastan C. Enhancing CAR-T cells: unleashing lasting impact potential with phytohemagglutinin activation in in vivo leukemia model. Cancer Gene Ther 2024; 31:387-396. [PMID: 38092962 DOI: 10.1038/s41417-023-00709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 03/16/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy holds great promise as an innovative immunotherapeutic approach for cancer treatment. To optimize the production and application of CAR-T cells, we evaluated the in vivo stability and efficacy capacities of CAR-T cells developed under different conditions. In this study, CAR-T cells were activated using Phytohemagglutinin (PHA) or anti-CD3&anti-CD28 and were compared in an in vivo CD19+B-cell cancer model in mouse groups. Our results demonstrated that CAR-T cells activated with PHA exhibited higher stability and anti-cancer efficacy compared to those activated with anti-CD3&anti-CD28. Specifically, CAR19BB-T cells activated with PHA exhibited continuous proliferation and long-term persistence without compromising their anti-cancer efficacy. Kaplan-Meier survival analysis revealed prolonged overall survival in the CAR-T cell-treated groups compared to the only tumor group. Furthermore, specific LTR-targeted RT-PCR analysis confirmed the presence of CAR-T cells in the treated groups, with significantly higher levels observed in the CAR19BB-T (PHA) group compared to other groups. Histopathological analysis of spleen, kidney, and liver tissue sections indicated reduced inflammation and improved tissue integrity in the CAR-T cell-treated groups. Our findings highlight the potential benefits of using PHA as a co-stimulatory method for CAR-T cell production, offering a promising strategy to enhance their stability and persistence. These results provide valuable insights for the development of more effective and enduring immunotherapeutic approaches for cancer treatment. CAR-T cells activated with PHA may offer a compelling therapeutic option for advancing cancer immunotherapy in clinical applications.
Collapse
Affiliation(s)
- Berranur Sert
- Molecular Biology, Institute of Science and Technology, Üsküdar University, Istanbul, Turkey
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey
| | - Gamze Gulden
- Molecular Biology, Institute of Science and Technology, Üsküdar University, Istanbul, Turkey
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey
| | - Tarik Teymur
- Molecular Biology, Institute of Science and Technology, Üsküdar University, Istanbul, Turkey
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey
| | - Yasin Ay
- Molecular Biology, Institute of Science and Technology, Üsküdar University, Istanbul, Turkey
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey
| | - Raife Dilek Turan
- Department of Genetics and Bioengineering, Faculty of Engineering, Cell and Gene Therapy Excellence Center, Yeditepe University, Istanbul, Turkey
| | - Onur Mert Unaldi
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Science, Üsküdar University, Istanbul, Turkey
| | - Elanur Guzenge
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Science, Üsküdar University, Istanbul, Turkey
| | - Hamza Emir Erdil
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Science, Üsküdar University, Istanbul, Turkey
| | - Sevim Isik
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Science, Üsküdar University, Istanbul, Turkey
- Stem Cell Studies Application and Research Center (USKOKMER), Üsküdar University, Istanbul, Turkey
| | - Pinar Oz
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Science, Üsküdar University, Istanbul, Turkey
- Neuropsychopharmacology Application and Research Center (NPFUAM) Neurochemıstry Laboratory Üsküdar University, Istanbul, Turkey
| | | | - Samed Ozer
- Acıbadem Mehmet Ali Aydınlar University, Animal Application and Research Center, İstanbul, Turkey
| | - Tahire Yurdakul
- Molecular Biology, Institute of Science and Technology, Üsküdar University, Istanbul, Turkey
- Stem Cell Studies Application and Research Center (USKOKMER), Üsküdar University, Istanbul, Turkey
| | - Osman Kamali
- Neuropsychopharmacology Application and Research Center (NPFUAM) Neurochemıstry Laboratory Üsküdar University, Istanbul, Turkey
| | - Ercument Ovali
- Acıbadem Labcell Cellular Therapy Laboratory, İstanbul, Turkey
| | - Nevzat Tarhan
- NP Brain Hospital, Istanbul, Turkey
- Faculty of Humanities and Social Sciences, Üsküdar University, Istanbul, Turkey
| | - Cihan Tastan
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey.
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Science, Üsküdar University, Istanbul, Turkey.
| |
Collapse
|
128
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
129
|
Tao R, Han X, Bai X, Yu J, Ma Y, Chen W, Zhang D, Li Z. Revolutionizing cancer treatment: enhancing CAR-T cell therapy with CRISPR/Cas9 gene editing technology. Front Immunol 2024; 15:1354825. [PMID: 38449862 PMCID: PMC10914996 DOI: 10.3389/fimmu.2024.1354825] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
CAR-T cell therapy, a novel immunotherapy, has made significant breakthroughs in clinical practice, particularly in treating B-cell-associated leukemia and lymphoma. However, it still faces challenges such as poor persistence, limited proliferation capacity, high manufacturing costs, and suboptimal efficacy. CRISPR/Cas system, an efficient and simple method for precise gene editing, offers new possibilities for optimizing CAR-T cells. It can increase the function of CAR-T cells and reduce manufacturing costs. The combination of CRISPR/Cas9 technology and CAR-T cell therapy may promote the development of this therapy and provide more effective and personalized treatment for cancer patients. Meanwhile, the safety issues surrounding the application of this technology in CAR-T cells require further research and evaluation. Future research should focus on improving the accuracy and safety of CRISPR/Cas9 technology to facilitate the better development and application of CAR-T cell therapy. This review focuses on the application of CRISPR/Cas9 technology in CAR-T cell therapy, including eliminating the inhibitory effect of immune checkpoints, enhancing the ability of CAR-T cells to resist exhaustion, assisting in the construction of universal CAR-T cells, reducing the manufacturing costs of CAR-T cells, and the security problems faced. The objective is to show the revolutionary role of CRISPR/Cas9 technology in CAR-T cell therapy for researchers.
Collapse
Affiliation(s)
- Ruiyu Tao
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Xiaopeng Han
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Xue Bai
- Department of Urology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Jianping Yu
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Youwei Ma
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Weikai Chen
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Dawei Zhang
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Zhengkai Li
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| |
Collapse
|
130
|
Wu J, Wu W, Zhou B, Li B. Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol 2024; 42:228-240. [PMID: 37741706 DOI: 10.1016/j.tibtech.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
Genetically engineered immune cells expressing chimeric antigen receptors (CARs) have emerged as a new game changer in cancer immunotherapy. The utility of CAR T cell therapy against hematological malignancies has been validated in clinical practice. Other CAR immune cells are currently under investigation to improve the potency of CAR therapy in solid tumors. As a new class of therapeutic modalities, mRNA-based therapeutics hold enormous potential beyond COVID-19 mRNA vaccines. Arming immune cells with mRNA-encoded CARs represents a new frontier in cancer and beyond, enabling in vivo generation of CAR cells without causing transgene integration. In this review, we summarize recent advances in mRNA-based CAR immunotherapies and highlight their opportunities and challenges for the development of a new generation of living drugs.
Collapse
Affiliation(s)
- Jiacai Wu
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weigang Wu
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Boping Zhou
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Bin Li
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
131
|
Mishra A, Maiti R, Mohan P, Gupta P. Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions. Eur J Haematol 2024; 112:211-222. [PMID: 37705357 DOI: 10.1111/ejh.14101] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a groundbreaking immunotherapeutic approach for treating various hematological malignancies. CAR-T cells are engineered to express synthetic receptors that target specific antigens on cancer cells, leading to their eradication. While the therapy has shown remarkable efficacy, a significant challenge that has been observed in 30%-70% of patients showing recurrent disease is antigen loss or downregulation. We searched PubMed/MEDLINE, EMBASE, and Google scholar for articles on antigen loss/escape following Chimeric antigen receptor T-cell therapy in malignancies. Antigen loss refers to the loss or reduction in the expression of the target antigen on cancer cells, rendering CAR-T cells ineffective. This phenomenon poses a significant clinical concern, as it can lead to disease relapse and limited treatment options. This review explores the mechanisms underlying antigen loss following CAR-T cell therapy, its implications on treatment outcomes, and potential strategies to overcome the problem.
Collapse
Affiliation(s)
- Archana Mishra
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Prafull Mohan
- Clinical Pharmacologist, Armed Forces Medical Services, Guwahati, India
| | - Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
132
|
Bulte JWM. Direct versus Indirect Labeling for Chimeric Antigen Receptor T-Cell Tracking Using PET. Radiology 2024; 310:e240241. [PMID: 38411518 DOI: 10.1148/radiol.240241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Affiliation(s)
- Jeff W M Bulte
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research and Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N Broadway, MRB 659, Baltimore, MD 21205
| |
Collapse
|
133
|
Najafi S, Mortezaee K. Modifying CAR-T cells with anti-checkpoints in cancer immunotherapy: A focus on anti PD-1/PD-L1 antibodies. Life Sci 2024; 338:122387. [PMID: 38154609 DOI: 10.1016/j.lfs.2023.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Chimeric antigen receptor-modified T (CAR-T) are genetically engineered cells to express tumor-specific antigens revolutionizing the treatment of hematologic malignancies. The hostile tumor microenvironment (TME) remains a challenge for CAR-T cell therapy in solid tumors. As a solution, combinational therapy with immune checkpoint inhibitors (ICIs) is shown to improve the safety and efficacy of CAR-T cell therapy. To avoid side effects related to the application of ICIs in combinational therapy, engineering CARs to express tumor-specific antigens may help improvement of clinical outcomes. Those CARs expressing single chain variable fragments (scFvs) or nanobodies against immune checkpoint stimulatory or inhibitory molecules, such as the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) signaling axis are being extensively studied in various clinical trials. In this review, we discuss the significance of anti-PD-(L)1 scFv-expressing CAR-T cells in the treatment of human cancers, describing current challenges and potential strategies to overcome such predicaments in the area of cancer immunotherapy.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
134
|
Zhang G, Deng L, Lu H, Zhang W. Bibliometric analysis of research trends and active research areas in chimeric antigen receptor T cell therapy for hematologic malignancies. Int J Clin Pharm 2024; 46:186-194. [PMID: 38087131 DOI: 10.1007/s11096-023-01670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND In the past decade, chimeric antigen receptor (CAR) T-cells have successfully treated cancers, especially hematologic malignancies. Although many articles have been published on CAR T-cell therapy for hematologic malignancies, bibliometric analysis remains unexplored. AIM This study aimed to investigate and analyze existing trends and active research areas on CAR T-cell therapy for hematologic malignancies, providing novel perspectives for clinical decision-making and scientific research. METHOD From 2000 to 2023, the Web of Science Core Collection was searched for articles published on CAR T-cells for the treatment of hematologic malignancies. Comprehensive visual analyses of annual publication, country, institutions, authors, co-cited references, and keywords were performed using CiteSpace software and VOSviewer. RESULTS A total of 2,451 articles on CAR T-cells were published to treat hematologic malignancies from 01 January 2000 to 31 August 2023. The United States, China, and Germany were the top three nations in publications. In the keyword analysis, "immunotherapy" and "chimeric antigen receptor" were used most frequently. Moreover, the yellow node, which included terms such as "chimeric antigen receptor T cells," "efficacy," "CAR T-cell therapy," "toxicity," "CAR-NK," and "tumor microenvironment" were most active research areas. CONCLUSION This study provided a comprehensive analysis of publications on CAR T-cell therapy for hematologic malignancies from 2000 to 2023. The findings provide current trends and potential hotspots in CAR T-cell therapy for hematologic malignancies and contribute valuable direction for future studies in this field.
Collapse
Affiliation(s)
- Gaofeng Zhang
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, Guangxi, China
| | - Lian Deng
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, Guangxi, China
| | - Huirong Lu
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, Guangxi, China
| | - Wenwen Zhang
- Department of Pediatrics, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, 541002, Guangxi, China.
| |
Collapse
|
135
|
Gokemeijer J, Balasubramanian N, Ogasawara K, Grudzinska-Goebel J, Upreti VV, Mody H, Kasar S, Vepachedu VR, Xu W, Gupta S, Tarcsa E, Dodge R, Herr K, Yang TY, Tourdot S, Jawa V. An IQ Consortium Perspective on Best Practices for Bioanalytical and Immunogenicity Assessment Aspects of CAR-T and TCR-T Cellular Therapies Development. Clin Pharmacol Ther 2024; 115:188-200. [PMID: 37983584 DOI: 10.1002/cpt.3111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
CAR-T therapies have shown remarkable efficacy against hematological malignancies in the clinic over the last decade and new studies indicate that progress is being made to use these novel therapies to target solid tumors as well as treat autoimmune disease. Innovation in the field, including TCR-T, allogeneic or "off the shelf" CAR-T, and autoantigen/armored CAR-Ts are likely to increase the efficacy and applications of these therapies. The unique aspects of these cell-based therapeutics; patient-derived cells, intracellular expression, in vivo expansion, and phenotypic changes provide unique bioanalytical challenges to develop pharmacokinetic and immunogenicity assessments. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) Translational and ADME Sciences Leadership Group (TALG) has brought together a group of industry experts to discuss and consider these challenges. In this white paper, we present the IQ consortium perspective on the best practices and considerations for bioanalytical and immunogenicity aspects toward the optimal development of CAR-T and TCR-T cell therapies.
Collapse
Affiliation(s)
- Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol Myers Squibb, Cambridge, Massachusetts, USA
| | - Nanda Balasubramanian
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Ken Ogasawara
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | | | - Vijay V Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen, Inc., South San Francisco, California, USA
| | - Hardik Mody
- Clinical Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Siddha Kasar
- Oncology Precision & Translational Medicine, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Venkata R Vepachedu
- Bioanalytical Discovery & Development Sciences, Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Weifeng Xu
- Preclinical Development, Bioanalytical, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Swati Gupta
- Development Biological Sciences, Immunology, AbbVie, Irvine, California, USA
| | - Edit Tarcsa
- Abbvie Bioresearch Center, Worcester, Massachusetts, USA
| | - Robert Dodge
- Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, New Jersey, USA
| | - Kate Herr
- Bioanalytical Discovery & Development Sciences, Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Tong-Yuan Yang
- Bioanalytical Discovery & Development Sciences, Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Sophie Tourdot
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| |
Collapse
|
136
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
137
|
Partin AC, Bruno R, Shafaattalab S, Vander Mause E, Winters A, Daris M, Gahrs C, Jette CA, DiAndreth B, Sandberg ML, Hamburger AE, Kamb A, Riley TP. Geometric parameters that affect the behavior of logic-gated CAR T cells. Front Immunol 2024; 15:1304765. [PMID: 38343543 PMCID: PMC10853413 DOI: 10.3389/fimmu.2024.1304765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Clinical applications of CAR-T cells are limited by the scarcity of tumor-specific targets and are often afflicted with the same on-target/off-tumor toxicities that plague other cancer treatments. A new promising strategy to enforce tumor selectivity is the use of logic-gated, two-receptor systems. One well-described application is termed Tmod™, which originally utilized a blocking inhibitory receptor directed towards HLA-I target antigens to create a protective NOT gate. Here we show that the function of Tmod blockers targeting non-HLA-I antigens is dependent on the height of the blocker antigen and is generally compatible with small, membrane-proximal targets. We compensate for this apparent limitation by incorporating modular hinge units to artificially extend or retract the ligand-binding domains relative to the effector cell surface, thereby modulating Tmod activator and blocker function. By accounting for structural differences between activator and blocker targets, we developed a set of simple geometric parameters for Tmod receptor design that enables targeting of blocker antigens beyond HLA-I, thereby broadening the applications of logic-gated cell therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alexander Kamb
- A2 Biotherapeutics, Inc., Agoura Hills, CA, United States
| | | |
Collapse
|
138
|
Zanotta S, Galati D, De Filippi R, Pinto A. Breakthrough in Blastic Plasmacytoid Dendritic Cell Neoplasm Cancer Therapy Owing to Precision Targeting of CD123. Int J Mol Sci 2024; 25:1454. [PMID: 38338733 PMCID: PMC10855071 DOI: 10.3390/ijms25031454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic cancer originating from the malignant transformation of plasmacytoid dendritic cell precursors. This malignancy progresses rapidly, with frequent relapses and a poor overall survival rate, underscoring the urgent need for effective treatments. However, diagnosing and treating BPDCN have historically been challenging due to its rarity and the lack of standardized approaches. The recognition of BPDCN as a distinct disease entity is recent, and standardized treatment protocols are yet to be established. Traditionally, conventional chemotherapy and stem cell transplantation have been the primary methods for treating BPDCN patients. Advances in immunophenotyping and molecular profiling have identified potential therapeutic targets, leading to a shift toward CD123-targeted immunotherapies in both clinical and research settings. Ongoing developments with SL-401, IMGN632, CD123 chimeric antigen receptor (CAR) T-cells, and bispecific antibodies (BsAb) show promising advancements. However, the therapeutic effectiveness of CD123-targeting treatments needs improvement through innovative approaches and combinations of treatments with other anti-leukemic drugs. The exploration of combinations such as CD123-targeted immunotherapies with azacitidine and venetoclax is suggested to enhance antineoplastic responses and improve survival rates in BPDCN patients. In conclusion, this multifaceted approach offers hope for more effective and tailored therapeutic interventions against this challenging hematologic malignancy.
Collapse
Affiliation(s)
- Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Antonio Pinto
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| |
Collapse
|
139
|
Sakemura RL, Manriquez Roman C, Horvei P, Siegler EL, Girsch JH, Sirpilla OL, Stewart CM, Yun K, Can I, Ogbodo EJ, Adada MM, Bezerra ED, Kankeu Fonkoua LA, Hefazi M, Ruff MW, Kimball BL, Mai LK, Huynh TN, Nevala WK, Ilieva K, Augsberger C, Patra-Kneuer M, Schanzer J, Endell J, Heitmüller C, Steidl S, Parikh SA, Ding W, Kay NE, Nowakowski GS, Kenderian SS. CD19 occupancy with tafasitamab increases therapeutic index of CART19 cell therapy and diminishes severity of CRS. Blood 2024; 143:258-271. [PMID: 37879074 PMCID: PMC10808250 DOI: 10.1182/blood.2022018905] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
ABSTRACT In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.
Collapse
Affiliation(s)
- R. Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Claudia Manriquez Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Paulina Horvei
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Pediatric Bone Marrow Transplant and Cellular Therapy, UPMC Children’s Hospital of Pittsburgh, PA
| | - Elizabeth L. Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - James H. Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Olivia L. Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Carli M. Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Ekene J. Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Mohamad M. Adada
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Michael W. Ruff
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Department of Neurology, Mayo Clinic, Rochester, MN
| | - Brooke L. Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Long K. Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Truc N. Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | | | | | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Saad S. Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| |
Collapse
|
140
|
Rathore AS, Chirmule N, Dash R, Chowdhury A. Current status and future prospective of breast cancer immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:293-326. [PMID: 38762272 DOI: 10.1016/bs.apcsb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
The immune system is complicated, interconnected, and offers a powerful defense system that protects its host from foreign pathogens. Immunotherapy involves boosting the immune system to kill cancer cells, and nowadays, is a major emerging treatment for cancer. With the advances in our understanding of the immunology of cancer, there has been an explosion of studies to develop and evaluate therapies that engage the immune system in the fight against cancer. Nevertheless, conventional therapies have been effective in reducing tumor burden and prolonging patient life, but the overall efficacy of these treatment regimens has been somewhat mixed and often with severe side effects. A common reason for this is the activation of molecular mechanisms that lead to apoptosis of anti-tumor effector cells. The competency to block tumor escape entirely depends on our understanding of the cellular and molecular pathways which operate in the tumor microenvironment. Numerous strategies have been developed for activating the immune system to kill tumor cells. Breast cancer is one of the major causes of cancer death in women, and is characterized by complex molecular and cellular events that closely intertwine with the host immune system. In this regard, predictive biomarkers of immunotherapy, use of nanotechnology, personalized cancer vaccines, antibodies to checkpoint inhibitors, engineered chimeric antigen receptor-T cells, and the combination with other therapeutic modalities have transformed cancer therapy and optimized the therapeutic effect. In this chapter, we will offer a holistic view of the different therapeutic modalities and recent advances in immunotherapy. Additionally, we will summarize the recent advances and future prospective of breast cancer immunotherapies, as a case study.
Collapse
|
141
|
Khodke P, Kumbhar BV. Engineered CAR-T cells: An immunotherapeutic approach for cancer treatment and beyond. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:157-198. [PMID: 38762269 DOI: 10.1016/bs.apcsb.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy is a type of adoptive immunotherapy that offers a promising avenue for enhancing cancer treatment since traditional cancer treatments like chemotherapy, surgery, and radiation therapy have proven insufficient in completely eradicating tumors, despite the relatively positive outcomes. It has been observed that CAR-T cell therapy has shown promising results in treating the majority of hematological malignancies but also have a wide scope for other cancer types. CAR is an extra receptor on the T-cell that helps to increase and accelerate tumor destruction by efficiently activating the immune system. It is made up of three domains, the ectodomain, transmembrane, and the endodomain. The ectodomain is essential for antigen recognition and binding, whereas the co-stimulatory signal is transduced by the endodomain. To date, the Food and Drug Administration (FDA) has granted approval for six CAR-T cell therapies. However, despite its remarkable success, CAR-T therapy is associated with numerous adverse events and has certain limitations. This chapter focuses on the structure and function of the CAR domain, various generations of CAR, and the process of CAR-T cell development, adverse effects, and challenges in CAR-T therapy. CAR-T cell therapy also has scopes in other disease conditions which include systemic lupus erythematosus, multiple sclerosis, and myocardial fibrosis, etc.
Collapse
Affiliation(s)
- Purva Khodke
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India.
| |
Collapse
|
142
|
Mehrotra M, Phadte P, Shenoy P, Chakraborty S, Gupta S, Ray P. Drug-Resistant Epithelial Ovarian Cancer: Current and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:65-96. [PMID: 38805125 DOI: 10.1007/978-3-031-58311-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epithelial ovarian cancer (EOC) is a complex disease with diverse histological subtypes, which, based on the aggressiveness and course of disease progression, have recently been broadly grouped into type I (low-grade serous, endometrioid, clear cell, and mucinous) and type II (high-grade serous, high-grade endometrioid, and undifferentiated carcinomas) categories. Despite substantial differences in pathogenesis, genetics, prognosis, and treatment response, clinical diagnosis and management of EOC remain similar across the subtypes. Debulking surgery combined with platinum-taxol-based chemotherapy serves as the initial treatment for High Grade Serous Ovarian Carcinoma (HGSOC), the most prevalent one, and for other subtypes, but most patients exhibit intrinsic or acquired resistance and recur in short duration. Targeted therapies, such as anti-angiogenics (e.g., bevacizumab) and PARP inhibitors (for BRCA-mutated cancers), offer some success, but therapy resistance, through various mechanisms, poses a significant challenge. This comprehensive chapter delves into emerging strategies to address these challenges, highlighting factors like aberrant miRNAs, metabolism, apoptosis evasion, cancer stem cells, and autophagy, which play pivotal roles in mediating resistance and disease relapse in EOC. Beyond standard treatments, the focus of this study extends to alternate targeted agents, including immunotherapies like checkpoint inhibitors, CAR T cells, and vaccines, as well as inhibitors targeting key oncogenic pathways in EOC. Additionally, this chapter covers disease classification, diagnosis, resistance pathways, standard treatments, and clinical data on various emerging approaches, and advocates for a nuanced and personalized approach tailored to individual subtypes and resistance mechanisms, aiming to enhance therapeutic outcomes across the spectrum of EOC subtypes.
Collapse
Affiliation(s)
- Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Priti Shenoy
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sourav Chakraborty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudeep Gupta
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
143
|
Schreiber B, Tripathi S, Nikiforow S, Chandraker A. Adoptive Immune Effector Cell Therapies in Cancer and Solid Organ Transplantation: A Review. Semin Nephrol 2024; 44:151498. [PMID: 38555223 DOI: 10.1016/j.semnephrol.2024.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cancer is one of the most devastating complications of kidney transplantation and constitutes one of the leading causes of morbidity and mortality among solid organ transplantation (SOT) recipients. Immunosuppression, although effective in preventing allograft rejection, inherently inhibits immune surveillance against oncogenic viral infections and malignancy. Adoptive cell therapy, particularly immune effector cell therapy, has long been a modality of interest in both cancer and transplantation, though has only recently stepped into the spotlight with the development of virus-specific T-cell therapy and chimeric antigen receptor T-cell therapy. Although these modalities are best described in hematopoietic cell transplantation and hematologic malignancies, their potential application in the SOT setting may hold tremendous promise for those with limited therapeutic options. In this review, we provide a brief overview of the development of adoptive cell therapies with a focus on virus-specific T-cell therapy and chimeric antigen receptor T-cell therapy. We also describe the current experience of these therapies in the SOT setting as well as the challenges in their application and future directions in their development.
Collapse
Affiliation(s)
- Brittany Schreiber
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sudipta Tripathi
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sarah Nikiforow
- Division of Medical Oncology, Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anil Chandraker
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Renal Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA.
| |
Collapse
|
144
|
Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplant 2024; 33:9636897241231892. [PMID: 38433349 PMCID: PMC10913519 DOI: 10.1177/09636897241231892] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Immune cell therapy as a revolutionary treatment modality, significantly transformed cancer care. It is a specialized form of immunotherapy that utilizes living immune cells as therapeutic reagents for the treatment of cancer. Unlike traditional drugs, cell therapies are considered "living drugs," and these products are currently customized and require advanced manufacturing techniques. Although chimeric antigen receptor (CAR)-T cell therapies have received tremendous attention in the industry regarding the treatment of hematologic malignancies, their effectiveness in treating solid tumors is often restricted, leading to the emergence of alternative immune cell therapies. Tumor-infiltrating lymphocytes (TIL) cell therapy, cytokine-induced killer (CIK) cell therapy, dendritic cell (DC) vaccines, and DC/CIK cell therapy are designed to use the body's natural defense mechanisms to target and eliminate cancer cells, and usually have fewer side effects or risks. On the other hand, cell therapies, such as chimeric antigen receptor-T (CAR-T) cell, T cell receptor (TCR)-T, chimeric antigen receptor-natural killer (CAR-NK), or CAR-macrophages (CAR-M) typically utilize either autologous stem cells, allogeneic or xenogeneic cells, or genetically modified cells, which require higher levels of manipulation and are considered high risk. These high-risk cell therapies typically hold special characteristics in tumor targeting and signal transduction, triggering new anti-tumor immune responses. Recently, significant advances have been achieved in both basic and clinical researches on anti-tumor mechanisms, cell therapy product designs, and technological innovations. With swift technological integration and a high innovation landscape, key future development directions have emerged. To meet the demands of cell therapy technological advancements in treating cancer, we comprehensively and systematically investigate the technological innovation and clinical progress of immune cell therapies in this study. Based on the therapeutic mechanisms and methodological features of immune cell therapies, we analyzed the main technical advantages and clinical transformation risks associated with these therapies. We also analyzed and forecasted the application prospects, providing references for relevant enterprises with the necessary information to make informed decisions regarding their R&D direction selection.
Collapse
Affiliation(s)
- Jia Han
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bowen Zhang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Senyu Zheng
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Yuan Jiang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Zhang
- Shanghai World Trade Organization Affairs Consultation Center, Shanghai, China
| | - Kaiyun Mao
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
145
|
Lickefett B, Chu L, Ortiz-Maldonado V, Warmuth L, Barba P, Doglio M, Henderson D, Hudecek M, Kremer A, Markman J, Nauerth M, Negre H, Sanges C, Staber PB, Tanzi R, Delgado J, Busch DH, Kuball J, Luu M, Jäger U. Lymphodepletion - an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front Immunol 2023; 14:1303935. [PMID: 38187393 PMCID: PMC10770848 DOI: 10.3389/fimmu.2023.1303935] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Lymphodepletion (LD) or conditioning is an essential step in the application of currently used autologous and allogeneic chimeric antigen receptor T-cell (CAR-T) therapies as it maximizes engraftment, efficacy and long-term survival of CAR-T. Its main modes of action are the depletion and modulation of endogenous lymphocytes, conditioning of the microenvironment for improved CAR-T expansion and persistence, and reduction of tumor load. However, most LD regimens provide a broad and fairly unspecific suppression of T-cells as well as other hematopoietic cells, which can also lead to severe side effects, particularly infections. We reviewed 1271 published studies (2011-2023) with regard to current LD strategies for approved anti-CD19 CAR-T products for large B cell lymphoma (LBCL). Fludarabine (Flu) and cyclophosphamide (Cy) (alone or in combination) were the most commonly used agents. A large number of different schemes and combinations have been reported. In the respective schemes, doses of Flu and Cy (range 75-120mg/m2 and 750-1.500mg/m2) and wash out times (range 2-5 days) differed substantially. Furthermore, combinations with other agents such as bendamustine (benda), busulfan or alemtuzumab (for allogeneic CAR-T) were described. This diversity creates a challenge but also an opportunity to investigate the impact of LD on cellular kinetics and clinical outcomes of CAR-T. Only 21 studies explicitly investigated in more detail the influence of LD on safety and efficacy. As Flu and Cy can potentially impact both the in vivo activity and toxicity of CAR-T, a more detailed analysis of LD outcomes will be needed before we are able to fully assess its impact on different T-cell subsets within the CAR-T product. The T2EVOLVE consortium propagates a strategic investigation of LD protocols for the development of optimized conditioning regimens.
Collapse
Affiliation(s)
- Benno Lickefett
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Lulu Chu
- Cell Therapy Clinical Pharmacology and Modeling, Takeda, Boston, MA, United States
| | | | - Linda Warmuth
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Pere Barba
- Hematology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Matteo Doglio
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - David Henderson
- Bayer Aktiengesellschaft (AG), Business Development & Licensing & Open Innovation (OI), Pharmaceuticals, Berlin, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Kremer
- ITTM S.A. (Information Technology for Translational Medicine), Esch-sur-Alzette, Luxembourg
| | - Janet Markman
- Cell Therapy Clinical Pharmacology and Modeling, Takeda, Boston, MA, United States
| | - Magdalena Nauerth
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Helene Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Carmen Sanges
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Philipp B. Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Rebecca Tanzi
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Julio Delgado
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Dirk H. Busch
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Jürgen Kuball
- Legal and Regulatory Affairs Committee of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
146
|
Majumder A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers (Basel) 2023; 16:39. [PMID: 38201467 PMCID: PMC10777914 DOI: 10.3390/cancers16010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, chimeric antigen receptor (CAR)-T-cell therapy has emerged as the most promising immunotherapy for cancer that typically uses patients' T cells and genetically engineered them to target cancer cells. Although recent improvements in CAR-T-cell therapy have shown remarkable success for treating hematological malignancies, the heterogeneity in tumor antigens and the immunosuppressive nature of the tumor microenvironment (TME) limits its efficacy in solid tumors. Despite the enormous efforts that have been made to make CAR-T-cell therapy more effective and have minimal side effects for treating hematological malignancies, more research needs to be conducted regarding its use in the clinic for treating various other types of cancer. The main concern for CAR-T-cell therapy is severe toxicities due to the cytokine release syndrome, whereas the other challenges are associated with complexity and immune-suppressing TME, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T-cell exhaustion, and reduced cytotoxicity in the tumor site. This review discussed the latest discoveries in CAR-T-cell therapy strategies and combination therapies, as well as their effectiveness in different cancers. It also encompasses ongoing clinical trials; current challenges regarding the therapeutic use of CAR-T-cell therapy, especially for solid tumors; and evolving treatment strategies to improve the therapeutic application of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
147
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
148
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
149
|
Ou L, Su C, Liang L, Duan Q, Li Y, Zang H, He Y, Zeng R, Li Y, Zhou H, Xiao L. Current status and future prospects of chimeric antigen receptor-T cell therapy in lymphoma research: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2267865. [PMID: 37846106 PMCID: PMC10583622 DOI: 10.1080/21645515.2023.2267865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
CAR-T cell therapy, a novel therapeutic approach that has attracted much attention in the field of cancer treatment at present, has become the subject of many studies and has shown great potential in the treatment of hematological malignancies, such as leukemia and lymphoma. This study aims to analyze the characteristics of articles published on CAR-T cell therapy in the lymphoma field and explore the existing hotspots and frontiers. The relevant articles published from 2013 to 2022 were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, Bibliometric online analysis platform, Microsoft Excel, and R software were used for bibliometric analysis and visualization. The number of publications related to the research has been increasing year by year, including 1023 articles and 760 reviews from 62 countries and regions, 2092 institutions, 1040 journals, and 8727 authors. The United States, China, and Germany are the main publishing countries in this research field. The top 10 institutions are all from the United States, the journal with the highest impact factor is BLOOD, the author with the most publications is Frederick L Locke, and the most influential author is Carl H June. The top three keywords are "Lymphoma," "Immunotherapy," and "Therapy." "Maude (2014)" is the most cited and strongest burstiness reference over the past decade. This study provides a comprehensive bibliometric analysis of CAR-T cell therapy in lymphoma, which can help researchers understand the current research hotspots in this field, explore potential research directions, and identify future development trends.
Collapse
Affiliation(s)
- Lijia Ou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chang Su
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liang Liang
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qintong Duan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yufeng Li
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Zang
- Department of Human Anatomy and Histoembryology of School of Basic Medical Sciences, Yiyang Medical College, Yiyang, Hunan, China
| | - Yizi He
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ruolan Zeng
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yajun Li
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ling Xiao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
150
|
Kasamatsu T. Implications of Senescent T Cells for Cancer Immunotherapy. Cancers (Basel) 2023; 15:5835. [PMID: 38136380 PMCID: PMC10742305 DOI: 10.3390/cancers15245835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
T-cell senescence is thought to result from the age-related loss of the ability to mount effective responses to pathogens and tumor cells. In addition to aging, T-cell senescence is caused by repeated antigenic stimulation and chronic inflammation. Moreover, we demonstrated that T-cell senescence was induced by treatment with DNA-damaging chemotherapeutic agents. The characteristics of therapy-induced senescent T (TIS-T) cells and general senescent T cells are largely similar. Senescent T cells demonstrate an increase in the senescence-associated beta-galactosidase-positive population, cell cycle arrest, secretion of senescence-associated secretory phenotypic factors, and metabolic reprogramming. Furthermore, senescent T cells downregulate the expression of the co-stimulatory molecules CD27 and CD28 and upregulate natural killer cell-related molecules. Moreover, TIS-T cells showed increased PD-1 expression. However, the loss of proliferative capacity and decreased expression of co-stimulatory molecules associated with T-cell senescence cause a decrease in T-cell immunocompetence. In this review, we discuss the characteristics of senescent T-cells, including therapy-induced senescent T cells.
Collapse
Affiliation(s)
- Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi 371-8514, Gunma, Japan
| |
Collapse
|