101
|
Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR. P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci U S A 2001; 98:12572-7. [PMID: 11675493 PMCID: PMC60095 DOI: 10.1073/pnas.211442198] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are widespread and abundant in both plant and animal genomes. Despite the discovery and characterization of many MITE families, their origin and transposition mechanism are still poorly understood, largely because MITEs are nonautonomous elements with no coding capacity. The starting point for this study was P instability factor (PIF), an active DNA transposable element family from maize that was first identified following multiple mutagenic insertions into exactly the same site in intron 2 of the maize anthocyanin regulatory gene R. In this study we report the isolation of a maize Tourist-like MITE family called miniature PIF (mPIF) that shares several features with PIF elements, including identical terminal inverted repeats, similar subterminal sequences, and an unusual but striking preference for an extended 9-bp target site. These shared features indicate that mPIF and PIF elements were amplified by the same or a closely related transposase. This transposase was identified through the isolation of several PIF elements and the identification of one element (called PIFa) that cosegregated with PIF activity. PIFa encodes a putative protein with homologs in Arabidopsis, rice, sorghum, nematodes, and a fungus. Our data suggest that PIFa and these PIF-like elements belong to a new eukaryotic DNA transposon superfamily that is distantly related to the bacterial IS5 group and are responsible for the origin and spread of Tourist-like MITEs.
Collapse
Affiliation(s)
- X Zhang
- Botany Department, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
102
|
Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 2001; 11:1441-52. [PMID: 11483586 PMCID: PMC311097 DOI: 10.1101/gr.184001] [Citation(s) in RCA: 771] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A total of 57.8 Mb of publicly available rice (Oryza sativa L.) DNA sequence was searched to determine the frequency and distribution of different simple sequence repeats (SSRs) in the genome. SSR loci were categorized into two groups based on the length of the repeat motif. Class I, or hypervariable markers, consisted of SSRs > or =20 bp, and Class II, or potentially variable markers, consisted of SSRs > or =12 bp <20 bp. The occurrence of Class I SSRs in end-sequences of EcoRI- and HindIII-digested BAC clones was one SSR per 40 Kb, whereas in continuous genomic sequence (represented by 27 fully sequenced BAC and PAC clones), the frequency was one SSR every 16 kb. Class II SSRs were estimated to occur every 3.7 kb in BAC ends and every 1.9 kb in fully sequenced BAC and PAC clones. GC-rich trinucleotide repeats (TNRs) were most abundant in protein-coding portions of ESTs and in fully sequenced BACs and PACs, whereas AT-rich TNRs showed no such preference, and di- and tetranucleotide repeats were most frequently found in noncoding, intergenic regions of the rice genome. Microsatellites with poly(AT)n repeats represented the most abundant and polymorphic class of SSRs but were frequently associated with the Micropon family of miniature inverted-repeat transposable elements (MITEs) and were difficult to amplify. A set of 200 Class I SSR markers was developed and integrated into the existing microsatellite map of rice, providing immediate links between the genetic, physical, and sequence-based maps. This contribution brings the number of microsatellite markers that have been rigorously evaluated for amplification, map position, and allelic diversity in Oryza spp. to a total of 500.
Collapse
Affiliation(s)
- S Temnykh
- Department of Plant Breeding, USDA-ARS Center for Agricultural Bioinformatics, Cornell University, Ithaca, New York 14853-1901, USA
| | | | | | | | | | | |
Collapse
|
103
|
Fu H, Park W, Yan X, Zheng Z, Shen B, Dooner HK. The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci U S A 2001; 98:8903-8. [PMID: 11438686 PMCID: PMC37533 DOI: 10.1073/pnas.141221898] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bronze (bz) locus exhibits the highest rate of recombination of any gene in higher plants. To investigate the possible basis of this high rate of recombination, we have analyzed the physical organization of the region around the bz locus. Two adjacent bacterial artificial chromosome clones, comprising a 240-kb contig centered around the Bz-McC allele, were isolated, and 60 kb of contiguous DNA spanning the two bacterial artificial chromosome clones was sequenced. We find that the bz locus lies in an unusually gene-rich region of the maize genome. Ten genes, at least eight of which are shown to be transcribed, are contained in a 32-kb stretch of DNA that is uninterrupted by retrotransposons. We have isolated nearly full length cDNAs corresponding to the five proximal genes in the cluster. The average intertranscript distance between them is just 1 kb, revealing a surprisingly compact packaging of adjacent genes in this part of the genome. At least 11 small insertions, including several previously described miniature inverted repeat transposable elements, were detected in the introns and 3' untranslated regions of genes and between genes. The gene-rich region is flanked at the proximal and distal ends by retrotransposon blocks. Thus, the maize genome appears to have scattered regions of high gene density similar to those found in other plants. The unusually high rate of intragenic recombination seen in bz may be related to the very high gene density of the region.
Collapse
Affiliation(s)
- H Fu
- The Waksman Institute, Rutgers University, Piscataway, NJ 08855, USA
| | | | | | | | | | | |
Collapse
|
104
|
Mao L, Begum D, Goff SA, Wing RA. Sequence and analysis of the tomato JOINTLESS locus. PLANT PHYSIOLOGY 2001; 126:1331-40. [PMID: 11457984 PMCID: PMC116490 DOI: 10.1104/pp.126.3.1331] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2000] [Revised: 02/08/2001] [Accepted: 04/17/2001] [Indexed: 05/19/2023]
Abstract
A 119-kb bacterial artificial chromosome from the JOINTLESS locus on the tomato (Lycopersicon esculentum) chromosome 11 contained 15 putative genes. Repetitive sequences in this region include one copia-like LTR retrotransposon, 13 simple sequence repeats, three copies of a novel type III foldback transposon, and four putative short DNA repeats. Database searches showed that the foldback transposon and the short DNA repeats seemed to be associated preferably with genes. The predicted tomato genes were compared with the complete Arabidopsis genome. Eleven out of 15 tomato open reading frames were found to be colinear with segments on five Arabidopsis bacterial artificial chromosome/P1-derived artificial chromosome clones. The synteny patterns, however, did not reveal duplicated segments in Arabidopsis, where over half of the genome is duplicated. Our analysis indicated that the microsynteny between the tomato and Arabidopsis genomes was still conserved at a very small scale but was complicated by the large number of gene families in the Arabidopsis genome.
Collapse
Affiliation(s)
- L Mao
- Clemson University Genomics Institute, 100 Jordan Hall, Clemson, South Carolina 29634, USA
| | | | | | | |
Collapse
|
105
|
Terol J, Castillo MC, Bargues M, Pérez-Alonso M, de Frutos R. Structural and evolutionary analysis of the copia-like elements in the Arabidopsis thaliana genome. Mol Biol Evol 2001; 18:882-92. [PMID: 11319272 DOI: 10.1093/oxfordjournals.molbev.a003870] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The analysis of 460 kb of genomic sequence of Arabidopsis thaliana chromosome III allowed us to identify two new transposable elements named AtC1 and AtC2. AtC1 shows identical long terminal repeats (LTRs) and all the structural features characteristic of the copia-like active elements. AtC2 is also a full copia-like element, but a putative stop codon in the open reading frame (ORF) would produce a truncated protein. In order to identify the copia-like fraction of the A. thaliana genome, a careful computer-based analysis of the available sequences (which correspond to 92% of the genome) was performed. Approximately 300 nonredundant copia-like sequences homologous to AtC1 and AtC2 were detected, which showed an extreme heterogeneity in size and degree of conservation. This number of copies would correspond to approximately 1% of the A. thaliana genome. Seventy-one sequences were selected for further analysis, with 23 of them being full complete elements. Five corresponded to previously described ones, and the remaining ones, named AtC3 to AtC18 are new elements described in this work. Most of these elements presented a putative functional ORF, nearly identical LTRs, and the other elements necessary for retrotransposon activity. Phylogenetic trees, supported by high bootstrap values, indicated that these 23 elements could be considered separate families. In turn, these 23 families could be clustered into six major lineages, named copia I-VI. Most of the 71 analyzed sequences clustered into these six main clades. The widespread presence of these copia-like superfamilies throughout plant genomes is discussed.
Collapse
Affiliation(s)
- J Terol
- Departamento de Genética, Facultad de Ciencias Biológicas, Universitat de València, Valencia, Spain
| | | | | | | | | |
Collapse
|
106
|
Tu Z. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 2001; 98:1699-704. [PMID: 11172014 PMCID: PMC29320 DOI: 10.1073/pnas.98.4.1699] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight novel families of miniature inverted repeat transposable elements (MITEs) were discovered in the African malaria mosquito, Anopheles gambiae, by using new software designed to rapidly identify MITE-like sequences based on their structural characteristics. Divergent subfamilies have been found in two families. Past mobility was demonstrated by evidence of MITE insertions that resulted in the duplication of specific TA, TAA, or 8-bp targets. Some of these MITEs share the same target duplications and similar terminal sequences with MITEs and other DNA transposons in human and other organisms. MITEs in A. gambiae range from 40 to 1340 copies per genome, much less abundant than MITEs in the yellow fever mosquito, Aedes aegypti. Statistical analyses suggest that most A. gambiae MITEs are in highly AT-rich regions, many of which are closely associated with each other. The analyses of these novel MITEs underscored interesting questions regarding their diversity, origin, evolution, and relationships to the host genomes. The discovery of diverse families of MITEs in A. gambiae has important practical implications in light of current efforts to control malaria by replacing vector mosquitoes with genetically modified refractory mosquitoes. Finally, the systematic approach to rapidly identify novel MITEs should have broad applications for the analysis of the ever-growing sequence databases of a wide range of organisms.
Collapse
Affiliation(s)
- Z Tu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
107
|
Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 2001. [PMID: 11172014 PMCID: PMC29320 DOI: 10.1073/pnas.041593198] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eight novel families of miniature inverted repeat transposable elements (MITEs) were discovered in the African malaria mosquito, Anopheles gambiae, by using new software designed to rapidly identify MITE-like sequences based on their structural characteristics. Divergent subfamilies have been found in two families. Past mobility was demonstrated by evidence of MITE insertions that resulted in the duplication of specific TA, TAA, or 8-bp targets. Some of these MITEs share the same target duplications and similar terminal sequences with MITEs and other DNA transposons in human and other organisms. MITEs in A. gambiae range from 40 to 1340 copies per genome, much less abundant than MITEs in the yellow fever mosquito, Aedes aegypti. Statistical analyses suggest that most A. gambiae MITEs are in highly AT-rich regions, many of which are closely associated with each other. The analyses of these novel MITEs underscored interesting questions regarding their diversity, origin, evolution, and relationships to the host genomes. The discovery of diverse families of MITEs in A. gambiae has important practical implications in light of current efforts to control malaria by replacing vector mosquitoes with genetically modified refractory mosquitoes. Finally, the systematic approach to rapidly identify novel MITEs should have broad applications for the analysis of the ever-growing sequence databases of a wide range of organisms.
Collapse
|
108
|
Teraishi M, Hirochika H, Okumoto Y, Horibata A, Yamagata H, Tanisaka T. Identification of YAC clones containing the mutable slender glume locus slg in rice (Oryza sativa L.). Genome 2001. [DOI: 10.1139/g00-081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutable slender glume gene slg, which often reverts to the wild-type state, was induced by gamma-ray irradiation of seeds of the japonica rice cultivar 'Gimbozu'. The final goal was to understand whether the slender glume mutation was associated with the insertion of a transposable element, utilizing map-based cloning techniques. The RFLP (restriction fragment length polymorphism) analysis revealed that the slg locus was located between two RFLP loci, XNpb33 and R1440, on chromosome 7 with recombination values of 3.1% and 1.0%, respectively. Using these two RFLP loci as probes, five YAC (yeast artificial chromosome) clones containing either of these two loci were selected from a YAC library. Subsequently, both end fragments of these YAC clones, amplified by the inverse PCR (IPCR) method, were used to select new YAC clones more closely located to the slg locus. After repeating such a procedure, we successfully constructed a 6-cM YAC contig, and identified four overlapping YAC clones, Y1774, Y3356, Y5124, and Y5762, covering the slg locus. The chromosomal location of the slg was narrowed down to the region with a physical distance of less than 280 kb between the right-end fragments of Y1774 and Y3356.Key words: Oryza sativa, mutable gene, slender glume mutation, YAC contig.
Collapse
|
109
|
Abstract
A new family of transposons, FARE, has been identified in Arabidopsis. The structure of these elements is typical of foldback transposons, a distinct subset of mobile DNA elements found in both plants and animals. The ends of FARE elements are long, conserved inverted repeat sequences typically 550 bp in length. These inverted repeats are modular in organization and are predicted to confer extensive secondary structure to the elements. FARE elements are present in high copy number, are heterogeneous in size, and can be divided into two subgroups. FARE1's average 1.1 kb in length and are composed entirely of the long inverted repeats. FARE2's are larger, up to 16.7 kb in length, and contain a large internal region in addition to the inverted repeat ends. The internal region is predicted to encode three proteins, one of which bears homology to a known transposase. FARE1.1 was isolated as an insertion polymorphism between the ecotypes Columbia and Nossen. This, coupled with the presence of 9-bp target-site duplications, strongly suggests that FARE elements have transposed recently. The termini of FARE elements and other foldback transposons are imperfect palindromic sequences, a unique organization that further distinguishes these elements from other mobile DNAs.
Collapse
Affiliation(s)
- A J Windsor
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
110
|
Petersen G, Seberg O. Phylogenetic evidence for excision of Stowaway miniature inverted-repeat transposable elements in triticeae (Poaceae). Mol Biol Evol 2000; 17:1589-96. [PMID: 11070047 DOI: 10.1093/oxfordjournals.molbev.a026258] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mode of transposition of miniature inverted-repeat transposable elements (MITEs) is unknown, but it has been suggested that they are duplicated rather than excised at transposition. However, the present investigation demonstrates that a particular family of MITEs, Stowaway:, is excised. Mapped onto a gene tree based on partial sequences of disrupted meiotic cDNA1 (DMC1) from 30 species of the Triticeae grasses, it is evident that at least two excisions have occurred, leaving short footprints. These footprints may subsequently be reduced in length or deleted. Excision of Stowaway: elements lends strong support to the suggestion that MITEs are DNA transposons and should be classified as class II elements. The evolution of Stowaway: elements can also be traced by scrutiny of the gene tree. It appears that base substitutions are as frequent in the conserved terminal inverted repeats (TIRs) as in the core of the element. Neither substitutions nor deletions lead to compensatory changes; hence, the highly stable secondary structure of the elements may gradually be reduced.
Collapse
Affiliation(s)
- G Petersen
- Botanical Institute, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
111
|
Elrouby N, Bureau TE. Molecular characterization of the Abp1 5'-flanking region in maize and the teosintes. PLANT PHYSIOLOGY 2000; 124:369-77. [PMID: 10982450 PMCID: PMC59150 DOI: 10.1104/pp.124.1.369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2000] [Accepted: 05/08/2000] [Indexed: 05/23/2023]
Abstract
Auxin-binding protein 1 subsp. mays (ABP1) has been suggested as a receptor mediating auxin-induced cell expansion and differentiation. In maize (Zea mays), ABP1 is encoded by a single gene, Abp1. The TATA and CAAT promoter elements as well as the transcriptional start site were previously identified and all were found to be located within a transposable element (TE), Tourist-Zm11. In this study we report the cloning and characterization of the Abp1 5'-flanking region in maize and its wild relatives, the teosintes. We provide evidence for insertion polymorphism corresponding to Tourist-Zm11 and two novel TEs, Batuta and Pilgrim. Despite this polymorphic structure, the Abp1 core promoter in maize and the teosintes is conserved, is located downstream of the TE insertions in the 5'-flanking region, and is TATA-less. We discuss the potential evolutionary impact of these TEs on the regulation of Abp1 gene expression.
Collapse
Affiliation(s)
- N Elrouby
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A 1B1
| | | |
Collapse
|
112
|
Tu Z. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 2000; 17:1313-25. [PMID: 10958848 DOI: 10.1093/oxfordjournals.molbev.a026415] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel family of miniature inverted repeat transposable elements (MITEs) named Pony was discovered in the yellow fever mosquito, Aedes aegypti. It has all the characteristics of MITEs, including terminal inverted repeats, no coding potential, A+T richness, small size, and the potential to form stable secondary structures. Past mobility of PONY: was indicated by the identification of two Pony insertions which resulted in the duplication of the TA dinucleotide targets. Two highly divergent subfamilies, A and B, were identified in A. aegypti based on sequence comparison and phylogenetic analysis of 38 elements. These subfamilies showed less than 62% sequence similarity. However, within each subfamily, most elements were highly conserved, and multiple subgroups could be identified, indicating recent amplifications from different source genes. Different scenarios are presented to explain the evolutionary history of these subfamilies. Both subfamilies share conserved terminal inverted repeats similar to those of the Tc2 DNA transposons in Caenorhabditis elegans, indicating that Pony may have been borrowing the transposition machinery from a Tc2-like transposon in mosquitoes. In addition to the terminal inverted repeats, full-length and partial subterminal repeats of a sequence motif TTGATTCAWATTCCGRACA represent the majority of the conservation between the two subfamilies, indicating that they may be important structural and/or functional components of the Pony elements. In contrast to known autonomous DNA transposons, both subfamilies of PONY: are highly reiterated in the A. aegypti genome (8,400 and 9, 900 copies, respectively). Together, they constitute approximately 1. 1% of the entire genome. Pony elements were frequently found near other transposable elements or in the noncoding regions of genes. The relative abundance of MITEs varies in eukaryotic genomes, which may have in part contributed to the different organizations of the genomes and reflect different types of interactions between the hosts and these widespread transposable elements.
Collapse
Affiliation(s)
- Z Tu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
113
|
Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR. The MITE family heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci U S A 2000; 97:10083-9. [PMID: 10963671 PMCID: PMC27704 DOI: 10.1073/pnas.97.18.10083] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2000] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are ubiquitous in plant genomes, where they frequently comprise the majority of genomic DNA. The maize genome, which is believed to be structurally representative of large plant genomes, contains single genes or small gene islands interspersed with much longer blocks of retrotransposons. Given this organization, it would be desirable to identify molecular markers preferentially located in genic regions. In this report, the features of a newly described family of miniature inverted repeat transposable elements (MITEs) (called Heartbreaker), including high copy number and polymorphism, stability, and preference for genic regions, have been exploited in the development of a class of molecular markers for maize. To this end, a modification of the AFLP procedure called transposon display was used to generate and display hundreds of genomic fragments anchored in Hbr elements. An average of 52 markers were amplified for each primer combination tested. In all, 213 polymorphic fragments were reliably scored and mapped in 100 recombinant inbred lines derived from a cross between the maize inbreds B73 x Mo17. In this mapping population, Hbr markers are distributed evenly across the 10 maize chromosomes. This procedure should be of general use in the development of markers for other MITE families in maize and in other plant and animal species where MITEs have been identified.
Collapse
Affiliation(s)
- A M Casa
- Departments of Botany and Genetics, The University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA. Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 2000; 10:982-90. [PMID: 10899147 PMCID: PMC310901 DOI: 10.1101/gr.10.7.982] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2000] [Accepted: 05/17/2000] [Indexed: 11/25/2022]
Abstract
As part of an international effort to sequence the rice genome, the Clemson University Genomics Institute is developing a sequence-tagged-connector (STC) framework. This framework includes the generation of deep-coverage BAC libraries from O. sativa ssp. japonica c.v. Nipponbare and the sequencing of both ends of the genomic DNA insert of the BAC clones. Here, we report a survey of the transposable elements (TE) in >73,000 STCs. A total of 6848 STCs were found homologous to regions of known TE sequences (E<10(-5)) by FASTX search of STCs against a set of 1358 TE protein sequences obtained from GenBank. Of these TE-containing STCs (TE-STCs), 88% (6027) are related to retroelements and the remaining are transposase homologs. Nearly all DNA transposons known previously in plants were present in the STCs, including maize Ac/Ds, En/Spm, Mutator, and mariner-like elements. In addition, 2746 STCs were found to contain regions homologous to known miniature inverted-repeat transposable elements (MITEs). The distribution of these MITEs in regions near genes was confirmed by EST comparisons to MITE-containing STCs, and our results showed that the association of MITEs with known EST transcripts varies by MITE type. Unlike the biased distribution of retroelements in maize, we found no evidence for the presence of gene islands when we correlated TE-STCs with a physical map of the CUGI BAC library. These analyses of TEs in nearly 50 Mb of rice genomic DNA provide an interesting and informative preview of the rice genome.
Collapse
Affiliation(s)
- L Mao
- Clemson University Genomics Institute, South Carolina 29634 USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Although it is known today that transposons comprise a significant fraction of the genomes of many organisms, they eluded discovery through the first half century of genetic analysis and even once discovered, their ubiquity and abundance were not recognized for some time. This genetic invisibility of transposons focuses attention on the mechanisms that control not only transposition, but illegitimate recombination. The thesis is developed that the mechanisms that control transposition are a reflection of the more general capacity of eukaryotic organisms to detect, mark, and retain duplicated DNA through repressive chromatin structures.
Collapse
Affiliation(s)
- N Fedoroff
- The Pennsylvania State University, University Park, PA 16803, USA.
| |
Collapse
|
116
|
Matzke MA, Mette MF, Matzke AJ. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. PLANT MOLECULAR BIOLOGY 2000; 43:401-15. [PMID: 10999419 DOI: 10.1023/a:1006484806925] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing evidence supports the idea that various transgene silencing phenomena reflect the activity of diverse host defense responses that act ordinarily on natural foreign or parasitic sequences such as transposable elements, viroids, RNA and DNA viruses, and bacterial DNA. Transgenes or their transcripts can resemble these cellular invaders in a number of ways, thus making them targets of host protective reactions. At least two distinct host defense systems operate to silence transgenes. One acts at the genome level and is associated with de novo DNA methylation. A second line of defense operates post-transcriptionally and involves sequence-specific RNA degradation in the cytoplasm. Transgenes that are silenced as a consequence of the genome defense are revealing that de novo methylation can be cued by DNA-DNA or RNA-DNA interactions. These methylation signals can be interpreted in the context of transposable elements or their transcripts. During evolution, as transposable elements accumulated in plant and vertebrate genomes and as they invaded flanking regions of genes, the genome defense was possibly recruited to establish global epigenetic mechanisms to regulate gene expression. Transposons integrated into promoters of host genes could conceivably change expression patterns and attract methylation, thus imposing on endogenous genes the type of epigenetic regulation associated with the genome defense. This recruitment process might have been particularly effective in the polyploid genomes of plants and early vertebrates. Duplication of the entire genome in polyploids buffers against insertional mutagenesis by transposable elements and permits their infiltration into individual copies of duplicated genes.
Collapse
Affiliation(s)
- M A Matzke
- Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg.
| | | | | |
Collapse
|
117
|
Feschotte C, Mouchès C. Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family. Gene 2000; 250:109-16. [PMID: 10854784 DOI: 10.1016/s0378-1119(00)00187-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe a new family of repetitive elements, named Mimo, from the mosquito Culex pipiens. Structural characteristics of these elements fit well with those of miniature inverted-repeat transposable elements (MITEs), which are ubiquitous and highly abundant in plant genomes. The occurrence of Mimo in C. pipiens provides new evidence that MITEs are not restricted to plant genomes, but may be widespread in arthropods as well. The copy number of Mimo elements in C. pipiens ( approximately 1000 copies in a 540Mb genome) supports the hypothesis that there is a positive correlation between genome size and the magnitude of MITE proliferation. In contrast to most MITE families described so far, members of the Mimo family share a high sequence conservation, which may reflect a recent amplification history in this species. In addition, we found that Mimo elements are a frequent nest for other MITE-like elements, suggesting that multiple and successive MITE transposition events have occurred very recently in the C. pipiens genome. Despite evidence for recent mobility of these MITEs, no element has been found to encode a protein; therefore, we do not know how they have transposed and have spread in the genome. However, some sequence similarities in terminal inverted-repeats suggest a possible filiation of some of these mosquito MITEs with pogo-like DNA transposons.
Collapse
Affiliation(s)
- C Feschotte
- Laboratoire Ecologie Moléculaire and Faculté Sciences et Techniques Côte-Basque, Université de Pau et des Pays de l'Adour, Pau, France
| | | |
Collapse
|
118
|
Feschotte C, Mouchès C. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 2000; 17:730-7. [PMID: 10779533 DOI: 10.1093/oxfordjournals.molbev.a026351] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sequence similarities exist between terminal inverted repeats (TIRs) of some miniature inverted-repeat transposable element (MITE) families isolated from a wide range of organisms, including plants, insects, and humans, and TIRs of DNA transposons from the pogo family. We present here evidence that one of these MITE families, previously described for Arabidopsis thaliana, is derived from a larger element encoding a putative transposase. We have named this novel class II transposon Lemi1. We show that its putative product is related to transposases of the Tc1/mariner superfamily, being closer to the pogo family. A similar truncated element was found in a tomato DNA sequence, indicating an ancient origin and/or horizontal transfer for this family of elements. These results are reminiscent of those recently reported for the human genome, where other members of the pogo family, named Tiggers, are believed to be responsible for the generation of abundant MITE-like elements in an early primate ancestor. These results further suggest that some MITE families, which are highly reiterated in plant, insect, and human genomes, could have arisen from a similar mechanism, implicating pogo-like elements.
Collapse
Affiliation(s)
- C Feschotte
- Laboratoire Ecologie Moléculaire et Faculté Sciences et Techniques Côte-Basque, Université de Pau et des Pays de l'Adour, Pau, France
| | | |
Collapse
|
119
|
Han CG, Frank MJ, Ohtsubo H, Ohtsubo E. New transposable elements identified as insertions in rice transposon Tnr1. Genes Genet Syst 2000; 75:69-77. [PMID: 10925785 DOI: 10.1266/ggs.75.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tnr1 (235 bp long) is a transposable element in rice. Polymerase chain reactions (PCRs) done with a primer(s) that hybridizes to terminal inverted repeat sequences (TIRs) of Tnr1 detected new Tnr1 members with one or two insertions in rice genomes. Six identified insertion sequences (Tnr4, Tnr5, Tnr11, Tnr12, Tnr13 and RIRE9) did not have extensive homology to known transposable elements, rather they had structural features characteristic of transposable elements. Tnr4 (1767 bp long) had imperfect 64-bp TIRs and appeared to generate duplication of a 9-bp sequence at the target site. However, the TIR sequences were not homologous to those of known transposable elements, indicative that Tnr4 is a new transposable element. Tnr5 (209 bp long) had imperfect 46-bp TIRs and appeared to generate duplication of sequence TTA like that of some elements of the Tourist family. Tnr11 (811 bp long) had 73-bp TIRs with significant homology to those of Tnr1 and Stowaway and appeared to generate duplication of sequence TA, indicative that Tnr11 is a transposable element of the Tnr1/Stowaway family. Tnr12 (2426 bp long) carried perfect 9-bp TIRs, which began with 5'-CACTA- -3' from both ends and appeared to generate duplication of a 3-bp target sequence, indicative that Tnr12 is a transposable element of the En/Spm family. Tnr13 (347 bp long) had 31-bp TIRs and appeared to generate duplication of an 8-bp target sequence. Two sequences, one the transposon-like element Crackle, had partial homology in the Tnr13 ends. All five insertions appear to be defective elements derived from autonomous ones encoding the transposase gene. All had characteristic tandem repeat sequences which may be recognized by transposase. The sixth insertion sequence, named RIRE9 (3852 bp long), which begins with 5'-TG- -3' and ends with 5'- -CA-3', appeared to generate duplication of a 5-bp target sequence. These and other structural features indicate that this insertion is a solo LTR (long terminal repeat) of a retrotransposon. The transposable elements described above could be identified as insertions into Tnr1, which do not deleteriously affect the growth of rice cells.
Collapse
Affiliation(s)
- C G Han
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
120
|
Abstract
Retrotransposons are mobile genetic elements that transpose through reverse transcription of an RNA intermediate. Retrotransposons are ubiquitous in plants and play a major role in plant gene and genome evolution. In many cases, retrotransposons comprise over 50% of nuclear DNA content, a situation that can arise in just a few million years. Plant retrotransposons are structurally and functionally similar to the retrotransposons and retroviruses that are found in other eukaryotic organisms. However, there are important differences in the genomic organization of retrotransposons in plants compared to some other eukaryotes, including their often-high copy numbers, their extensively heterogeneous populations, and their chromosomal dispersion patterns. Recent studies are providing valuable insights into the mechanisms involved in regulating the expression and transposition of retrotransposons. This review describes the structure, genomic organization, expression, regulation, and evolution of retrotransposons, and discusses both their contributions to plant genome evolution and their use as genetic tools in plant biology.
Collapse
Affiliation(s)
- A Kumar
- Scottish Crop Research Institute, Invergowrie, Dundee, Scotland.
| | | |
Collapse
|
121
|
Hu J, Reddy VS, Wessler SR. The rice R gene family: two distinct subfamilies containing several miniature inverted-repeat transposable elements. PLANT MOLECULAR BIOLOGY 2000; 42:667-678. [PMID: 10809440 DOI: 10.1023/a:1006355510883] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The R and B genes of maize regulate the anthocyanin biosynthetic pathway and constitute a small gene family whose evolution has been shaped by polyploidization and transposable element activity. To compare the evolution of regulatory genes in the distinct but related genomes of rice and maize, we previously isolated two R homologues from rice (Oryza sativa). The Ra1 gene on chromosome 4 can activate the anthocyanin pathway, whereas the Rb gene, of undetermined function, maps to chromosome 1. In this study, rice R genes have been further characterized. First, we found that an Rb cDNA can induce pigmentation in maize suspension cells. Second, another rice R homologue (Ra2) was identified that is more closely related to Ra1 than to Rb. Domesticated rice and its wild relatives harbor multiple Ra-like and Rb-like genes despite the fact that rice is a true diploid with the smallest genome of all the grass species analyzed to date. Finally, several miniature inverted-repeat transposable elements (MITEs) were found in R family members. Their possible role in hastening the divergence of R genes is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- DNA Transposable Elements
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression
- Genes, Plant/genetics
- Molecular Sequence Data
- Multigene Family/genetics
- Nuclear Proteins/genetics
- Oryza/genetics
- Plant Proteins/genetics
- Recombinant Fusion Proteins/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Zea mays/cytology
- Zea mays/genetics
Collapse
Affiliation(s)
- J Hu
- Department of Botany, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
122
|
Zhang Q, Arbuckle J, Wessler SR. Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci U S A 2000; 97:1160-5. [PMID: 10655501 PMCID: PMC15555 DOI: 10.1073/pnas.97.3.1160] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 314-bp DNA element called Heartbreaker-hm1 (Hbr-hm1) was previously identified in the 3' untranslated region of a mutant allele of the maize disease resistance gene HM1. This element has structural features of miniature inverted-repeat transposable elements (MITEs) and is a member of a large family of approximately 4,000 copies in the maize genome. Unlike previously described MITEs, most members of the Hbr family display over 90% sequence identity. This, coupled with the insertion of an Hbr element into an allele of the HM1 gene, suggested that this family might have spread recently throughout the genome. Consistent with this view is the finding that Hbr insertion sites are remarkably polymorphic. Ten of ten loci containing Hbr elements were found to be polymorphic for the presence or absence of Hbr among a collection of maize inbred lines and teosinte strains. Despite the fact that over 80% of the maize genome contain moderate to highly repetitive DNA, we find that randomly chosen Hbr elements are predominantly in single or low copy regions. Furthermore, when used to query both the public and private databases of plant genes, over 50% of the sequences flanking these Hbr elements resulted in significant "hits." Taken together, these data indicate that the presence or absence of Hbr elements is a significant contributory factor to the high level of polymorphism associated with maize genic regions.
Collapse
Affiliation(s)
- Q Zhang
- Departments of Botany and Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
123
|
Abstract
Several common themes have shaped the evolution of plant disease resistance genes. These include duplication events of progenitor resistance genes and further expansion to create clustered gene families. Variation can arise from both intragenic and intergenic recombination and gene conversion. Recombination has also been implicated in the generation of novel resistance specificities. Resistance gene clusters appear to evolve more rapidly than other regions of the genome. In addition, domains believed to be involved in recognitional specificity, such as the leucine-rich repeat (LRR), are subject to adaptive selection. Transposable elements have been associated with some resistance gene clusters, and may generate further variation at these complexes.
Collapse
Affiliation(s)
- T E Richter
- Center for Engineering Plants for Resistance Against Pathogens, Davis, CA 95616, USA
| | | |
Collapse
|
124
|
Abstract
Several common themes have shaped the evolution of plant disease resistance genes. These include duplication events of progenitor resistance genes and further expansion to create clustered gene families. Variation can arise from both intragenic and intergenic recombination and gene conversion. Recombination has also been implicated in the generation of novel resistance specificities. Resistance gene clusters appear to evolve more rapidly than other regions of the genome. In addition, domains believed to be involved in recognitional specificity, such as the leucine-rich repeat (LRR), are subject to adaptive selection. Transposable elements have been associated with some resistance gene clusters, and may generate further variation at these complexes.
Collapse
Affiliation(s)
- T E Richter
- Center for Engineering Plants for Resistance Against Pathogens, Davis, CA 95616, USA
| | | |
Collapse
|
125
|
Abstract
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.
Collapse
Affiliation(s)
- J F Wendel
- Department of Botany, Iowa State University, Ames 50011, USA.
| |
Collapse
|
126
|
Abstract
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.
Collapse
Affiliation(s)
- J F Wendel
- Department of Botany, Iowa State University, Ames 50011, USA.
| |
Collapse
|
127
|
Braquart C, Royer V, Bouhin H. DEC: a new miniature inverted-repeat transposable element from the genome of the beetle Tenebrio molitor. INSECT MOLECULAR BIOLOGY 1999; 8:571-574. [PMID: 10620054 DOI: 10.1046/j.1365-2583.1999.00144.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this paper we describe a novel family of miniature inverted-repeat transposable elements (MITEs), named DEC, isolated from the genome of the beetle Tenebrio molitor. These elements are highly reiterated and their number is estimated to be around 3500 per haploid genome. Two of them have been isolated and the two sequences are 84% identical. Like other MITEs, they are characterized by their small size, their A + T richness, the presence of terminal inverted repeats and the absence of open reading frames. These data suggest that MITEs are probably widely distributed in arthropods.
Collapse
Affiliation(s)
- C Braquart
- UMR CNRS 5548, 'Développement et communication chimique', Faculté des Sciences, Dijon, France
| | | | | |
Collapse
|
128
|
Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 1999; 23:305-8. [PMID: 10545948 DOI: 10.1038/15479] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genomes of higher plants and animals are highly differentiated, and are composed of a relatively small number of genes and a large fraction of repetitive DNA. The bulk of this repetitive DNA constitutes transposable, and especially retrotransposable, elements. It has been hypothesized that most of these elements are heavily methylated relative to genes, but the evidence for this is controversial. We show here that repeat sequences in maize are largely excluded from genomic shotgun libraries by the selection of an appropriate host strain because of their sensitivity to bacterial restriction-modification systems. In contrast, unmethylated genic regions are preserved in these genetically filtered libraries if the insert size is less than the average size of genes. The representation of unique maize sequences not found in plant reference genomes is also greatly enriched. This demonstrates that repeats, and not genes, are the primary targets of methylation in maize. The use of restrictive libraries in genome shotgun sequencing in plant genomes should allow significant representation of genes, reducing the number of reactions required.
Collapse
Affiliation(s)
- P D Rabinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Adé J, Belzile FJ. Hairpin elements, the first family of foldback transposons (FTs) in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:591-597. [PMID: 10504580 DOI: 10.1046/j.1365-313x.1999.00567.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here on the identification in Arabidopsis thaliana of a new family of transposable elements named Hairpin. These elements are related to foldback transposons (FTs), a large and heterogeneous group of transposable elements first described in Drosophila and recently in Solanaceae. Hairpin elements are the first family of FTs reported in Arabidopsis thaliana and the first family of FTs of type 3 to be described in the plant kingdom. In contrast to previous FTs described, Hairpin appears to be a homogeneous family in size (238 +/- 7 bp) as well as in structure. Hairpin elements are dispersed in the Arabidopsis genome and Southern hybridization revealed that they are present in relatively low copy numbers. Finally, we discuss the potential usefulness of these elements in studying the phylogenetic relationship between Arabidopsis ecotypes.
Collapse
Affiliation(s)
- J Adé
- Département de phytologie, Pavillon C.-E. Marchand, Université Laval, Ste-Foy, Canada
| | | |
Collapse
|
130
|
Charrier B, Foucher F, Kondorosi E, d'Aubenton-Carafa Y, Thermes C, Kondorosi A, Ratet P. Bigfoot. a new family of MITE elements characterized from the Medicago genus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:431-441. [PMID: 10406126 DOI: 10.1111/j.1365-313x.1999.00469.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have characterized from the legume plant Medicago a new family of miniature inverted-repeat transposable elements (MITE), called the Bigfoot transposable elements. Two of these insertion elements are present only in a single allele of two different M. sativa genes. Using a PCR strategy we have isolated 19 other Bigfoot elements from the M. sativa and M. truncatula genomes. They differ from the previously characterized MITEs by their sequence, a target site of 9 bp and a partially clustered genomic distribution. In addition, we show that they exhibit a significantly stable secondary structure. These elements may represent up to 0.1% of the genome of the outcrossing Medicago sativa but are present at a reduced copy number in the genome of the autogamous M. truncatula plant, revealing major differences in the genome organization of these two plants.
Collapse
Affiliation(s)
- B Charrier
- Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Gifsur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
131
|
Vivas MV, García-Planells J, Ruiz C, Marfany G, Paricio N, Gonzàlez-Duarte R, de Frutos R. GEM, a cluster of repetitive sequences in the Drosophila subobscura genome. Gene X 1999; 229:47-57. [PMID: 10095103 DOI: 10.1016/s0378-1119(99)00031-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
GEM is a new family of repetitive sequences detected in the D. subobscura genome. Two of the four described GEM elements encompass a heterogeneous central module, with no detectable ORF, flanked by two long inverted repeats. These elements are composed of a set of repetitive modules, which are inverted repeat (IR), direct repeat (DR), palindromic sequence (PS), long sequence (LS) and short sequence (SS). These five modules can be found either clustered or dispersed as single modules in the D. subobscura genome, in euchromatic and heterochromatic regions. In addition to the 3' region of Adh retrosequences, single IR and LS blocks were found associated with the promoter region of different genes, in particular, LS-like blocks have also been found associated with functional genes in D. melanogaster and D. virilis. Conversely, the DR block is highly similar to satellite DNAs from some other species of the obscura group. In addition, GEM elements share some structural features with IS elements described in different Drosophila species. It is likely that both GEM and IS sequences would be vestiges of an ancestral transposable element.
Collapse
Affiliation(s)
- M V Vivas
- Departamento de Genética, Facultad de Ciencias Biológicas, Dr. Moliner 50, Burjassot 46100, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
132
|
Mauch F, Reimmann C, Freydl E, Schaffrath U, Dudler R. Characterization of the rice pathogen-related protein Rir1a and regulation of the corresponding gene. PLANT MOLECULAR BIOLOGY 1998; 38:577-586. [PMID: 9747803 DOI: 10.1023/a:1006041404436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In rice (Oryza sativa L.), local acquired resistance against Pyricularia oryzae (Cav.), the causal agent of rice blast, can be induced by a preinoculation with the non-host pathogen Pseudomonas syringae pv. syringae. We have cloned a cDNA (Rir1a) and a closely related gene (Rir1b) corresponding to transcripts that accumulate in leaf tissue upon inoculation with P. syringae pv. syringae. The cDNA encodes a putative 107 amino acid protein, Rir1a, that exhibits a putative signal peptide cleavage site in its hydrophobic N-terminal part and a C-terminal part that is relatively rich in glycine and proline. The Rir1b gene contains a Tourist and a Wanderer miniature transposable element in its single intron and encodes a nearly identical protein. Rir1a is similar in sequence (ca. 35% identical and ca. 60% conservatively changed amino acids) to the putative Wir1 family of proteins that are encoded by pathogen-induced transcripts in wheat. Using antibodies raised against a Rir1a-fusion protein we show that Rir1a is secreted from rice protoplasts transiently expressing a 35S::Rir1a construct and that the protein accumulates in the cell wall compartment of rice leaves upon inoculation with P. syringae pv. syringae. Possible roles of Rir1a in pathogen defense are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Ascomycota/pathogenicity
- Base Sequence
- Cloning, Molecular
- DNA Primers/genetics
- DNA Transposable Elements
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Molecular Sequence Data
- Oryza/genetics
- Oryza/microbiology
- Oryza/physiology
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/physiology
- Pseudomonas/pathogenicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Homology, Amino Acid
- Triticum/genetics
Collapse
Affiliation(s)
- F Mauch
- Institute of Plant Biology, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
133
|
Casacuberta E, Casacuberta JM, Puigdomènech P, Monfort A. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:79-85. [PMID: 9807830 DOI: 10.1046/j.1365-313x.1998.00267.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although the genome of Arabidopsis thaliana has a small amount of repetitive DNA, it contains representatives of most classes of mobile elements. However, to date, no miniature inverted-repeat transposable element (MITE) has been described in this plant. Here, we describe a new family of repeated sequences that we have named Emigrant, which are dispersed in the genome of Arabidopsis and fulfil all the requirements of MITEs. These sequences are short, AT-rich, have terminal inverted repeats (TIRs), and do not seem to have any coding capacity. Evidence for the mobility of Emigrant elements has been obtained from the absence of one of these elements in a specific Arabidopsis ecotype. Emigrant is also present in the genome of different Brassicae and its TIRs are 74% identical to those of Wujin elements, a recently described family of MITEs from the yellow fever mosquito Aedes aegypti.
Collapse
Affiliation(s)
- E Casacuberta
- Departament de Genètica Molecular, Centre d'Investigació i Desenvolupament (CSIC), Barcelona, Spain
| | | | | | | |
Collapse
|
134
|
Abstract
Transposable elements propagate by inserting into new locations in the genomes of the hosts they inhabit. Their transposition might thus negatively affect the fitness of the host, suggesting the requirement for a tight control in the regulation of transposable element mobilization. The nature of this control depends on the structure of the transposable element. DNA elements encode a transposase that is necessary, and in most cases sufficient, for mobilization. In general, regulation of these elements depends on intrinsic factors with little direct input from the host. Retrotransposons require an RNA intermediate for transposition, and their frequency of mobilization is controlled at multiple steps by the host genome by regulating both their expression levels and their insertional specificity. As a result, a symbiotic relationship has developed between transposable elements and their host. Examples are now emerging showing that transposons can contribute significantly to the well being of the organisms they populate.
Collapse
Affiliation(s)
- M Labrador
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
135
|
Kidwell MG, Lisch D. Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A 1997; 94:7704-11. [PMID: 9223252 PMCID: PMC33680 DOI: 10.1073/pnas.94.15.7704] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A tremendous wealth of data is accumulating on the variety and distribution of transposable elements (TEs) in natural populations. There is little doubt that TEs provide new genetic variation on a scale, and with a degree of sophistication, previously unimagined. There are many examples of mutations and other types of genetic variation associated with the activity of mobile elements. Mutant phenotypes range from subtle changes in tissue specificity to dramatic alterations in the development and organization of tissues and organs. Such changes can occur because of insertions in coding regions, but the more sophisticated TE-mediated changes are more often the result of insertions into 5' flanking regions and introns. Here, TE-induced variation is viewed from three evolutionary perspectives that are not mutually exclusive. First, variation resulting from the intrinsic parasitic nature of TE activity is examined. Second, we describe possible coadaptations between elements and their hosts that appear to have evolved because of selection to reduce the deleterious effects of new insertions on host fitness. Finally, some possible cases are explored in which the capacity of TEs to generate variation has been exploited by their hosts. The number of well documented cases in which element sequences appear to confer useful traits on the host, although small, is growing rapidly.
Collapse
Affiliation(s)
- M G Kidwell
- Department of Ecology and Evolutionary Biology and The Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
136
|
Tu Z. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 1997; 94:7475-80. [PMID: 9207116 PMCID: PMC23846 DOI: 10.1073/pnas.94.14.7475] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1997] [Accepted: 05/12/1997] [Indexed: 02/04/2023] Open
Abstract
Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richness, and putative 2- to 4-bp A+T-biased specific target sites. Evidence of previous mobility is presented for the Wukong elements. Elements of these three families are associated with 7 of 16 fully or partially sequenced Ae. aegypti genes. Characteristics of these mosquito elements indicate strong similarities to the miniature inverted-repeat transposable elements (MITEs) recently found to be associated with plant genes. MITE-like elements have also been reported in two species of Xenopus and in Homo sapiens. This characterization of multiple families of highly repetitive MITE-like elements in an invertebrate extends the range of these elements in eukaryotic genomes. A hypothesis is presented relating genome size and organization to the presence of highly reiterated MITE families. The association of MITE-like elements with Ae. aegypti genes shows the same bias toward noncoding regions as in plants. This association has potentially important implications for the evolution of gene regulation.
Collapse
Affiliation(s)
- Z Tu
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
137
|
Cox R, Mirkin SM. Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci U S A 1997; 94:5237-42. [PMID: 9144221 PMCID: PMC24662 DOI: 10.1073/pnas.94.10.5237] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Using computer programs developed for this purpose, we searched for various repeated sequences including inverted, direct tandem, and homopurine-homopyrimidine mirror repeats in various prokaryotes, eukaryotes, and an archaebacterium. Comparison of observed frequencies with expectations revealed that in bacterial genomes and organelles the frequency of different repeats is either random or enriched for inverted and/or direct tandem repeats. By contrast, in all eukaryotic genomes studied, we observed an overrepresentation of all repeats, especially homopurine-homopyrimidine mirror repeats. Analysis of the genomic distribution of all abundant repeats showed that they are virtually excluded from coding sequences. Unexpectedly, the frequencies of abundant repeats normalized for their expectations were almost perfect exponential functions of their size, and for a given repeat this function was indistinguishable between different genomes.
Collapse
Affiliation(s)
- R Cox
- Department of Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
138
|
Chen M, Bennetzen JL. Sequence composition and organization in the Sh2/A1-homologous region of rice. PLANT MOLECULAR BIOLOGY 1996; 32:999-1001. [PMID: 9002598 DOI: 10.1007/bf00041383] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|