101
|
Zhao J, Freeman GJ, Gray GS, Nadler LM, Glimcher LH. A cell type-specific enhancer in the human B7.1 gene regulated by NF-kappaB. J Exp Med 1996; 183:777-89. [PMID: 8642282 PMCID: PMC2192348 DOI: 10.1084/jem.183.3.777] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The costimulatory molecule B7.1 provides a second signal critical for T cell activation. The distribution of this integral membrane protein is restricted to certain tissues where its level of expression is modulated by multiple exogenous stimuli. To identify the molecular basis for specificity and inducibility, the chromatin configuration of the human B7.1 gene was examined in intact nuclei from various cell types. The identification of a tissue-specific deoxyribonuclease I hypersensitive site approximately 3kb upstream of the transcription start site led to the characterization of a cell type-specific enhancer region. This 183-bp region was both cell type specific and responsive to two distinct stimuli, lipopolysaccharide and dibutyryl cAMP, known to regulate B7.1 expression. Deletional and site-directed mutagenesis revealed the presence of multiple functionally critical cis elements within this region, one of which was a nuclear factor (NF)-kappaB consensus sequence. In B7.1-positive B cells, this element bound several members of the NF-kappaB family, transcription factors already implicated in signal transduction pathways relevant to B7.1 expression. This is the first description, to our knowledge, of regulatory elements that control expression of a gene encoding a B7 costimulatory molecule.
Collapse
Affiliation(s)
- J Zhao
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
102
|
Chirillo P, Falco M, Puri PL, Artini M, Balsano C, Levrero M, Natoli G. Hepatitis B virus pX activates NF-kappa B-dependent transcription through a Raf-independent pathway. J Virol 1996; 70:641-6. [PMID: 8523586 PMCID: PMC189859 DOI: 10.1128/jvi.70.1.641-646.1996] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this study, we characterized the molecular events involved in the activation of the ubiquitous transcription factor NF-kappa B by the viral transactivator pX. pX expression in HeLa cells determines a manyfold increase in NF-kappa B-dependent transcription, which is associated with an increase in p50/p65 heterodimer DNA-binding activity. Since the I kappa B-alpha inhibitory subunit proteolytic degradation, which follows its phosphorylation/modification, is a key event in NF-kappa B activation by different stimuli (such as growth factors, phorbol esters, tumor necrosis factor, UV irradiation, and oxygen radicals), we investigated pX effects on I kappa B-alpha, as well as the possible involvement of known signalling pathways in pX-induced NF-kappa B-dependent transcription. We observed that although pX had no direct effect on p50 or p65, it was able to restore the I kappa B-alpha-suppressed p50/p65 activity. More directly, the stable expression of pX in HeLa cells resulted in reduced levels of I kappa B-alpha in the cytoplasm. Pretreatment of the cells with H7, calphostin C, tyrphostin 25, or N-acetylcysteine did not impair the effects of pX on NF-kappa B, thus ruling out the involvement of protein kinase C, tyrosine kinases, and oxygen radicals. Finally, while most of the known NF-kappa B-activating agents converge on Raf-1 protein kinase, when Raf-1 activity is blocked by overexpression of a dominant negative mutant, the effects of pX on NF-kappa B are not impaired. Thus, we suggest that although pX is able to activate the Ras/Raf-1-signalling pathway, it triggers NF-kappa B activation by an as yet unidentified Raf-1-independent pathway.
Collapse
Affiliation(s)
- P Chirillo
- Fondazione Andrea Cesalpino, Università degli Studi di Roma La Sapienza, Italy
| | | | | | | | | | | | | |
Collapse
|
103
|
Yoshida M. Molecular biology of HTLV-I: recent progress. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1996; 13 Suppl 1:S63-8. [PMID: 8797706 DOI: 10.1097/00042560-199600001-00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Yoshida
- Department of Cellular and Molecular Biology, University of Tokyo, Japan
| |
Collapse
|
104
|
Béraud C, Greene WC. Interaction of HTLV-I Tax with the human proteasome: implications for NF-kappa B induction. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1996; 13 Suppl 1:S76-84. [PMID: 8797708 DOI: 10.1097/00042560-199600001-00014] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human T-cell leukemia virus type I (HTLV-I) has been etiologically associated with the development of the adult T-cell leukemia (ATL) as well as degenerative neurologic syndrome termed tropical spastic paraparesis (TSP). HTLV-I encodes a potent transactivator protein termed Tax that appears to play an important role in the process of T-cell immortalization. Even though the mechanisms by which Tax induces transformation are still unknown, it seems likely that the ability of Tax to alter the expression of many cellular genes plays an important part in this process. Tax does not bind directly to DNA but rather deregulates the activity of cellular transcription factors. One family of host transcription factors whose activity is altered by Tax includes NF-kappa B/Rel. These transcription factors are post-transcriptionally regulated by their assembly with a second family of inhibitory proteins termed I kappa B that serve to sequester the NF-kappa B/Rel complexes in the cytoplasm. Upon cellular activation, I kappa B alpha is phosphorylated, polyubiquitinated, and degraded in the proteasome. This proteolytic event liberates NF-kappa B, permitting its rapid translocation into the nucleus where it binds to its cognate enhancer elements. Similarly, the p105 precursor of the NF-kappa B p50 subunit is also post-translationally processed in the proteasome. The mechanisms by which Tax activates NF-kappa B remain unclear, and findings presented in the literature are often controversial. We identified a physical interaction between Tax and the HsN3 subunit of the human proteasome. This raises the intriguing possibility that physical association of the HsN3 proteasome subunit with HTLV-I Tax coupled with the independent interaction of Tax with either p100 or p65-I kappa B alpha targets these cytoplasmic NF-kappa B/Rel complexes to the proteasome for processing.
Collapse
Affiliation(s)
- C Béraud
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
| | | |
Collapse
|
105
|
Handel ML, McMorrow LB, Gravallese EM. Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65. ARTHRITIS AND RHEUMATISM 1995; 38:1762-70. [PMID: 8849348 DOI: 10.1002/art.1780381209] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the cells that express transcription factor NF-kappa B subunits p50 and p65 in synovial tissue from patients with rheumatoid arthritis (RA) and to correlate the distribution of p50 and p65 with CD14 (macrophage lipopolysaccharide receptor) and members of the AP-1 transcription factor family, Jun and Fos. METHODS Immunohistochemistry was used to identify p50, p65, Jun and Fos in sections of synovial tissue from 13 patients with RA and 4 "normal" control subjects. Double staining for CD14 and each of the transcription factor subunits was performed. RESULTS Subunits p50 and p65 were present in the nuclei of synovial cells in all 13 RA patients, with expression varying from rare cells to more than half of all cells. In most cases, nuclear p50 and p65 were present in approximately one-third of synovial lining cells and in a variable proportion of cells scattered throughout the sublining region, including the endothelium. The distributions of p50 and p65 were similar. Jun and Fos were present in the nuclei of a large proportion of synovial lining cells with significantly less expression elsewhere. In each case the Jun/Fos distribution was clearly different from the p50/p65 distribution, although there was significant overlap in many cases. Cells expressing CD14 were mostly Jun/Fos negative and were predominantly p50/p65 positive. There was negligible staining for p50 or p65 in the 4 normal control synovium samples. CONCLUSION In most RA patients, the p50 and p65 subunits of NF-kappa B were present in the majority of CD14-positive cells within the lining and sublining regions and in a proportion of other cells throughout the synovium, including endothelial cells. NF-kappa B is likely to play an important role in the expression of macrophage-derived cytokines in rheumatoid synovium. Different but overlapping distributions of nuclear p50 and p65 versus Jun and Fos indicate separate or divergent mechanisms for the activation of NF-kappa B and the expression of AP-1 proteins in rheumatoid synovium.
Collapse
Affiliation(s)
- M L Handel
- Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | |
Collapse
|
106
|
Komada M, Kitamura N. Growth factor-induced tyrosine phosphorylation of Hrs, a novel 115-kilodalton protein with a structurally conserved putative zinc finger domain. Mol Cell Biol 1995; 15:6213-21. [PMID: 7565774 PMCID: PMC230873 DOI: 10.1128/mcb.15.11.6213] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The activation of growth factor receptor tyrosine kinases leads to tyrosine phosphorylation of many intracellular proteins which are thought to play crucial roles in growth factor signaling pathways. We previously showed that tyrosine phosphorylation of a 115-kDa protein is rapidly induced in cells treated with hepatocyte growth factor. To clarify the structure and possible function of the 115-kDa protein (designated Hrs for hepatocyte growth factor-regulated tyrosine kinase substrate), we purified this protein from B16-F1 mouse melanoma cells by anti-phosphotyrosine immunoaffinity chromatography and determined its partial amino acid sequences. On the basis of the amino acid sequences, we molecularly cloned the cDNA for mouse Hrs. The nucleotide sequence of the cDNA revealed that Hrs is a novel 775-amino-acid protein with a putative zinc finger domain that is structurally conserved in several other proteins. This protein also contained a proline-rich region and a proline- and glutamine-rich region. The expression of Hrs mRNA was detected in all adult mouse tissues tested and also in embryos. To analyze the Hrs cDNA product, we prepared a polyclonal antibody against bacterially expressed Hrs. Using this antibody, we showed by subcellular fractionation that Hrs is localized to the cytoplasm; we also showed that that tyrosine phosphorylation of Hrs is induced in cells treated with epidermal growth factor or platelet-derived growth factor. These results suggest that Hrs plays a unique and important role in the signaling pathway of growth factors.
Collapse
Affiliation(s)
- M Komada
- Institute for Liver Research, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
107
|
Yoshida M. HTLV-1 oncoprotein Tax deregulates transcription of cellular genes through multiple mechanisms. J Cancer Res Clin Oncol 1995; 121:521-8. [PMID: 7559731 DOI: 10.1007/bf01197764] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Infection of a human retrovirus HTLV-1 induces adult T cell leukemia and a neurological disease, HAM/TSP. Regulatory protein Tax of HTLV-1 is thought to contribute to the pathogenesis. We have studied the mechanism of transcriptional activation induced by Tax protein and identified two independent mechanisms: (a) binding to the enhancer-binding proteins, CREB, CREM, NF-kappa B and SRF, resulting in the activation of these factors through indirect binding to each specific DNA sequence, and (b) binding to I kappa B protein resulting in the suppression of the negative regulator I kappa B, which binds to NF-kappa B. In addition to these factors, a new protein GLI/THP is also involved in the transactivation. On the basis of these mechanisms, gene regulations in vitro and in vivo in HTLV-1-infected cells are discussed.
Collapse
Affiliation(s)
- M Yoshida
- Department of Cellular and Molecular Biology, University of Tokyo, Japan
| |
Collapse
|
108
|
Abstract
The Tax protein, encoded by the human T cell leukemia virus HTLV-1, is responsible for transcriptional activation of the viral genome through conserved 21bp repeats located in its promoter. Tax also activates the transcription of cellular genes such as interleukin 2, interleukin 2 receptor (IL2R), GM-CSF, vimentin, c-fos, c-jun as well as the major histocompatibility complex class I genes. Tax does not bind DNA directly, but seems to activate transcription indirectly by enhancing the activity of the transcription factors that recognize responsive elements located in the promoters of the Tax-responsive genes, or by forming ternary complexes with these factors and DNA. One class of target sites for Tax are the kappa B sequences which are bound by members of the rel/NF-kappa B family. It has been previously shown that Tax is able to induce nuclear translocation of NF-kappa B. The activity of the NF-kappa B transcription factor is normally controlled through cytoplasmic retention by either of two types of molecules: the inhibitor I kappa B alpha/MAD3 or the p105 and p100 precursors of the p50 and p52 DNA-binding subunits. Treatment of cells with classical NF-kappa B inducers like TNF, IL-1, PMA or LPS results in MAD-3 degradation followed by nuclear translocation of NF-kappa B. On the other hand, the mechanisms involved in the dissociation of the cytoplasmic p105/p100-containing complexes are largely unknown. We demonstrate here that Tax can induce translocation of members of the NF-kappa B family retained in the cytoplasm through interaction with either p105 or p100. On the other hand Tax induces no apparent degradation of MAD-3. These results suggest that Tax activates NF-kappa B essentially through the p105/p100-retention pathway.
Collapse
Affiliation(s)
- E Munoz
- Unité de Biologie Moléculaire de l'Expression Génique, Institut Pasteur, Paris, France
| | | |
Collapse
|
109
|
Yin MJ, Paulssen EJ, Seeler JS, Gaynor RB. Protein domains involved in both in vivo and in vitro interactions between human T-cell leukemia virus type I tax and CREB. J Virol 1995; 69:3420-32. [PMID: 7745688 PMCID: PMC189054 DOI: 10.1128/jvi.69.6.3420-3432.1995] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gene expression from the human T-cell leukemia virus type I (HTLV-I) long terminal repeat (LTR) is mediated by three cis-acting regulatory elements known as 21-bp repeats and the transactivator protein Tax. The 21-bp repeats can be subdivided into three motifs known as A, B, and C, each of which is important for maximal gene expression in response to Tax. The B motif contains nucleotide sequences known as a cyclic AMP response element (CRE) or tax-response element which binds members of the ATF/CREB family of transcription factors. Though mutations of this element in the HTLV-I LTR eliminate tax activation, Tax will not activate most other promoters containing these CRE sites. In this study, we investigated the mechanism by which Tax activates gene expression in conjunction with members of the ATF/CREB family. We found that Tax enhanced the binding of one member of the ATF/CREB family, CREB 1, to each of the three HTLV-I LTR 21-bp repeats but not another member designated CRE-BP1 or CREB2. Tax enhanced the binding of CREB1 to nonpalindromic CRE binding sites such as those found in the HTLV-I LTR, but Tax did not enhance the binding of CREB1 to palindromic CRE binding sites such as found in the somatostatin promoter. This finding may help explain the failure of Tax to activate promoters containing consensus CRE sites. These studies were extended by use of the mammalian two-hybrid system. Tax was demonstrated to interact directly with CREB1 but not with other bZIP proteins, including CREB2 and Jun. Site-directed mutagenesis of both Tax and CREB1 demonstrated that the amino terminus of Tax and both the basic and the leucine zipper regions of CREB1 were required for direct interactions between these proteins both in vivo and in vitro. This interaction occurred in vivo and thus did not require the presence of the HTLV-I 21-bp repeats, as previously suggested. These results define the domains required for interaction between Tax and CREB that are likely critical for the activation of HTLV-I gene expression.
Collapse
Affiliation(s)
- M J Yin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8594, USA
| | | | | | | |
Collapse
|
110
|
Kanno T, Brown K, Siebenlist U. Evidence in support of a role for human T-cell leukemia virus type I Tax in activating NF-kappa B via stimulation of signaling pathways. J Biol Chem 1995; 270:11745-8. [PMID: 7744820 DOI: 10.1074/jbc.270.20.11745] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human T-cell leukemia virus type I Tax protein activates NF-kappa B transcription factors from preformed cytoplasmic pools, including those pools that are retained by the I kappa B-alpha inhibitory protein. Degradation of I kappa B-alpha is enhanced by Tax, resulting in the liberation of some NF-kappa B, which then translocates into the nucleus. Here we have investigated the mechanism by which Tax causes degradation of I kappa B-alpha. Two I kappa B-alpha mutants defective in extracellular signal-induced degradation of I kappa B-alpha also blocked Tax-mediated kappa B-dependent transactivation when cotransfected into Jurkat T cells. Cotransfected wild-type I kappa B-alpha or an irrelevant mutant did not significantly effect transactivation induced by Tax. The signal-defective I kappa B-alpha proteins are mutated at either of two closely spaced serines in the N terminus of the protein (Ser32 and Ser36). In wild-type I kappa B-alpha, one or both of these serines are inducibly phosphorylated with extracellular stimuli, and such phosphorylation appears necessary for subsequent degradation and thus activation of NF-kappa B. These results suggest that Tax triggers I kappa B-alpha degradation and thus NF-kappa B activation by a mechanism that converges with that induced by extracellular stimulation such as phorbol 12-myristate 13-acetate/ionomycin or tumor necrosis factor alpha. A role for Tax in activating signal transduction pathways upstream of I kappa B-alpha is implied.
Collapse
Affiliation(s)
- T Kanno
- Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1876, USA
| | | | | |
Collapse
|
111
|
Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY, Ballard DW. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 1995; 15:2809-18. [PMID: 7739562 PMCID: PMC230512 DOI: 10.1128/mcb.15.5.2809] [Citation(s) in RCA: 596] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The eukaryotic transcription factor NF-kappa B plays a central role in the induced expression of human immunodeficiency virus type 1 and in many aspects of the genetic program mediating normal T-cell activation and growth. The nuclear activity of NF-kappa B is tightly regulated from the cytoplasmic compartment by an inhibitory subunit called I kappa B alpha. This cytoplasmic inhibitor is rapidly phosphorylated and degraded in response to a diverse set of NF-kappa B-inducing agents, including T-cell mitogens, proinflammatory cytokines, and viral transactivators such as the Tax protein of human T-cell leukemia virus type 1. To explore these I kappa B alpha-dependent mechanisms for NF-kappa B induction, we identified novel mutants of I kappa B alpha that uncouple its inhibitory and signal-transducing functions in human T lymphocytes. Specifically, removal of the N-terminal 36 amino acids of I kappa B alpha failed to disrupt its ability to form latent complexes with NF-kappa B in the cytoplasm. However, this deletion mutation prevented the induced phosphorylation, degradative loss, and functional release of I kappa B alpha from NF-kappa B in Tax-expressing cells. Alanine substitutions introduced at two serine residues positioned within this N-terminal regulatory region of I kappa B alpha also yielded constitutive repressors that escaped from Tax-induced turnover and that potently inhibited immune activation pathways for NF-kappa B induction, including those initiated from antigen and cytokine receptors. In contrast, introduction of a phosphoserine mimetic at these sites rectified this functional defect, a finding consistent with a causal linkage between the phosphorylation status and proteolytic stability of this cytoplasmic inhibitor. Together, these in vivo studies define a critical signal response domain in I kappa B alpha that coordinately controls the biologic activities of I kappa B alpha and NF-kappa B in response to viral and immune stimuli.
Collapse
Affiliation(s)
- J A Brockman
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Herrero JA, Mathew P, Paya CV. LMP-1 activates NF-kappa B by targeting the inhibitory molecule I kappa B alpha. J Virol 1995; 69:2168-74. [PMID: 7884865 PMCID: PMC188885 DOI: 10.1128/jvi.69.4.2168-2174.1995] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
LMP-1, an Epstein-Barr virus membrane protein expressed during latent infection, has oncogenic properties, as judged from its ability to transform B lymphocytes and rodent fibroblasts. LMP-1 induces the expression of bcl2, an oncogene which protects cells from apoptosis, as well as of genes encoding other proteins involved in cell regulation and growth control. The mechanisms by which LMP-1 upregulates these proteins is unknown, but it is plausible that LMP-1 modifies signal transduction pathways that result in the activation of one or more transcription factors that ultimately regulate transcription of oncogenic genes. NF-kappa B, a transcription factor controlling the expression of genes involved in cell activation and growth control, has been shown to be activated by LMP-1. The mechanism(s) regulating this activation remains unknown. Our data indicate that increased NF-kappa B DNA binding and functional activity are present in B-lymphoid cells stably or transiently expressing LMP-1. I kappa B alpha is selectively modified in LMP-1-expressing B cells. A phosphorylated form of I kappa B alpha and increased protein turnover-degradation correlate with increased NF-kappa B nuclear translocation. This results in increased transcription of NF-kappa B-dependent-genes, including those encoding p105 and I kappa B alpha (MAD3). These results indicate that LMP-1 activates NF-kappa B in B-cell lines by targeting I kappa B alpha. Identification of the pathways activated by LMP-1 to result in posttranslational modifications of I kappa B alpha will aid in determining the role of this virus-host cell protein interaction in Epstein-Barr virus-mediated oncogenesis.
Collapse
Affiliation(s)
- J A Herrero
- Division of Experimental Pathology, Mayo Clinic, Rochester, Minnesota 55905
| | | | | |
Collapse
|
113
|
Lacoste J, Petropoulos L, Pépin N, Hiscott J. Constitutive phosphorylation and turnover of I kappa B alpha in human T-cell leukemia virus type I-infected and Tax-expressing T cells. J Virol 1995; 69:564-9. [PMID: 7983756 PMCID: PMC188611 DOI: 10.1128/jvi.69.1.564-569.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I) encodes a strong transcriptional activator, Tax, that stimulates transcription indirectly through the viral long terminal repeat and also activates a number of cellular genes via association with host transcription factors. The NF-kappa B/Rel pathway is a target for Tax trans-activation, and Tax has been correlated with increased NF-kappa B-binding activity and NF-kappa B-dependent gene expression in HTLV-I-infected cells. In this study we demonstrate that constitutive phosphorylation and increased turnover of the regulatory I kappa B alpha protein in HTLV-I-infected MT-2 and C8166 cells and Tax-expressing 19D cells contribute to constitutive NF-kappa B-binding activity, which consists primarily of c-Rel, p52(NFKB2), and p50(NFKB1). I kappa B alpha mRNA expression is also increased 7- to 20-fold in these cells, although the steady-state level of I kappa B alpha protein is reduced in HTLV-I-infected and Tax-expressing T cells. These results indicate that the viral Tax protein, by indirectly mediating phosphorylation of I kappa B, may target I kappa B alpha for rapid degradation, thus leading to constitutive NF-kappa B activity.
Collapse
Affiliation(s)
- J Lacoste
- Abe Stern Cancer Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
114
|
Affiliation(s)
- E B Kopp
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
115
|
Kanno T, Franzoso G, Siebenlist U. Human T-cell leukemia virus type I Tax-protein-mediated activation of NF-kappa B from p100 (NF-kappa B2)-inhibited cytoplasmic reservoirs. Proc Natl Acad Sci U S A 1994; 91:12634-8. [PMID: 7809091 PMCID: PMC45493 DOI: 10.1073/pnas.91.26.12634] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human T-cell leukemia virus type I Tax protein transforms T cells through induced expression of many cellular genes, including those encoding the growth-related proteins interleukin 2 and the alpha chain of its receptor. Induction of these genes is mediated, at least in part, through Tax-dependent posttranslational activation of NF-kappa B, typically heterodimers of p50 (NF-kappa B1) and p65 (RelA). The preexisting NF-kappa B proteins are retained in the cytoplasm of cells by association with inhibitory ankyrin-motif-containing I kappa B proteins, primarily I kappa B-alpha but also including the precursor proteins p105 (NF-kappa B1) and p100 (NF-kappa B2). Here we demonstrate the existence of a previously undescribed multimeric cytoplasmic complex in which NF-kappa B dimers are associated with the p100 inhibitor in a manner dependent on the precursor protein's ankyrin domain. We also demonstrate an antagonistic effect of the Tax protein on the cytoplasmic sequestration function of p100; this in turn leads to nuclear translocation of NF-kappa B dimers liberated from multimeric complexes. Tax may exert these effects through the physical association with p100. Tax also relieves the p100-mediated inhibition of DNA binding by p50-p65 heterodimers in vitro. The results demonstrate a mechanism by which Tax may activate NF-kappa B in T cells.
Collapse
Affiliation(s)
- T Kanno
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
116
|
Muñoz E, Courtois G, Veschambre P, Jalinot P, Israël A. Tax induces nuclear translocation of NF-kappa B through dissociation of cytoplasmic complexes containing p105 or p100 but does not induce degradation of I kappa B alpha/MAD3. J Virol 1994; 68:8035-44. [PMID: 7966593 PMCID: PMC237267 DOI: 10.1128/jvi.68.12.8035-8044.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The activity of the NF-kappa B transcription factor is controlled through cytoplasmic retention by either of two types of molecules: the inhibitor I kappa B alpha/MAD3 or the p105 and p100 precursors of the p50 and p52 DNA-binding subunits. Treatment of cells with classical NF-kappa B inducers such as tumor necrosis factor, interleukin-1, phorbol myristate acetate, and lipopolysaccharide results in MAD3 degradation followed by nuclear translocation of NF-kappa B. On the other hand, the mechanisms involved in the dissociation of the cytoplasmic p105/p100-containing complexes are largely unknown. The Tax protein encoded by human T-cell leukemia virus type 1 is a potent activator of viral and cellular gene transcription. It does not bind DNA directly but seems to activate transcription indirectly either by enhancing the activities of the transcription factors that recognize responsive elements located in the promoters of the Tax-responsive genes or by forming ternary complexes with these factors and DNA. It has been previously shown that Tax is able to induce nuclear translocation of NF-kappa B. We demonstrate here that Tax can induce translocation of members of the NF-kappa B family retained in the cytoplasm through their interaction with either p105 or p100. On the other hand, Tax induces no apparent degradation of MAD3, although experiments using cycloheximide indicate that it decreases the half-life of MAD3. However, this activity is shared by a mutant of Tax which is unable to activate NF-kappa B. These results suggest that Tax activates NF-kappa B essentially through the p105/p100 retention pathway.
Collapse
Affiliation(s)
- E Muñoz
- Unité de Biologie Moleculaire de l'Expression Génique, Institut Pasteur, France
| | | | | | | | | |
Collapse
|
117
|
Human T-cell leukemia virus type I Tax activation of NF-kappa B/Rel involves phosphorylation and degradation of I kappa B alpha and RelA (p65)-mediated induction of the c-rel gene. Mol Cell Biol 1994. [PMID: 7935451 DOI: 10.1128/mcb.14.11.7377] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tax gene product of human T-cell leukemia virus type I (HTLV-I) is a potent transcriptional activator that both stimulates viral gene expression and activates an array of cellular genes involved in T-cell growth. Tax acts indirectly by inducing or modifying the action of various host transcription factors, including members of the NF-kappa B/Rel family of enhancer-binding proteins. In resting T cells, many of these NF-kappa B/Rel factors are sequestered in the cytoplasm by various ankyrin-rich inhibitory proteins, including I kappa B alpha. HTLV-I Tax expression leads to the constitutive nuclear expression of biologically active NF-kappa B and c-Rel complexes; however, the biochemical mechanism(s) underlying this response remains poorly understood. In this study, we demonstrate that Tax-stimulated nuclear expression of NF-kappa B in both HTLV-I-infected and Tax-transfected human T cells is associated with the phosphorylation and rapid proteolytic degradation of I kappa B alpha. In contrast to prior in vitro studies, at least a fraction of the phosphorylated form of I kappa B alpha remains physically associated with the NF-kappa B complex in vivo but is subject to rapid degradation, thereby promoting the nuclear translocation of the active NF-kappa B complex. We further demonstrate that Tax induction of nuclear c-Rel expression is activated by the RelA (p65) subunit of NF-kappa B, which activates transcription of the c-rel gene through an intrinsic kappa B enhancer element. In normal cells, the subsequent accumulation of nuclear c-Rel acts to inhibit its own continued production, indicating the presence of an autoregulatory loop. However, the pathologic action HTLV-I Tax leads to the deregulated and sustained nuclear expression of both NF-kappa B and c-Rel, a response that may contribute to HTLV-I-induced T-cell transformation.
Collapse
|
118
|
Sun SC, Elwood J, Béraud C, Greene WC. Human T-cell leukemia virus type I Tax activation of NF-kappa B/Rel involves phosphorylation and degradation of I kappa B alpha and RelA (p65)-mediated induction of the c-rel gene. Mol Cell Biol 1994; 14:7377-84. [PMID: 7935451 PMCID: PMC359272 DOI: 10.1128/mcb.14.11.7377-7384.1994] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The tax gene product of human T-cell leukemia virus type I (HTLV-I) is a potent transcriptional activator that both stimulates viral gene expression and activates an array of cellular genes involved in T-cell growth. Tax acts indirectly by inducing or modifying the action of various host transcription factors, including members of the NF-kappa B/Rel family of enhancer-binding proteins. In resting T cells, many of these NF-kappa B/Rel factors are sequestered in the cytoplasm by various ankyrin-rich inhibitory proteins, including I kappa B alpha. HTLV-I Tax expression leads to the constitutive nuclear expression of biologically active NF-kappa B and c-Rel complexes; however, the biochemical mechanism(s) underlying this response remains poorly understood. In this study, we demonstrate that Tax-stimulated nuclear expression of NF-kappa B in both HTLV-I-infected and Tax-transfected human T cells is associated with the phosphorylation and rapid proteolytic degradation of I kappa B alpha. In contrast to prior in vitro studies, at least a fraction of the phosphorylated form of I kappa B alpha remains physically associated with the NF-kappa B complex in vivo but is subject to rapid degradation, thereby promoting the nuclear translocation of the active NF-kappa B complex. We further demonstrate that Tax induction of nuclear c-Rel expression is activated by the RelA (p65) subunit of NF-kappa B, which activates transcription of the c-rel gene through an intrinsic kappa B enhancer element. In normal cells, the subsequent accumulation of nuclear c-Rel acts to inhibit its own continued production, indicating the presence of an autoregulatory loop. However, the pathologic action HTLV-I Tax leads to the deregulated and sustained nuclear expression of both NF-kappa B and c-Rel, a response that may contribute to HTLV-I-induced T-cell transformation.
Collapse
Affiliation(s)
- S C Sun
- Gladstone Institute of Virology and Immunology, University of California, San Francisco 94141-9100, USA
| | | | | | | |
Collapse
|
119
|
Yoshida M. Tenth anniversary perspectives on AIDS. Host-HTLV type I interaction at the molecular level. AIDS Res Hum Retroviruses 1994; 10:1193-7. [PMID: 7848676 DOI: 10.1089/aid.1994.10.1193] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- M Yoshida
- Department of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|