101
|
Munier A, Feral C, Milon L, Pinon VP, Gyapay G, Capeau J, Guellaen G, Lacombe ML. A new human nm23 homologue (nm23-H5) specifically expressed in testis germinal cells. FEBS Lett 1998; 434:289-94. [PMID: 9742940 DOI: 10.1016/s0014-5793(98)00996-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have identified a cDNA encoding a 212 amino acid protein (Nm23-H5) with 27-31% identity to the human members of the nm23/nucleoside diphosphate (NDP) kinase gene family. The nm23-H5 gene is located on chromosome 5q23-31 and is transcribed as one main transcript of 1.1 kb which is highly and specifically expressed in testis, in the spermatogonia and early spermatocytes. Nm23-H5 possesses most of the residues conserved among NDP kinases plus an additional COOH-terminus end of 55 amino acids unique to this protein. However, under usual assay conditions, Nm23-H5 expressed in Escherichia coli did not exhibit NDP kinase activity. These results suggest that Nm23-H5 is specifically involved in early stages of spermatogenesis.
Collapse
Affiliation(s)
- A Munier
- INSERM U402, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Martin K, King A, O'Neill K, Kandanearatchi A, Liyanage K, Pilkington GJ. Expression of the candidate invasion suppressor gene, nm23, in human brain tumors. Neuropathology 1998. [DOI: 10.1111/j.1440-1789.1998.tb00121.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
103
|
Russell RL, Pedersen AN, Kantor J, Geisinger K, Long R, Zbieranski N, Townsend A, Shelton B, Brünner N, Kute TE. Relationship of nm23 to proteolytic factors, proliferation and motility in breast cancer tissues and cell lines. Br J Cancer 1998; 78:710-7. [PMID: 9743288 PMCID: PMC2062960 DOI: 10.1038/bjc.1998.566] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low expression of the antimetastatic gene nm23 has been associated with shorter overall survival in breast cancer. To better understand the mechanism(s) of action of this protein, we compared the levels of the nm23 protein in 152 breast cancer samples with other factors known to be involved in metastasis or related to prognosis. There was no significant relationship between either of the nm23 isoforms and cathepsin D (Cat-D), urokinase plasminogen activator (uPA), its inhibitor (PAI-1), steroid hormone receptors or ploidy status. A marginal inverse correlation was observed between per cent S-phase and nm23-H1 expression (r = -0.193, P = 0.047) and a positive correlation was observed between uPA receptor (uPAR) and both nm23-H1 (r = 0.263, P = 0.0018) and nm23-H2 (r = 0.230, P = 0.0064). The nm23-H1 gene was transfected into MDA-MB-231 human breast cancer cells and 12 clones were selected, of which two were characterized extensively. We found no significant differences in Cat-D, uPA, PAI-1 or uPAR, as a function of nm23 expression in either the MDA-MB-231 cells or the transfected clones. Compared with the parent cell line, we did observe a dose-dependent decrease in growth factor-stimulated motility and a decrease in metastatic potential in two clones with four- and eightfold elevated nm23-H1 expression, whereas the proliferative activities were similar. We conclude that the decreased metastatic potential might be related to down-regulation of growth factor-stimulated motility.
Collapse
Affiliation(s)
- R L Russell
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1072, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Engel M, Seifert M, Theisinger B, Seyfert U, Welter C. Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A. Two old enzymes combine for the novel Nm23 protein phosphotransferase function. J Biol Chem 1998; 273:20058-65. [PMID: 9685345 DOI: 10.1074/jbc.273.32.20058] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently discovered an alternative function of the putative metastasis suppressor protein Nm23, which is identical to nucleoside diphosphate kinase, as a protein phosphotransferase in vitro. While purified native Nm23 protein did not phosphorylate other proteins, we could purify a Nm23-associated protein that activates the protein phosphotransferase function; it was identified as a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) isoenzyme. Co-expression and purification of (His)6-tagged GAPDH in combination with either Nm23-H1 or Nm23-H2 in baculovirus-infected Sf9 cells showed that only Nm23-H1, but not Nm23-H2, forms a stable complex with GAPDH. Protein phosphotransferase activity was confirmed for the recombinant GAPDH.Nm23-H1 complex but not for either of the enzymes alone, nor was this activity observed after simple mixing of the purified proteins in vitro. The molecular mass of the highly purified recombinant GAPDH.Nm23-H1 complex suggests that a dimer of GAPDH interacts with a dimer of Nm23-H1. In contrast to the complex with GAPDH, co-expression of Nm23-H1 with antioxidant protein (MER-5) or creatine kinase did not activate the protein phosphotransferase function, indicating that this activation may specifically require GAPDH as a binding partner.
Collapse
Affiliation(s)
- M Engel
- Department of Human Genetics, University of Saarland, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
105
|
Willems R, Van Bockstaele DR, Lardon F, Lenjou M, Nijs G, Snoeck HW, Berneman ZN, Slegers H. Decrease in nucleoside diphosphate kinase (NDPK/nm23) expression during hematopoietic maturation. J Biol Chem 1998; 273:13663-8. [PMID: 9593706 DOI: 10.1074/jbc.273.22.13663] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleoside diphosphate kinase (NDPK/nm23) isoforms H1 and H2 were localized in hematopoietic tissues. Flow cytometric analysis and enzymatic assays were used to quantify the intracellular and extracellular concentrations of NDPK. Bone marrow CD34(+) progenitors contained the highest intracellular levels of both nm23-H1 and nm23-H2. Lower levels were measured in more mature bone marrow cells, whereas peripheral blood leukocytes had the lowest expression of nm23. These data suggest a function of NDPK in early hematopoiesis and a down-regulation of NDPK upon differentiation. In addition, an up-regulation of nm23 expression was observed in lymphocytes after induction of proliferation with phytohemagglutinin. Multiparameter flow cytometry demonstrated that this up-regulation occurred during the G0/G1-transition. Flow cytometric analysis also revealed a weak surface expression of nm23 on a number of hematopoietic cell lines, which was not detected on normal hematopoietic cells. Our data also demonstrated the presence of NDPK in human plasma, probably due to a limited in vivo lysis of red blood cells.
Collapse
Affiliation(s)
- R Willems
- Laboratory of Experimental Hematology, Department of Medicine, University of Antwerp, Antwerp University Hospital (UIA/UZA), Wilrijkstraat 10, B-2650 Edegem, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Evaluation by Multivariate Analysis of the Differentiation Inhibitory Factor nm23 as a Prognostic Factor in Acute Myelogenous Leukemia and Application to Other Hematologic Malignancies. Blood 1998. [DOI: 10.1182/blood.v91.6.1845.1845_1845_1851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentiation inhibitory factor nm23 can inhibit the differentiation of murine and human myeloid leukemia cells. We recently reported that nm23 genes were overexpressed in acute myelogenous leukemia (AML), and a higher level of nm23-H1expression was correlated with a poor prognosis in AML, especially in AML-M5 (acute monocytic leukemia). To evaluate the importance ofnm23 expression as a prognostic factor in AML, we compared it with other putative prognostic factors in AML. An analysis of the correlation between nm23 expression and the clinical parameters of 110 patients with AML demonstrated that increased nm23-H1mRNA levels were associated with resistance to initial chemotherapy and with reduced overall survival. Multivariate analysis using Cox's proportional hazard model also showed that elevated nm23-H1mRNA levels significantly contributed to the prognosis of patients with AML. Especially in AML-M5, nm23-H1 status was the most important prognostic factor. Furthermore, to determine whether we can apply the results observed in AML to other hematologic malignancies, we investigated the relative levels of nm23-H1 and nm23-H2transcripts in 149 patients with hematologic neoplasms, including 110 with de novo AML, 9 with de novo acute lymphoblastic leukemia, 14 with myelodysplastic syndrome, 16 with chronic myelogenous leukemia (CML), and 5 normal subjects by the reverse transcriptase-polymerase chain reaction. Expression of nm23-H1 was significantly higher in all the hematologic neoplasms, except CML in chronic phase, than in normal blood cells. nm23 may have a prognostic effect in these hematologic malignancies as well as in AML.
Collapse
|
107
|
Evaluation by Multivariate Analysis of the Differentiation Inhibitory Factor nm23 as a Prognostic Factor in Acute Myelogenous Leukemia and Application to Other Hematologic Malignancies. Blood 1998. [DOI: 10.1182/blood.v91.6.1845] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe differentiation inhibitory factor nm23 can inhibit the differentiation of murine and human myeloid leukemia cells. We recently reported that nm23 genes were overexpressed in acute myelogenous leukemia (AML), and a higher level of nm23-H1expression was correlated with a poor prognosis in AML, especially in AML-M5 (acute monocytic leukemia). To evaluate the importance ofnm23 expression as a prognostic factor in AML, we compared it with other putative prognostic factors in AML. An analysis of the correlation between nm23 expression and the clinical parameters of 110 patients with AML demonstrated that increased nm23-H1mRNA levels were associated with resistance to initial chemotherapy and with reduced overall survival. Multivariate analysis using Cox's proportional hazard model also showed that elevated nm23-H1mRNA levels significantly contributed to the prognosis of patients with AML. Especially in AML-M5, nm23-H1 status was the most important prognostic factor. Furthermore, to determine whether we can apply the results observed in AML to other hematologic malignancies, we investigated the relative levels of nm23-H1 and nm23-H2transcripts in 149 patients with hematologic neoplasms, including 110 with de novo AML, 9 with de novo acute lymphoblastic leukemia, 14 with myelodysplastic syndrome, 16 with chronic myelogenous leukemia (CML), and 5 normal subjects by the reverse transcriptase-polymerase chain reaction. Expression of nm23-H1 was significantly higher in all the hematologic neoplasms, except CML in chronic phase, than in normal blood cells. nm23 may have a prognostic effect in these hematologic malignancies as well as in AML.
Collapse
|
108
|
Schaertl S, Konrad M, Geeves MA. Substrate specificity of human nucleoside-diphosphate kinase revealed by transient kinetic analysis. J Biol Chem 1998; 273:5662-9. [PMID: 9488696 DOI: 10.1074/jbc.273.10.5662] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside-diphosphate kinases (NDKs) catalyze the transfer of gamma-phosphoryl groups from NTPs via an active site histidine to NDPs using a ping-pong mechanism. We have used the change of intrinsic tryptophan fluorescence that occurs upon phosphorylation of NDK to measure the rates of phosphorylation and dephosphorylation with a range of nucleotides and nucleotide analogues. For natural nucleotides, the rates of phosphorylation and dephosphorylation were linearly dependent upon nucleotide concentration until they became too fast to measure. The second order rate constants for phosphorylation by natural NTPs varied between 0.7 and 13 x 10(6) M-1 s-1. Dephosphorylation by NDPs was 2-3-fold faster than the corresponding phosphorylation reaction, and dephosphorylation by dNDPs was 3-4-fold slower than the equivalent NDPs. In all cases, second order rate constants were highest for guanine followed by adenine and lowest for cytosine nucleotides. NDK also catalyzes the transfer of thiophosphate from adenosine 5'-O-(thiotriphosphate) (ATPgammaS) and guanosine 5'-O-(thiotriphosphate) (GTPgammaS) to NDP, but at (1)/(1000) of the equivalent phosphoryl transfer rates. In this case, the observed rate constants of phosphorylation and dephosphorylation were hyperbolically dependent on nucleotide concentration. Thiophosphorylation by ATPgammaS and GTPgammaS occurred with kmax of 2.8 and 1.35 s-1 and Kd of 145 and 36 muM respectively. For dethiophosphorylation by a range of NDPs, kmax was in the range of 5-30 s-1, whereas Kd varied between 0.16 and 3.3 mM. Guanine had the lowest Kd values, and cytosine had the highest. The data are consistent with fast reversible binding of the nucleotide followed by the rate-limiting phosphoryl transfer. Thiophosphates change only the rate of the phosphoryl transfer step, whereas both events are influenced by the base. Modification at the 2'-hydroxyl of ribose has only a small effect, while the overall rate of phosphoryl transfer is reduced 1000-fold by modification at the 3'-ribose.
Collapse
Affiliation(s)
- S Schaertl
- Max-Planck Institut fur biophysikalische Chemie, Abteilung Molekulare Genetik, D-37070 Gottingen, Germany
| | | | | |
Collapse
|
109
|
Jiang WG, Hiscox S, Bryce RP, Horrobin DF, Mansel RE. The effects of n-6 polyunsaturated fatty acids on the expression of nm-23 in human cancer cells. Br J Cancer 1998; 77:731-8. [PMID: 9514051 PMCID: PMC2149954 DOI: 10.1038/bjc.1998.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study examined the effect of n-6 polyunsaturated fatty acids (PUFAs) on the expression of nm-23, a metastasis-suppressor gene, in two highly invasive human cancer cell lines, HT115 and MDA MB 231. A range of n-6 and n-3 PUFAs were tested. We report that while linoleic acid and arachidonic acid reduced the expression of nm-23-H1, gamma linolenic acid (GLA) and its soluble lithium salt markedly increased the expression of the molecules. The stimulation of the expression of nm-23 by GLA was seen at both protein and mRNA levels. Up-regulation of nm-23 was also associated with a reduction of the in vitro invasiveness of these cells. It is concluded that gamma linolenic acid (GLA) enhances the expression of nm-23. This contributes to the inhibition of the in vitro invasion of tumour cells.
Collapse
Affiliation(s)
- W G Jiang
- University Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | | | | | |
Collapse
|
110
|
Abstract
The transactivation potential of Nm23-H1, a homolog of c-myc transcription factor Nm23-H2/PuF was assessed in yeast as a fusion protein with the DNA binding domains (DBDs) of GAL4 and LexA. The C-terminal half of Nm23-H1 exhibited strong transactivation of the reporter genes, LacZ and Leu2 carrying GAL4 and LexA upstream activating sequences (UASs), whereas the full-length Nm23-H1 and its N-terminal did not. Similar results were also obtained with Nm23-H2/PuF transactivating the reporter genes only by the C-terminus fused to GAL4 and LexA DBDs. Hence, our results suggested a possible regulatory role of the N-termini of Nm23 isotypes upon transactivation.
Collapse
Affiliation(s)
- S K Chae
- Division of Life Sciences, PaiChai University, Taejon, South Korea
| | | | | | | |
Collapse
|
111
|
Mesnildrey S, Agou F, Karlsson A, Bonne DD, Véron M. Coupling between catalysis and oligomeric structure in nucleoside diphosphate kinase. J Biol Chem 1998; 273:4436-42. [PMID: 9468495 DOI: 10.1074/jbc.273.8.4436] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A dimeric Dictyostelium nucleoside diphosphate kinase has been stabilized by the double mutation P100S-N150stop which targets residues involved in the trimer interface (Karlsson, A., Mesnildrey, S., Xu, Y., Moréra, S., Janin, J., and Veron, M. (1996) J. Biol. Chem. 271, 19928-19934). The reassociation of this dimeric form into a hexamer similar to the wild-type enzyme is induced by the presence of a nucleotide substrate. Equilibrium sedimentation and gel filtration experiments, as well as enzymatic activity measurements, show that reactivation of the enzyme closely parallels its reassociation. A phosphorylatable intermediate with low activity participates in the association pathway while the dimeric form is shown totally devoid of enzymatic activity. Our results support the hypothesis that different oligomeric species of nucleoside diphosphate kinase are involved in different cellular processes where the enzymatic activity is not required.
Collapse
Affiliation(s)
- S Mesnildrey
- Unité de Régulation Enzymatique des Activités Cellulaires Institut Pasteur, CNRS URA 1149, 25 rue du Docteur Roux, 75724 Paris, Cedex 15, France
| | | | | | | | | |
Collapse
|
112
|
Timmons L, Shearn A. prune/Killer of prune: a conditional dominant lethal interaction in Drosophila. ADVANCES IN GENETICS 1997; 35:207-52. [PMID: 9348649 DOI: 10.1016/s0065-2660(08)60451-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- L Timmons
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
113
|
Gunduz M, Ayhan A, Gullu I, Onerci M, Hosal AS, Gursel B, Hosal IN, Firat D. nm23 Protein expression in larynx cancer and the relationship with metastasis. Eur J Cancer 1997; 33:2338-41. [PMID: 9616278 DOI: 10.1016/s0959-8049(97)00321-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nm23 gene, which encodes nucleoside diphosphate (NDP) kinase, is proposed as a metastatic suppressor gene and has been demonstrated to correlate inversely with metastatic potential in several tumours. To elucidate the role of nm23 in larynx carcinomas, we examined using immunohistochemistry the expression of the nm23 protein in matched sets of primary tumours and metastatic lymph nodes. nm23 Protein was expressed in all the carcinomas as well as in non-neoplastic larynx mucosa. Overexpression of nm23 protein was found in the majority of primary tumours compared with corresponding normal mucosa, while decreased expression was associated with poor differentiation and distant metastasis and/or recurrence. No significant difference in age, sex and stage was found between primary tumours with high and low nm23 protein expression. These results suggest that decreased nm23 protein expression may play a role in metastasis and/or recurrence in larynx cancer and therefore could be used as a prognostic factor.
Collapse
Affiliation(s)
- M Gunduz
- Department of Otolaryngology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Mesnildrey S, Agou F, Véron M. The in vitro DNA binding properties of NDP kinase are related to its oligomeric state. FEBS Lett 1997; 418:53-7. [PMID: 9414094 DOI: 10.1016/s0014-5793(97)01292-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genetic and biochemical evidences suggest that the enzymatic activity of NDP kinase is necessary but not sufficient for its biological function. While the human NDPK-B binds specifically single-strand polypyrimidines sequences, the hexameric enzyme from Dictyostelium does not. We demonstrated by electrophoretic mobility shift assay and filter binding assay that a dimeric mutant from Dictyostelium binds to an oligodesoxynucleotide while the wild-type does not. These data suggest that the differences in the DNA binding properties of several eucaryotic NDP kinases might be correlated to the differences in the stability of their hexameric structure.
Collapse
Affiliation(s)
- S Mesnildrey
- Unité de Régulation Enzymatique des Activités Cellulaires, Institut Pasteur, CNRS UMR 321, Paris, France
| | | | | |
Collapse
|
115
|
Lambeth DO, Mehus JG, Ivey MA, Milavetz BI. Characterization and cloning of a nucleoside-diphosphate kinase targeted to matrix of mitochondria in pigeon. J Biol Chem 1997; 272:24604-11. [PMID: 9305928 DOI: 10.1074/jbc.272.39.24604] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleoside-diphosphate kinase (NDP kinase) from the matrix space of mitochondria in pigeon liver was purified to homogeneity. Degenerate oligonucleotide primers to the N-terminal sequence of the purified protein and the region containing the active site histidine were used in reverse transcriptase-polymerase chain reaction to obtain a major portion of the coding sequence for the mature protein. The sequences of the C and N termini of the mature protein, and eight residues in the signal peptide, were obtained by rapid amplification of cDNA end procedures. The entire coding sequence of a cytosolic form of NDP kinase was also determined. Both isoforms, which share 53% sequence identity, possess the characteristically conserved regions of known NDP kinases. The mature mitochondrial NDP kinase protein migrates in molecular sieving columns with an apparent molecular mass of about 66 kDa. It shows very high thermal stability even though it lacks the proline residue in the killer of prune loop, and the Tyr/Glu C termini that are important in stabilizing other NDP kinases. The affinity of the mitochondrial isoform for adenine and guanine nucleotides is much higher than for pyrimidine nucleotides, but the enzyme is especially susceptible to substrate inhibition by GDP. Semi-quantitative reverse transcriptase-polymerase chain reaction showed that the relative levels of expression of the mitochondrial isoform are liver > kidney >> heart = brain > breast muscle. The cytosolic isoform is strongly and approximately equally expressed in these same five tissues. This work is the first characterization of a NDP kinase isoform that is found in the matrix space of mitochondria.
Collapse
Affiliation(s)
- D O Lambeth
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA.
| | | | | | | |
Collapse
|
116
|
Michelotti EF, Sanford S, Freije JM, MacDonald NJ, Steeg PS, Levens D. Nm23/PuF does not directly stimulate transcription through the CT element in vivo. J Biol Chem 1997; 272:22526-30. [PMID: 9278405 DOI: 10.1074/jbc.272.36.22526] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Decreased levels of the nm23 gene product have been correlated with increased tumor metastatic potential in a variety of malignancies. At least a subset of the regulatory properties of Nm23 has been proposed to be due to transactivation of the human c-myc oncogene through binding to a homopyrimidine tract 140 base pairs upstream of the transcription start site (termed the CT element or the PuF site). Conventional transcription factors possess DNA binding and transactivation domains; Nm23 fusion proteins were used to address two questions. First, if provided with a well characterized DNA binding domain, does Nm23 possess a transactivation domain capable of stimulating transcription of an appropriate reporter? Second, if provided with a potent transactivation domain, is the DNA binding of Nm23 of sufficient specificity and affinity to direct the fusion protein to a CT-dependent reporter? Since reporter gene expression was not stimulated in either case, we conclude that Nm23 does not directly stimulate transcription through binding to the CT element and that its antimetastatic and other reported functions are likely due to other biochemical activities.
Collapse
Affiliation(s)
- E F Michelotti
- Gene Regulation Section, Laboratory of Pathology, Division of Clinical Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
117
|
Ouatas T, Abdallah B, Gasmi L, Bourdais J, Postel E, Mazabraud A. Three different genes encode NM23/nucleoside diphosphate kinases in Xenopus laevis. Gene 1997; 194:215-25. [PMID: 9272863 DOI: 10.1016/s0378-1119(97)00160-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs) catalyse the phosphorylation of nucleoside diphosphates. In mammals, the functional enzyme is a hexamer composed of different amounts of two homologous acidic (A) and basic (B) subunits encoded by separate genes. In prokaryotes and invertebrate eukaryotes, only one cytoplasmic enzyme has been isolated. Other genes encoding chloroplastic and mitochondrial forms as well as related proteins have been cloned. Here, we show that in Xenopus laevis, as in mammals, the cytoplasmic NDPK is encoded by several homologous genes. With Xenopus laevis being a pseudotetraploid species, each monomer is encoded by two genes. The amino acid sequences are very similar, and all the differences concern amino acids located at the outer surface of the hexameric enzyme. The Xenopus genes share 82-87% identity with their human counterparts. Interestingly, in vitro, the Xenopus X1 enzyme binds to a specific nuclease hypersensitive element (NHE) of the human c-myc promoter, as does its human counterpart. X1 also binds to a single-stranded (CT)(n) dinucleotide repeat. The NHE is present in the coding strand of a pyrimidine-rich region of the 3' non-coding sequence of the Xenopus NDPK genes. We propose that NDPK is indeed able to bind to its own mRNA and prevent polyadenylation at the normal position. This could provide an autoregulatory translation mechanism. A phylogenetic tree of the vertebrate NDPK sequences supports the idea that in amphibians, as in mammals, gene duplication has resulted in functional diversification.
Collapse
Affiliation(s)
- T Ouatas
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
118
|
Lascu I, Schaertl S, Wang C, Sarger C, Giartosio A, Briand G, Lacombe ML, Konrad M. A point mutation of human nucleoside diphosphate kinase A found in aggressive neuroblastoma affects protein folding. J Biol Chem 1997; 272:15599-602. [PMID: 9188446 DOI: 10.1074/jbc.272.25.15599] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The point mutation serine 120 to glycine in the human nucleoside diphosphate kinase A has been identified in several aggressive neuroblastomas (Chang, C. L., Zhu, X. X., Thoraval, D. H., Ungar, D., Rawwas, J., Hora, N., Strahler, J. R., Hanash, S. M. & Radany, E. (1994) Nature 370, 335-336). We expressed in bacteria and purified wild-type and S120G mutant nucleoside diphosphate kinase A. The mutant enzyme had enzymatic and structural properties similar to the wild-type enzyme, whereas its stability to denaturation by heat and urea was markedly reduced. More importantly, upon renaturation of the urea-denatured mutant protein, a folding intermediate accumulated, having the characteristics of a molten globule. It had no tertiary structure, as shown by near UV circular dichroism, whereas the secondary structure was substantially recovered. The hydrophobic probe 8-anilino-1-naphthalene sulfonate bound to the intermediate species with an increase in fluorescence intensity and a blue shift. The hydrodynamic size was between that expected for a folded and an unfolded monomer. Finally, electrophoresis in a transverse urea gradient displayed no renaturation curve, and the protein showed the tendency to aggregate at the lowest urea concentrations. The existence of a molten globule folding intermediates resulting from an altered folding in the mutated protein might be related to the aggressiveness of neuroblastomas.
Collapse
Affiliation(s)
- I Lascu
- Université de Bordeaux-2, Institut de Biochimie et Génétique Cellulaires-CNRS, 33077 Bordeaux, France.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Otero AS. Copurification of vimentin, energy metabolism enzymes, and a MER5 homolog with nucleoside diphosphate kinase. Identification of tissue-specific interactions. J Biol Chem 1997; 272:14690-4. [PMID: 9169432 DOI: 10.1074/jbc.272.23.14690] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromatography on immobilized antibodies specific to nucleoside diphosphate (NDP) kinase was utilized for affinity purification of this enzyme from detergent extracts of frog heart post-mitochondrial fractions. SDS-polyacrylamide gel electrophoresis analysis of eluates from these supports shows that five polypeptides co-purify with nucleoside diphosphate (NDP) kinase. Tryptic digests of each band were analyzed by mass spectrometric microsequencing. Data base searches by peptide mass matching and sequence homology led to the identification of these proteins as glyceraldehyde-3-phosphate dehydrogenase (40 kDa), creatine kinase (45 kDa), vimentin (55 kDa), pyruvate kinase (60 kDa), and a putative member of the antioxidant protein family (28 kDa). Distinct protein compositions were found in eluates of lung and liver extracts processed in a like manner. The 28-kDa band and vimentin were associated with NDP kinase from all tissues, but co-purification of pyruvate kinase was seen only in liver, while creatine kinase and glyceraldehyde-3-phosphate dehydrogenase were absent from eluates from lung and liver. The results suggest that while NDP kinase is associated with vimentin intermediate filaments and an antioxidant protein in most tissues, it interacts with energy metabolism enzymes in a tissue-specific manner.
Collapse
Affiliation(s)
- A S Otero
- Department of Molecular Physiology and Biological Physics, University of Virginia Medical School, Charlottesville, Virginia 22906, USA.
| |
Collapse
|
120
|
Miele ME, De La Rosa A, Lee JH, Hicks DJ, Dennis JU, Steeg PS, Welch DR. Suppression of human melanoma metastasis following introduction of chromosome 6 is independent of NME1 (Nm23). Clin Exp Metastasis 1997; 15:259-65. [PMID: 9174127 DOI: 10.1023/a:1018473415458] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metastasis is suppressed more than 95% following microcell-mediated transfer of a single copy of neomycin-tagged human chromosome 6 (neo6) into the human melanoma cell lines C8161 and MelJuSo. Concomitant with metastasis suppression is upregulation of NME1 (Nm23-H1) mRNA and protein expression. The purposes of this study were to determine whether NME1 expression was responsible for metastasis suppression in neo6/melanoma hybrids, and whether genes on chromosome 6 regulate NME1. Using neo6/C8161 cells, transfection of CAT reporter constructs linked to the NME1 promoter failed to consistently induce CAT. Therefore, it does not appear that genes on chromosome 6 directly control transcription of NME1. Transfection and overexpression of NME1 in MelJuSo, under the control of the CMV promoter, resulted in 40-80% inhibition of lung metastasis following i.v. inoculation of 2 x 10(5) cells. Only one transfectant of C8161 subclone 9 (C8161cl.9) cells was suppressed for metastasis. Control transfections with pCMVneo or pSV2neo did not suppress metastasis in either cell line. Taken together, these data suggest that NME1 can reduce metastatic potential of some human melanoma cells; but, this inhibitory activity appears to be independent of the metastasis suppression following introduction of chromosome 6 into C8161 and MelJuSo human melanoma cell lines.
Collapse
Affiliation(s)
- M E Miele
- The Jake Gittlen Cancer Research Institute, Department of Experimental Pathology, The Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Freije JM, Blay P, MacDonald NJ, Manrow RE, Steeg PS. Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J Biol Chem 1997; 272:5525-32. [PMID: 9038158 DOI: 10.1074/jbc.272.9.5525] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We previously compared the structure and motility suppressive capacity of nm23-H1 by transfection of wild type and site-directed mutant forms into breast carcinoma cells. Wild type nm23-H1 and an nm23-H1(S44A) (serine 44 to alanine) mutant suppressed motility, whereas the nm23-H1(P96S), nm23-H1(S120G), and to a lesser extent, nm23-H1(S120A) mutant forms failed to do so. In the present study wild type and mutant recombinant Nm23-H1 proteins have been produced, purified, and assayed for phosphorylation and phosphotransfer activities. We report the first association of Nm23-H1 mutations lacking motility suppressive capacity with decreased in vitro activity in histidine-dependent protein phosphotransferase assays. Nm23-H1(P96S), a Drosophila developmental mutation homolog, exhibited normal autophosphorylation and nucleoside-diphosphate kinase (NDPK) characteristics but deficient phosphotransfer activity in three histidine protein kinase assays, using succinic thiokinase, Nm23-H2, and GST-Nm23-H1 as substrates. Nm23-H1(S120G), found in advanced human neuroblastomas, exhibited deficient activity in several histidine-dependent protein phosphotransfer reactions, including histidine autophosphorylation, downstream phosphorylation on serines, and slightly decreased histidine protein kinase activity; significant NDPK activity was observed. The Nm23-H1(S120A) mutant was deficient in only histidine-dependent serine autophosphorylation. Nm23-H1 and Nm23-H1(S44A) exhibited normal activity in all assays conducted. Based on this correlation, we hypothesize that a histidine-dependent protein phosphotransfer activity of Nm23-H1 may be responsible for its biological suppressive effects.
Collapse
Affiliation(s)
- J M Freije
- Women's Cancers Section, Laboratory of Pathology, Division of Clinical Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
122
|
Kuroda A, Kornberg A. Polyphosphate kinase as a nucleoside diphosphate kinase in Escherichia coli and Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1997; 94:439-42. [PMID: 9012801 PMCID: PMC19530 DOI: 10.1073/pnas.94.2.439] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Generation of a wide variety of nucleoside (and deoxynucleoside) triphosphates (NTPs) from their cognate nucleoside diphosphates (NDPs) is of critical importance in virtually every aspect of cellular life. Their function is fulfilled largely by the ubiquitous and potent nucleoside diphosphate kinase (NDK), most commonly using ATP as the donor. Considerable interest is attached to the consequence to a cell in which the NDK activity becomes deficient or over-abundant. We have discovered an additional and possibly auxiliary NDK-like activity in the capacity of polyphosphate kinase (PPK) to use inorganic polyphosphate as the donor in place of ATP, thereby converting GDP and other NDPs to NTPs. This reaction was observed with the PPK activity present in crude membrane fractions from Escherichia coli and Pseudomonas aeruginosa as well as with the purified PPK from E. coli; the activity was absent from the membrane fractions obtained from E. coli mutants lacking the ppk gene. The order of substrate specificity for PPK was: ADP > GDP > UDP, CDP; activity with ADP was 2-60 times greater than with GDP, depending on the reaction condition. Although the transfer of a phosphate from polyphosphate to GDP by PPK to produce GTP was the predominant reaction, the enzyme also transferred a pyrophosphate group to GDP to form the linear guanosine 5' tetraphosphate.
Collapse
Affiliation(s)
- A Kuroda
- Department of Biochemistry, Stanford University School of Medicine, CA 94305-5307, USA
| | | |
Collapse
|
123
|
MacDonald NJ, Freije JM, Stracke ML, Manrow RE, Steeg PS. Site-directed mutagenesis of nm23-H1. Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. J Biol Chem 1996; 271:25107-16. [PMID: 8810265 DOI: 10.1074/jbc.271.41.25107] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report the first correlation of Nm23 sequence and its tumor metastasis-suppressive capacity using site-directed mutagenesis and an in vitro tumor cell motility assay. MDA-MB-435 human breast carcinoma cells were transfected with a control expression vector (pCMVBamneo), the vector containing the wild type nm23-H1, or the nm23-H1 vector encoding mutations at the following amino acids: serine 44, a phosphorylation site; proline 96, the k-pn mutation in the Drosophila nm23 homolog that causes developmental defects; histidine 118, involved in Nm23's nucleoside diphosphate kinase activity; and serine 120, a site of mutation in human neuroblastomas and phosphorylation. The wild type nm23-H1 transfectants were 44-98% less motile to serum and 86-99% less motile to autotaxin than control vector transfectants. The proline 96 k-pn, serine 120 to glycine, and to a lesser extent serine 120 to alanine mutant nm23-H1-transfected cell lines exhibited motility levels at or above the control transfectants, indicating that these mutations can abrogate the motility-suppressive phenotype of nm23-H1. No effect was observed on cellular proliferation, nor were the serine 44 to alanine nm23-H1 mutant transfectants motile, demonstrating the specificity of the data. The data identify the first structural motifs of nm23-H1 that influence its metastasis suppressive effect and suggest complex biochemical associations or activities in the Nm23 suppressive pathway.
Collapse
Affiliation(s)
- N J MacDonald
- Women's Cancers Section, Laboratory of Pathology, Division of Clinical Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
124
|
Postel EH, Weiss VH, Beneken J, Kirtane A. Mutational analysis of NM23-H2/NDP kinase identifies the structural domains critical to recognition of a c-myc regulatory element. Proc Natl Acad Sci U S A 1996; 93:6892-7. [PMID: 8692914 PMCID: PMC38904 DOI: 10.1073/pnas.93.14.6892] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
NM23-H2, a presumed regulator of tumor metastasis in humans, is a hexameric protein with both enzymatic (NDP kinase) and regulatory (transcriptional activation) activity. While the structure and catalytic mechanisms have been well characterized, the mode of DNA binding is not known. We examined this latter function in a site-directed mutational study and identified residues and domains essential for the recognition of a c-myc regulatory sequence. Three amino acids, Arg-34, Asn-69, and Lys-135, were found among 30 possibilities to be critical for DNA binding. Two of these, Asn-69 and Lys-135, are not conserved between NM23 variants differing in DNA-binding potential, suggesting that DNA recognition resides partly in nonconserved amino acids. All three DNA-binding defective mutant proteins are active enzymatically and appear to be stable hexamers, suggesting that they perform at the level of DNA recognition and that separate functional domains exist for enzyme catalysis and DNA binding. In the context of the known crystal structure of NM23-H2, the DNA-binding residues are located within distinct structural motifs in the monomer, which are exposed to the surface near the 2-fold axis of adjacent subunits in the hexamer. These findings are explained by a model in which NM23-H2 binds DNA with a combinatorial surface consisting of the "outer" face of the dimer. Chemical crosslinking data support a dimeric DNA-binding mode by NM23-H2.
Collapse
Affiliation(s)
- E H Postel
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | | | |
Collapse
|
125
|
Lu Q, Inouye M. Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism. Proc Natl Acad Sci U S A 1996; 93:5720-5. [PMID: 8650159 PMCID: PMC39127 DOI: 10.1073/pnas.93.12.5720] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nucleoside diphosphate (NDP) kinase is a ubiquitous nonspecific enzyme that evidently is designed to catalyze in vivo ATP-dependent synthesis of ribo- and deoxyribonucleoside triphosphates from the corresponding diphosphates. Because Escherichia coli contains only one copy of ndk, the structural gene for this enzyme, we were surprised to find that ndk disruption yields bacteria that are still viable. These mutant cells contain a protein with a small amount NDP kinase activity. The protein responsible for this activity was purified and identified as adenylate kinase. This enzyme, also called myokinase, catalyzes the reversible ATP-dependent synthesis of ADP from AMP. We found that this enzyme from E. coli as well as from higher eukaryotes has a broad substrate specificity displaying dual enzymatic functions. Among the nucleoside monophosphate kinases tested, only adenylate kinase was found to have NDP kinase activity. To our knowledge, this is the first report of NDP kinase activity associated with adenylate kinase.
Collapse
Affiliation(s)
- Q Lu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
126
|
Perrotti D, Melotti P, Skorski T, Casella I, Peschle C, Calabretta B. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity. Mol Cell Biol 1995; 15:6075-87. [PMID: 7565760 PMCID: PMC230859 DOI: 10.1128/mcb.15.11.6075] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Zinc finger genes encode proteins that act as transcription factors. The myeloid zinc finger 1 (MZF1) gene encodes a zinc finger protein with two DNA-binding domains that recognize two distinct consensus sequences, is preferentially expressed in hematopoietic cells, and may be involved in the transcriptional regulation of hematopoiesis-specific genes. Reverse transcription-PCR analysis of human peripheral blood CD34+ cells cultured under lineage-restricted conditions demonstrated MZF1 expression during both myeloid and erythroid differentiation. Sequence analysis of the 5'-flanking region of the CD34 and c-myb genes, which are a marker of and a transcriptional factor required for hematopoietic proliferation and differentiation, respectively, revealed closely spaced MZF1 consensus binding sites found by electrophoretic mobility shift assays to interact with recombinant MZF1 protein. Transient or constitutive MZF1 expression in different cell types resulted in specific inhibition of chloramphenicol acetyltransferase activity driven by the CD34 or c-myb 5'-flanking region. To determine whether transcriptional modulation by MZF1 activity plays a role in hematopoietic differentiation, constructs containing the MZF1 cDNA under the control of different promoters were transfected into murine embryonic stem cells which, under defined in vitro culture conditions, generate colonies of multiple hematopoietic lineages. Constitutive MZF1 expression interfered with the ability of embryonic stem cells to undergo hematopoietic commitment and erythromyeloid colony formation and prevented the induced expression of CD34 and c-myb mRNAs during differentiation of these cells. These data indicate that MZF1 plays a critical role in hematopoiesis by modulating the expression of genes involved in this process.
Collapse
Affiliation(s)
- D Perrotti
- Department of Microbiology and Immunology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|