101
|
Aoki M, Sobek V, Maslyar DJ, Hecht A, Vogt PK. Oncogenic transformation by beta-catenin: deletion analysis and characterization of selected target genes. Oncogene 2002; 21:6983-91. [PMID: 12370820 DOI: 10.1038/sj.onc.1205796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 06/06/2002] [Accepted: 06/18/2002] [Indexed: 11/09/2022]
Abstract
Genetic analysis of beta-catenin-induced oncogenic transformation in chicken embryo fibroblasts (CEF) revealed the following prerequisites for oncogenicity: (1) removal of the N terminal phosphorylation sites targeted by glycogen synthase kinase 3beta (GSK3beta), (2) retention of the N terminal transactivation domain, and (3) retention of the armadillo repeats. The C terminal transactivation domain played an ancillary role in the transformation of CEF. There was a rough correlation between the transforming activity of various beta-catenin constructs and their transactivation of the TOPFLASH reporter. Expression levels of the candidate target genes of beta-catenin-LEF, cyclin D1 and myc were not correlated with each other or with the transforming activity of beta-catenin constructs. A new target gene, coding for inositol hexakisphosphate kinase 2 (IP6K2) was identified. Its expression showed concordance with the transforming activity of beta-catenin constructs.
Collapse
Affiliation(s)
- Masahiro Aoki
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, CA 92037, USA.
| | | | | | | | | |
Collapse
|
102
|
Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, Corr M, Carson DA. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 2002; 21:6598-605. [PMID: 12242657 DOI: 10.1038/sj.onc.1205920] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2002] [Revised: 07/30/2002] [Accepted: 07/31/2002] [Indexed: 12/20/2022]
Abstract
The diverse receptor-ligand pairs of the Wnt and frizzled (Fz) families play important roles during embryonic development, and thus may be overexpressed in cancers that arise from immature cells. Hence, we investigated the expression and function of five Wnt (Wnt-1, 5a, 7a, 10b, 13) and two Fz (Fz-2, 5) genes in 10 head and neck squamous carcinoma cell lines (HNSCC). In comparison to normal bronchial or oral epithelial cells, all the HNSCC had markedly increased mRNA levels of Wnt-1, 7a, 10b, and 13, as well as Fz-2. Moreover, the levels of Wnt-1, 10b, and Fz-2 proteins were also markedly increased in HNSCC, relative to normal epithelial cells. Treatment of one HNSCC cell line (SNU 1076) with anti-Wnt-1 antibodies reduced the activity of the Wnt/Fz dependent transcription factor LEF/TCF, and diminished the expression of cyclin D1 and beta-catenin proteins. Blocking Wnt-1 signaling also inhibited proliferation and induced apoptosis in these cells. These results show that HNSCC cell lines often overexpress one or more Wnt and Fz genes, and suggest that the growth and survival of a subset of HNSCC may depend on the Wnt/Fz pathway. Hence, the Wnt and Fz receptors may be possible targets for immunotherapy therapy of this common cancer.
Collapse
Affiliation(s)
- Chae-Seo Rhee
- Department of Medicine and The Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, California, CA 92093-0663, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Li G, Iyengar R. Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta -catenin-regulated cell proliferation. Proc Natl Acad Sci U S A 2002; 99:13254-9. [PMID: 12239346 PMCID: PMC130620 DOI: 10.1073/pnas.202355799] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signaling pathways interact to integrate and regulate information flow in evoking complex cellular responses. We have studied the mechanisms and consequences of interactions between the Gq and Wnt/beta-catenin pathways. In human colon carcinoma SW480 cells, activation of the Gq pathway inhibits beta-catenin signaling as determined by transcriptional reporter and cell proliferation assays. Ca(2+) release from internal stores results in nuclear export and calpain-mediated degradation of beta-catenin in the cytoplasm. Galphaq does not inhibit the effects of constitutively activated DeltaN-XTCF3-VP16 chimera in SW480 cells. Similarly, in HEK293 cells the Gq pathway suppresses beta-catenin-T cell factor/lymphocyte enhancer factor-1 transcriptional activity induced by Wnt/Frizzled interaction or glycogen synthase kinase-3beta-resistant beta-catenin, but not DeltaN-XTCF3-VP16. We conclude that Gq signaling promotes nuclear export and calpain-mediated degradation of beta-catenin, which therefore contributes to the inhibition of Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Guangnan Li
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
104
|
Lo Muzio L, Pannone G, Staibano S, Mignogna MD, Rubini C, Farronato G, Ferrari F, Nocini PF, De Rosa G. Strict correlation between uPAR and plakoglobin expression in pemphigus vulgaris. J Cutan Pathol 2002; 29:540-8. [PMID: 12358812 DOI: 10.1034/j.1600-0560.2002.290906.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Recent studies have reported nuclear delocalization of plakoglobin in acantholytic pemphigus vulgaris cells. The objective of this study was to evaluate the role of plakoglobin in the pathogenesis of acantholysis in pemphigus vulgaris (PV) and its relation with the urokinase-type plasminogen activator receptor (uPAR) expression. MATERIALS AND METHODS Plakoglobin and uPAR expressions were evaluated by immunohistochemistry in 22 cases of PV at various stages of the disease, and as controls in 18 specimens of skin/oral mucosa from healthy patients. RESULTS Healthy skin/normal oral mucosa showed strong plakoglobin expression in the basal and spinous layers with prevalent cellular membrane distribution; the intensity of staining progressively decreased toward the superficial layers of the epithelium. In PV patients, a progressive displacement of the plakoglobin signal toward the nucleus was found in 18/22 of the cases. Healthy skin/normal oral mucosa showed low uPAR expression with prevalent cellular membrane distribution. In the PV patients, strong uPAR expression was present in the acantholytic cells in 16/22 of the cases. There was direct correlation (p < 0.05) between the uPAR expression and nuclear plakoglobin. CONCLUSIONS The uPAR overexpression in acantholytic PV may be considered a direct consequence of plakoglobin abnormal distribution. Nuclear delocalization of plakoglobin, a direct consequence of plakoglobin-Dsg-3 dissociation induced by PV IgG, probably induces uPAR overexpression. This evidence suggests a central role for plakoglobin in PV pathogenesis because of its delocalization toward the nucleus, which is the probable cause of the uPAR gene expression.
Collapse
Affiliation(s)
- Lorenzo Lo Muzio
- Institute of Dental Sciences, University of Ancona, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Filali M, Cheng N, Abbott D, Leontiev V, Engelhardt JF. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem 2002; 277:33398-410. [PMID: 12052822 DOI: 10.1074/jbc.m107977200] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Wnt family of secreted molecules have been established as key factors in determining cell fate and morphogenic signaling. It has long been recognized that Wnt induces morphogenic signaling through the Tcf/LEF-1 cascade by regulating free intracellular levels of beta-catenin, a co-factor for Tcf/LEF-1 transcription factors. In the present study, we have demonstrated that Wnt-3A can also directly induce transcription from the LEF-1 promoter. This induction was dependent on glycogen synthase kinase 3beta inactivation, a rise in free intracellular beta-catenin, and a short 110-bp Wnt-responsive element (WRE) in the LEF-1 promoter. Linear and internal deletion of this WRE led to a dramatic increase in constitutive LEF-1 promoter activity and loss of Wnt-3A responsiveness. In isolation, the 110-bp WRE conferred context-independent Wnt-3A or beta-catenin(S37A) responsiveness to a heterologous SV40 promoter. Studies expressing dominant active and negative forms of LEF-1, beta-catenin, GSK-3beta, and beta-catenin/LEF-1 fusions suggest that Wnt-3A activates the LEF-1 promoter through a beta-catenin-dependent and LEF-1-independent process. Wnt-3A expression also induced multiple changes in the binding of factors to the WRE and suggests that regulatory mechanisms may involve modulation of a multiprotein complex. In summary, these results provide evidence for transcriptional regulation of the LEF-1 promoter by Wnt and enhance the mechanistic understanding of Wnt/beta-catenin signaling in the regulation of LEF-1-dependent developmental processes.
Collapse
Affiliation(s)
- Mohammed Filali
- Department of Anatomy and Cell Biology and the Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
106
|
Gasparoni A, Chaves A, Fonzi L, Johnson GK, Schneider GB, Squier CA. Subcellular localization of beta-catenin in malignant cell lines and squamous cell carcinomas of the oral cavity. J Oral Pathol Med 2002; 31:385-94. [PMID: 12165056 DOI: 10.1034/j.1600-0714.2002.00108.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Beta-catenin, an E-cadherin-associated protein involved in cell-cell adhesion and signaling, has been hypothesized to translocate to the nucleus and activate transcription in several human cancers, including oral squamous cell carcinomas (OSCC). METHODS In the present study, we analyzed the subcellular localization of beta-catenin in cultures of human oral normal and malignant (cell lines SCC15 and SCC25) keratinocytes and in 24 frozen samples of oral squamous cell carcinomas by a double-staining technique for nucleic acids and beta-catenin. Growth potential, as assessed by cell count at different time periods, was established for normal, SCC15 and SCC25 cell lines; oral squamous cell carcinomas were classified according to the histopathological and malignancy indexes. RESULTS Beta-catenin localized at the plasma membrane in the normal and SCC15 cells, not in the SCC25 cells, where it localized mostly in the perinuclear and nuclear areas. In the growth assays, SCC25 cell lines proliferated faster than in normal and SCC15 cells over a period of 6 days (cell numbers were significantly different, P < 0.0001). Carcinoma sections showed a combination of membranous, cytoplasmic and, in few invading epithelial islands of two tumors, nuclear localization of beta-catenin. CONCLUSIONS In oral squamous cell carcinomas, nuclear beta-catenin staining was observed only within invading islands of two carcinomas deep in the underlying connective tissue. On the basis of this study, we conclude that intranuclear beta-catenin does not appear to be a common finding in oral squamous cell carcinomas and that a clear association between intranuclear beta-catenin and histopathological and malignancy indexes in vivo could not be established.
Collapse
Affiliation(s)
- Alberto Gasparoni
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Henderson BR, Galea M, Schuechner S, Leung L. Lymphoid enhancer factor-1 blocks adenomatous polyposis coli-mediated nuclear export and degradation of beta-catenin. Regulation by histone deacetylase 1. J Biol Chem 2002; 277:24258-64. [PMID: 11986304 DOI: 10.1074/jbc.m110602200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oncogenic protein beta-catenin is overexpressed in many cancers, frequently accumulating in nuclei where it forms active complexes with lymphoid enhancer factor-1 (LEF-1)/T-cell transcription factors, inducing genes such as c-myc and cyclin D1. In normal cells, nuclear beta-catenin levels are controlled by the adenomatous polyposis coli (APC) protein through nuclear export and cytoplasmic degradation. Transient expression of LEF-1 is known to increase nuclear beta-catenin levels by an unknown mechanism. Here, we show that APC and LEF-1 compete for nuclear beta-catenin with opposing consequences. APC can export nuclear beta-catenin to the cytoplasm for degradation. In contrast, LEF-1 anchors beta-catenin in the nucleus by blocking APC-mediated nuclear export. LEF-1 also prevented the APC/CRM1-independent nuclear export of beta-catenin as revealed by in vitro assays. Importantly, LEF-1-bound beta-catenin was protected from degradation by APC and axin in SW480 colon cancer cells. The ability of LEF-1 to trap beta-catenin in the nucleus was down-regulated by histone deacetylase 1, and this correlated with a decrease in LEF1 transcription activity. Our findings identify LEF-1 as key regulator of beta-catenin nuclear localization and stability and suggest that overexpression of LEF-1 in colon cancer and melanoma cells may contribute to the accumulation of oncogenic beta-catenin in the nucleus.
Collapse
Affiliation(s)
- Beric R Henderson
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, New South Wales 2145, Australia.
| | | | | | | |
Collapse
|
108
|
Weng Z, Xin M, Pablo L, Grueneberg D, Hagel M, Bain G, Müller T, Papkoff J. Protection against anoikis and down-regulation of cadherin expression by a regulatable beta-catenin protein. J Biol Chem 2002; 277:18677-86. [PMID: 11904289 DOI: 10.1074/jbc.m105331200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
beta-Catenin signaling plays a key role in a variety of cellular contexts during embryonic development and tissue differentiation. Aberrant beta-catenin signaling has also been implicated in promoting human colorectal carcinomas as well as a variety of other cancers. To study the molecular and cellular biological functions of beta-catenin in a controlled fashion, we created a regulatable form of activated beta-catenin by fusion to a modified estrogen receptor (ER) ligand binding domain (G525R). Transfection of tissue culture cells with expression vectors encoding this hybrid protein allows the signal transduction function of beta-catenin to be induced by the synthetic estrogen, 4-hydroxytamoxifen, leading to regulated activation of a beta-catenin-lymphocyte enhancer-binding factor-dependent reporter gene as well as induction of endogenous cyclin D1 expression. The activation of ER-beta-catenin signaling rescues RK3E cells from anoikis and correlates with an increased phosphorylation of mitogen-activated protein kinase. The inhibition of anoikis by ER-beta-catenin can be abolished by a mitogen-activated protein kinase pathway inhibitor, PD98059. Evidence is also provided to show that ER-beta-catenin down-regulates cadherin protein levels. These findings support a key role for activated beta-catenin signaling in processes that contribute to tumor formation and progression.
Collapse
Affiliation(s)
- Zhigang Weng
- Cambridge Genomics Center, Aventis Pharmaceuticals, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L, Gemmill RM, Drabkin HA, Franklin WA. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol 2002; 20:2417-28. [PMID: 12011119 DOI: 10.1200/jco.2002.08.159] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE E-cadherin (E-cad) and its associated intracellular molecules, catenins, are critical for intercellular epithelial adhesion and are often expressed in non-small-cell lung carcinomas (NSCLCs). We constructed tissue microarrays (TMAs) to investigate the expression of cadherins and catenins and their prognostic significance in NSCLC. PATIENTS AND METHODS Tumor tissue samples from 193 patients with stages I to III NSCLC were obtained from the University of Colorado Cancer Center and Johns Hopkins Medical Institutions. Viable tumor was sampled in triplicate for the TMAs, and slides were stained by immunohistochemistry with antibodies against E-cad, N-cadherin, alpha (alpha)-, beta (beta)-, and gamma (gamma)-catenin, p120, p27, and adenomatous polyposis coli (APC) gene product. Clinical data were collected by the tumor registries. Patients were followed for a median period of 51 months (range, 18 to 100 months). RESULTS Absent or severely reduced membranous expression for E-cad, alpha-, beta-, and gamma-catenin, and p120 were observed in 10%, 17%, 8%, 31%, and 61% of the cases, respectively. Tumor cell dedifferentiation correlated with reduced expression for E-cad, beta-catenin, gamma-catenin, and p120 in squamous cell carcinomas but not in adenocarcinomas. There was an inverse correlation between nodal metastasis and expression of E-cad and gamma-catenin. Besides the traditional clinical prognostic variables, E-cad and alpha-, beta-, and gamma-catenin expression were of positive prognostic value in univariate survival analyses. In multivariate analysis, E-cad expression was the only independent prognostic factor for survival in addition to age, node status, tumor status, and pathologic surgical margins. CONCLUSION Reduced expression of E-cad and catenins is associated with tumor cell dedifferentiation, local invasion, regional metastasis, and reduced survival in NSCLC. E-cad is an independent prognostic factor for NSCLC survival.
Collapse
Affiliation(s)
- R M Bremnes
- Department of Pathology, Division of Medical Oncology, University of Colorado Cancer Center, Denver, CO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Bremnes RM, Veve R, Hirsch FR, Franklin WA. The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 2002; 36:115-24. [PMID: 11955645 DOI: 10.1016/s0169-5002(01)00471-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung cancer is the most common cause of cancer deaths in the western world. Progress in treatment results has been limited, and the prognosis is poor with a 5-year survival less than 15%. Based on new developments in molecular biology, our knowledge about lung carcinogenesis and mechanisms for invasion and metastasis has expanded and may in the future lead to more specific targeted therapies and better prognosis. The E-cadherin-catenin complex is critical for intercellular adhesiveness and maintenance of normal and malignant tissue architecture. Reduced expression of this complex in malignant disease is associated with tumour invasion, metastasis, and unfavorable prognosis. METHODS This review is based on search in the Medline database from 1991 to 2001. We have reviewed the relevance of the E-cadherin-catenin adhesion complex in malignancy in general and lung cancer in particular. Furthermore, its role as target for specific therapy is discussed. RESULTS Available data indicate that alterations of proteins involved in the E-cadherin-catenin complex are early incidents in cancer development. Reduced or altered expression of one or more of the components in this complex is associated with extended invasive and progressive behavior of cancer cells. Consistently, the E-cadherin-catenin complex appears to be increasingly delicate with regard to cancer prognosis. beta-Catenin, one of the components of the adhesion complex, also plays a significant role in cell signal transduction, gene activation, apoptosis inhibition, and increased cellular proliferation and migration. CONCLUSION Inactivation of the E-cadherin-catenin adhesion complex, induced by genetic and epigenetic events, plays a significant role in multistage carcinogenesis, and seems to be associated with dedifferentiation, local invasion, regional metastasis, and reduced survival in lung cancer.
Collapse
Affiliation(s)
- Roy M Bremnes
- Department of Pathology, University of Colorado Cancer Center, Denver, USA.
| | | | | | | |
Collapse
|
111
|
Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z. Linking beta-catenin to androgen-signaling pathway. J Biol Chem 2002; 277:11336-44. [PMID: 11792709 DOI: 10.1074/jbc.m111962200] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The androgen-signaling pathway is important for the growth and progression of prostate cancer cells. The growth-promoting effects of androgen on prostate cells are mediated mostly through the androgen receptor (AR). There is increasing evidence that transcription activation by AR is mediated through interaction with other cofactors. beta-Catenin plays a critical role in embryonic development and tumorigenesis through its effects on E-cadherin-mediated cell adhesion and Wnt-dependent signal transduction. Here, we demonstrate that a specific protein-protein interaction occurs between beta-catenin and AR. Unlike the steroid hormone receptor coactivator 1 (SRC1), beta-catenin showed a strong interaction with AR but not with other steroid hormone receptors such as estrogen receptor alpha, progesterone receptor beta, and glucocorticoid receptor. The ligand binding domain of AR and the NH(2) terminus combined with the first six armadillo repeats of beta-catenin were shown to be necessary for the interaction. Through this specific interaction, beta-catenin augments the ligand-dependent activity of AR in prostate cancer cells. Moreover, expression of E-cadherin in E-cadherin-negative prostate cancer cells results in redistribution of the cytoplasmic beta-catenin to the cell membrane and reduction of AR-mediated transcription. These data suggest that loss of E-cadherin can elevate the cellular levels of beta-catenin in prostate cancer cells, which may directly contribute to invasiveness and a more malignant tumor phenotype by augmenting AR activity during prostate cancer progression.
Collapse
Affiliation(s)
- Fajun Yang
- Department of Surgery and Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5328, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Mason MD, Davies G, Jiang WG. Cell adhesion molecules and adhesion abnormalities in prostate cancer. Crit Rev Oncol Hematol 2002; 41:11-28. [PMID: 11796229 DOI: 10.1016/s1040-8428(01)00171-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer, the leading male cancer in Western countries, has accelerated in its incidence in the past decade. Patients with prostate cancer frequently have a poor prognosis as a result of local or distant spread of cancer. This review summarises some of the recent progress made in understanding the biology of cancer metastasis with a special emphasis on the role of cell adhesion molecules and adhesion abnormalities. The molecular and cellular function of cell adhesion molecules, their role in cancer and cancer progression, the clinical impact of these molecules, and therapeutic considerations are also discussed.
Collapse
Affiliation(s)
- Malcolm D Mason
- Department of Clinical Oncology, University of Wales College of Medicine, Health Park, Cardiff, UK.
| | | | | |
Collapse
|
113
|
Abstract
Molecular genetic analysis of colon cancers has established that the Wnt signaling pathway is involved in early tumor development. Mutation of midstream components can activate the pathway, making it independent of Wnt ligands and maintaining constant pressure to change target gene expression. The transcription factors that connect the pathway to target genes are members of the lymphoid enhancer factor/T-cell factor (LEF/TCF) family. The genes for two members of this family, TCF 7 and LEF 1, produce full-length forms that mediate Wnt signals and truncated dominant negative forms that limit Wnt signals and may function as growth suppressors. Results from studies of their expression in colon cancer suggests that because Wnt-linked cancers progress to malignancy, there may be a strengthening of the Wnt signal by selective expression of the activating forms of LEF/TCFs and a bias against suppressing, truncated forms.
Collapse
Affiliation(s)
- Marian L Waterman
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, Irvine, California 92697, USA.
| |
Collapse
|
114
|
Tutter AV, Fryer CJ, Jones KA. Chromatin-specific regulation of LEF-1-beta-catenin transcription activation and inhibition in vitro. Genes Dev 2001; 15:3342-54. [PMID: 11751639 PMCID: PMC312851 DOI: 10.1101/gad.946501] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transcriptional activation of Wnt/Wg-responsive genes requires the stabilization and nuclear accumulation of beta-catenin, a dedicated coactivator of LEF/TCF enhancer-binding proteins. Here we report that recombinant beta-catenin strongly enhances binding and transactivation by LEF-1 on chromatin templates in vitro. Interestingly, different LEF-1 isoforms vary in their ability to bind nucleosomal templates in the absence of beta-catenin, owing to N-terminal residues that repress binding to chromatin, but not nonchromatin, templates. Transcriptional activation in vitro requires both the armadillo (ARM) repeats and the C terminus of beta-catenin, whereas the phosphorylated N terminus is inhibitory to transcription. A fragment spanning the C terminus (CT) and ARM repeats 11 and 12 (CT-ARM), but not the CT alone, functions as a dominant negative inhibitor of LEF-1-beta-cat activity in vitro and can block ATP-dependent binding of the complex to chromatin. LEF-1-beta-cat transactivation in vitro was also repressed by inhibitor of beta-catenin and Tcf-4 (ICAT), a physiological inhibitor of Wnt/Wg signaling that interacts with ARM repeats 11 and 12, and by the nonsteroidal anti-inflammatory compound, sulindac. None of these transcription inhibitors (CT-ARM, ICAT, or sulindac) could disrupt the LEF-1-beta-cat complex after it was stably bound to chromatin. We conclude that the CT-ARM region of beta-catenin functions as a chromatin-specific activation domain, and that several inhibitors of the Wnt/Wg pathway directly modulate LEF-1-beta-cat activity on chromatin.
Collapse
Affiliation(s)
- A V Tutter
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
115
|
Hollmann CA, Kittrell FS, Medina D, Butel JS. Wnt-1 and int-2 mammary oncogene effects on the beta-catenin pathway in immortalized mouse mammary epithelial cells are not sufficient for tumorigenesis. Oncogene 2001; 20:7645-57. [PMID: 11753642 DOI: 10.1038/sj.onc.1204980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Revised: 08/22/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022]
Abstract
Development of strategies for prevention of breast cancer development requires an understanding of the effects of mammary oncogenes on mammary cells at early stages in neoplastic transformation. As mammary oncogenes wnt-1 and int-2 affect different signal transduction pathways, we investigated their effects on established mouse mammary epithelial cell lines (MMECLs) reflecting early stages in tumorigenesis. Normal interactions between beta-catenin and E-cadherin were abrogated in all three immortalized MMECLs and the cells lacked beta-catenin-mediated transactivation activity, detectable using a reporter assay, suggesting that alterations in cell adhesion may be very early events in mammary tumorigenesis. Immortalized FSK4 and EL12 cells and hyperplastic TM3 cells were stably transfected with expression vectors encoding wnt-1 or int-2 or the control vector, and drug-selected pooled cells from each line were confirmed by reverse transcription-polymerase chain reaction to express the transfected oncogene; this expression persisted in the cells analysed in vitro and in vivo. Resultant phenotypic changes depended both on the oncogene and the target mammary cell line. In FSK4 cells, expression of wnt-1 or int-2 resulted in proliferative changes in vitro, including reduced contact inhibition, increased beta-catenin expression, and decreased p53 transcriptional activity, but neither oncogene conferred upon those cells the ability to produce tumors in vivo. EL12 cells were highly refractory to the effects of both oncogenes, with the only measurable changes being increased E-cadherin levels induced by both oncogenes and increased proliferation of the int-2-transfected cells in the absence of serum. Parental TM3 cells were phenotypically similar to wnt-1- or int-2-transfected FSK4 cells and displayed an increased rate of proliferation in vitro and markedly increased tumorigenicity in vivo following transfection with int-2 but not with wnt-1. These results suggest that wnt-1 signaling is redundant in the hyperplastic TM3 cells and indicate that wnt-1-induced effects in the immortalized FSK4 and EL12 cells were not sufficient to mediate a tumorigenic phenotype. This study showed that the wnt-1 and int-2 oncogenes have similar but distinguishable effects on immortalized MMECLs and that the genetic background of the mammary cells greatly influences the consequences of oncogene expression at early stages of cell transformation.
Collapse
Affiliation(s)
- C A Hollmann
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
116
|
Murakami T, Toda S, Fujimoto M, Ohtsuki M, Byers HR, Etoh T, Nakagawa H. Constitutive activation of Wnt/beta-catenin signaling pathway in migration-active melanoma cells: role of LEF-1 in melanoma with increased metastatic potential. Biochem Biophys Res Commun 2001; 288:8-15. [PMID: 11594745 DOI: 10.1006/bbrc.2001.5719] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A constitutive complex of beta-catenin and LEF-1 has been detected in melanoma cell lines expressing either mutant beta-catenin or mutant APC (Rubinfeld et al., Science, 275, 1790-1792, 1997). However, it has been recently reported that beta-catenin mutations are rare in primary malignant melanoma, but its nuclear and/or cytoplasmic localization, a potential indicator of Wnt/beta-catenin pathway activation, is frequently observed in melanoma (Rimm et al., Am. J. Pathol., 154, 325-329, 1999). In human malignant melanoma, the appearance of the tumorigenic phase represents a capacity for metastasis and is the significant phenotypic step in disease progression. Cell motility in invasive melanoma is thought to play a crucial role in metastatic behavior. In this work, we sought to determine which transcription factor of the LEF/TCF family was preferentially involved in human melanoma from different stages of tumor progression. We show that LEF-1 mRNA expression is predominant in highly migrating cells from metastatic melanomas. These actively migrating melanoma cells showed nuclear and cytoplasmic accumulation of beta-catenin and active transcription from a reporter plasmid of the LEF/TCF binding site. These results may provide a new insight into the role of the Wnt/beta-catenin signaling pathway in the tumor progression of malignant melanoma.
Collapse
Affiliation(s)
- T Murakami
- Department of Dermatology, Jichi Medical School, 3311-1 Yakushiji, Minamikawachi-machi, Kawachi-gun, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
117
|
Lo Muzio L, Pannone G, Staibano S, Mignogna MD, Rubini C, Ruocco E, De Rosa G, Sciubba JJ. A possible role of catenin dyslocalization in pemphigus vulgaris pathogenesis. J Cutan Pathol 2001; 28:460-9. [PMID: 11553312 DOI: 10.1034/j.1600-0560.2001.028009460.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is an autoimmune blistering disease of the skin and mucosa due to the presence of autoantibodies against the components of desmosomes. To date, less is known about the expression levels of beta- and gamma-catenins in blistering diseases. The objective of this study was to evaluate the role of beta- and gamma-catenins in the pathogenesis of acantholysis in pemphigus vulgaris. METHODS beta- and gamma-catenin expression was evaluated by immunohistochemistry in 30 cases of PV at various stages of the disease and, as controls, in 18 specimens of the skin/oral mucosa of healthy patients. RESULTS Healthy skin and normal oral mucosa showed a strong beta- and gamma-catenin expression in basal and spinous layers with a prevalent cellular membrane distribution; the intensity of staining progressively decreased toward the superficial layers of epithelium. In PV patients, cytoplasmic expression of gamma-catenin was detected in 28/30 cases, and in 19/30 cases of PV for beta-catenin. Moreover, a progressive displacement of the signal toward the nucleus was found in 14/30 cases for beta-catenin, with dyslocalization toward the nucleus, particularly in areas with intense acantholysis, and in 22/30 cases of PV for gamma-catenin. CONCLUSIONS Abnormal distribution of gamma-catenin, consequent to PV IgG, may be considered a direct consequence of Dg3 dissociation from catenin. gamma-catenin likely plays a direct role in PV pathogenesis through its dyslocalization toward the nucleus or indirectly through the beta-catenin dyslocalization toward the nucleus, which is thought to induce transcription of selected target genes, such as uPAR.
Collapse
Affiliation(s)
- L Lo Muzio
- Institute of Dental Sciences, University of Ancona, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Stockinger A, Eger A, Wolf J, Beug H, Foisner R. E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J Cell Biol 2001; 154:1185-96. [PMID: 11564756 PMCID: PMC2150811 DOI: 10.1083/jcb.200104036] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 07/25/2001] [Accepted: 08/07/2001] [Indexed: 01/02/2023] Open
Abstract
beta-Catenin is essential for E-cadherin-mediated cell adhesion in epithelial cells, but it also forms nuclear complexes with high mobility group transcription factors. Using a mouse mammary epithelial cell system, we have shown previously that conversion of epithelial cells to a fibroblastoid phenotype (epithelial-mesenchymal transition) involves downregulation of E-cadherin and upregulation of beta-catenin transcriptional activity. Here, we demonstrate that transient expression of exogenous E-cadherin in both epithelial and fibroblastoid cells arrested cell growth or caused apoptosis, depending on the cellular E-cadherin levels. By expressing E-cadherin subdomains, we show that the growth-suppressive effect of E-cadherin required the presence of its cytoplasmic beta-catenin interaction domain and/or correlated strictly with the ability to negatively interfere with beta-catenin transcriptional activity. Furthermore, coexpression of beta-catenin or lymphoid enhancer binding factor-1 or T cell factor 3 with E-cadherin rescued beta-catenin transcriptional activity and counteracted E-cadherin-mediated cell cycle arrest. Stable expression of E-cadherin in fibroblastoid cells decreased beta-catenin activity and reduced cell growth. Since proliferating cells had a higher beta-catenin activity than G1 phase-arrested or contact-inhibited cells, we conclude that beta-catenin transcriptional activity is essential for cell proliferation and can be controlled by E-cadherin in a cell adhesion-independent manner.
Collapse
Affiliation(s)
- A Stockinger
- Department of Biochemistry and Molecular Cell Biology, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
119
|
Lo Muzio L. A possible role for the WNT-1 pathway in oral carcinogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:152-65. [PMID: 11345525 DOI: 10.1177/10454411010120020501] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reductions in cell-cell adhesion and stromal and vascular invasion are essential steps in the progression from localized malignancy to metastatic disease for all cancers. Proteins involved in intercellular adhesion, such as E-cadherin and catenin, probably play an important role in metastatic processes and cellular differentiation. While E-cadherin and beta-catenin expression has been extensively studied in many forms of human cancers, less is known about the role of the Wingless-Type-1 (WNT-1) pathway in human tumors. A large body of genetic and biochemical evidence has identified beta-catenin as a key downstream component of the WNT signaling pathway, and recent studies of colorectal tumors have shown a functional link among beta-catenin, adenomatous polyposis coli gene product (APC), and other components of the WNT-1 pathway. WNT-1 pathway signaling is thought to be mediated via interactions between beta-catenin and members of the LEF-1/TCF family of transcription factors. The WNT signal stabilizes beta-catenin protein and promotes its accumulation in the cytoplasm and nucleus. In the nucleus, beta-catenin associates with TCF to form a functional transcription factor which mediates the transactivation of target genes involved in the promotion of tumor progression, invasion, and metastasis, such as C-Myc, cyclin D1, c-jun, fra-1, and u-PAR. There is a strong correlation between the ability of the WNT-1 gene to induce beta-catenin accumulation and its transforming potential in vivo, suggesting that the WNT-1 gene activates an intracellular signaling pathway that can induce the morphological transformation of cells. For these reasons, data obtained from the study of the WNT-1 pathway could be important in our understanding of the mechanisms of epithelial tumors, in general, and probably also of oral squamous cell carcinoma, in particular.
Collapse
Affiliation(s)
- L Lo Muzio
- Institute of Dental Sciences, University of Ancona, Italy.
| |
Collapse
|
120
|
Morali OG, Delmas V, Moore R, Jeanney C, Thiery JP, Larue L. IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 2001; 20:4942-50. [PMID: 11526479 DOI: 10.1038/sj.onc.1204660] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Revised: 05/04/2001] [Accepted: 05/23/2001] [Indexed: 11/08/2022]
Abstract
The epithelium to mesenchyme transition is thought to play a fundamental role during embryonic development and tumor progression. Loss of cell-cell adhesion and modification of both cell morphology and gene expression are the main events associated with this transition. There is a large amount of evidence suggesting that growth factors can initiate these events. Yet, the connection from growth factor induction to changes in cell adhesion and morphology is largely unknown. To elucidate this connection, we have investigated the action of IGF-II on E-cadherin/beta-catenin complex-mediated cell-cell adhesion and on beta-catenin/TCF-3 mediated gene expression. We can show that (1) IGF-II induces a rapid epithelium to mesenchymal transition; (2) IGF1R, the receptor for IGF-II, belongs to the same membrane complex as E-cadherin and beta-catenin; (3) IGF-II induces a redistribution of beta-catenin from the plasma membrane to the nucleus and an intracellular sequestration and degradation of E-cadherin; (4) IGF-II induces the transcription of beta-catenin/TCF-3 target genes. Based on the given case of IGF-II and E-cadherin/beta-catenin complex, this study reveals the backbone of a cascade connecting growth factor signaling with cell-cell adhesion during EMT.
Collapse
Affiliation(s)
- O G Morali
- Developmental Genetics of Melanocytes, UMR 146 CNRS-Institut Curie, Bat. 110, 91405, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
121
|
Adam L, Vadlamudi RK, McCrea P, Kumar R. Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/beta -catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J Biol Chem 2001; 276:28443-50. [PMID: 11328805 DOI: 10.1074/jbc.m009769200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heregulin-beta1 (HRG) promotes motility, scattering, and invasiveness of breast cancer cells. Tiam1, a newly identified guanine nucleotide exchange factor, has been shown to inhibit or promote cell migration in a cell type-dependent manner. In this study, we identified Tiam1 as a target of HRG signaling. HRG stimulation of breast cancer epithelial cells induced the phosphorylation and redistribution of Tiam1 to the membrane ruffles and the loosening of intercellular junctions. In addition, HRG-mediated scattering of breast epithelial cells was accompanied by stimulation of tyrosine phosphorylation and redistribution of beta-catenin from the cell junctions to the cytosol and, finally, entry into the nucleus. Decompaction of breast cancer epithelial cells by HRG was accompanied by a transient physical association of the tyrosine-phosphorylated beta-catenin with the activated human epidermal growth factor receptor 2 and subsequent nuclear translocation of beta-catenin, as well as beta-catenin-dependent transactivation of T-cell factor.lymphoid enhancer factor-1. All of these HRG-induced phenotypic changes were regulated in a phosphatidylinositol-3 kinase-sensitive manner. HRG-induced cellular ruffles, loss of intercellular adhesiveness, and increased cell migration could be mimicked by overexpression of a fully functional Tiam1 construct. Furthermore, ectopic expression of Tiam1 or of an active beta-catenin mutant led to potentiation of the beta-catenin-dependent T-cell factor.lymphoid enhancer factor-1 transactivation and invasiveness of HRG-treated cells. We also found preliminary evidence suggesting a close correlation between the status of Tiam1 expression and invasiveness of human breast tumor cells with the degree of progression of breast tumors. Together, these findings suggest that HRG regulate Tiam1 activation and lymphoid enhancer factor/beta-catenin nuclear signaling via phosphatidylinositol-3 kinase in breast cancer cells.
Collapse
Affiliation(s)
- L Adam
- University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
122
|
Eleftheriou A, Yoshida M, Henderson BR. Nuclear export of human beta-catenin can occur independent of CRM1 and the adenomatous polyposis coli tumor suppressor. J Biol Chem 2001; 276:25883-8. [PMID: 11337505 DOI: 10.1074/jbc.m102656200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Catenin is a mediator of the Wnt-signaling pathway. In many cancers, beta-catenin is stabilized and accumulates in the nucleus where it associates with lymphoid-enhancing factor 1/ T-cell transcription factors to activate genes involved in cell transformation. Previously, we showed that adenomatous polyposis coli (APC) protein can regulate beta-catenin localization by nuclear export. In this study, we used in vitro transport assays to test whether cellular beta-catenin can exit the nucleus independent of APC and the CRM1 export receptor. In digitonin-permeabilized SW480 (APC(mut/mut)) tumor cells, nuclear beta-catenin decreased >60% in export reactions in the absence of exogenous factors. Under similar conditions, nuclear c-ABL was only exported after the addition of cytosolic extract, and the export was blocked by the CRM1-specific inhibitor, leptomycin B. The nuclear export of beta-catenin was not blocked by leptomycin B treatment, revealing a CRM1- and APC-independent pathway. The export of beta-catenin was sensitive to lower temperatures and the removal of ATP, indicating an active process. Ectopically expressed yellow fluorescent protein-beta-catenin also displayed CRM1-independent export. Conversely, the overexpression of the CRM1 transporter moderately stimulated export of nuclear beta-catenin, confirming that beta-catenin exits the nucleus by at least two distinct pathways. The shuttling ability of tumor cell beta-catenin has implications for its regulation and its role in transferring signals between the nucleus and plasma membrane.
Collapse
Affiliation(s)
- A Eleftheriou
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, New South Wales 2145, Australia
| | | | | |
Collapse
|
123
|
Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, Holcombe RF, Waterman ML. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 2001; 28:53-7. [PMID: 11326276 DOI: 10.1038/ng0501-53] [Citation(s) in RCA: 314] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Constitutive activation of the Wnt signaling pathway is a root cause of many colon cancers. Activation of this pathway is caused by genetic mutations that stabilize the beta-catenin protein, allowing it to accumulate in the nucleus and form complexes with any member of the lymphoid enhancer factor (LEF1) and T-cell factor (TCF1, TCF3, TCF4) family of transcription factors (referred to collectively as LEF/TCFs) to activate transcription of target genes. Target genes such as MYC, CCND1, MMP7 and TCF7 (refs. 5-9) are normally expressed in colon tissue, so it has been proposed that abnormal expression levels or patterns imposed by beta-catenin/TCF complexes have a role in tumor progression. We report here that LEF1 is a new type of target gene ectopically activated in colon cancer. The pattern of this ectopic expression is unusual because it derives from selective activation of a promoter for a full-length LEF1 isoform that binds beta-catenin, but not a second, intronic promoter that drives expression of a dominant-negative isoform. beta-catenin/TCF complexes can activate the promoter for full-length LEF1, indicating that in cancer high levels of these complexes misregulate transcription to favor a positive feedback loop for Wnt signaling by inducing selective expression of full-length, beta-catenin-sensitive forms of LEF/TCFs.
Collapse
Affiliation(s)
- K Hovanes
- Microbiology and Molecular Genetics Department, University of California, Irvine, Irvine, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Tutter A, McAlpine GS, Jones KA. Mechanism of chromatin recognition and transcriptional regulation by LEF-1 and the Wnt/Wg-responsive LEF-1:beta-catenin complex. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:445-52. [PMID: 11232320 DOI: 10.1101/sqb.1999.64.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A Tutter
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037-1099, USA
| | | | | |
Collapse
|
125
|
Abstract
E-cadherin and its adhesion complex play an essential role in the adhesion of breast cancer cells and tissues. Members of the complex, such as beta-catenin, act as regulators on cell adhesion, and are involved in cell signalling and transcription regulation. The adhesion complex is a known structure in the control of tumour progression and metastasis. Recent years have seen a rapid expansion in the understanding of the biology and clinical relevance of the complex in breast cancer. The current article summarises recent progresses in the molecular/cellular biology of E-cadherin and its complex and the clinical, diagnostic, prognostic, and therapeutic value of this complex in breast cancer.
Collapse
Affiliation(s)
- W G Jiang
- Metastasis Research Group, University Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff, Wales CF14 4XN, UK.
| | | |
Collapse
|
126
|
Bauer A, Chauvet S, Huber O, Usseglio F, Rothbächer U, Aragnol D, Kemler R, Pradel J. Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 2000; 19:6121-30. [PMID: 11080158 PMCID: PMC305835 DOI: 10.1093/emboj/19.22.6121] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In Wnt-stimulated cells, beta-catenin becomes stabilized in the cytoplasm, enters the nucleus and interacts with HMG box transcription factors of the lymphoid-enhancing factor-1 (LEF-1)/T-cell factor (TCF) family, thereby stimulating the transcription of specific target genes. We recently identified Pontin52 as a nuclear protein interacting with beta-catenin and the TATA-box binding protein (TBP), suggesting its involvement in regulating beta-catenin-mediated transactivation. Here, we report the identification of Reptin52 as an interacting partner of Pontin52. Highly homologous to Pontin52, Reptin52 likewise binds beta-catenin and TBP. Using reporter gene assays, we show that the two proteins antagonistically influence the transactivation potential of the beta-catenin-TCF complex. Furthermore, we demonstrate the evolutionary conservation of this mechanism in Drosophila. dpontin and dreptin are essential genes that act antagonistically in the control of Wingless signalling in vivo. These results indicate that the opposite action of Pontin52 and Reptin52 on beta-catenin-mediated transactivation constitutes an additional mechanism for the control of the canonical Wingless/Wnt pathway.
Collapse
Affiliation(s)
- A Bauer
- Max-Planck Institute of Immunobiology, Department of Molecular Embryology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Affiliation(s)
- P Polakis
- Department of Molecular Oncology, Genentech Inc., South San Francisco, California 94080 USA.
| |
Collapse
|
128
|
Kuhnen C, Herter P, Müller O, Muehlberger T, Krause L, Homann H, Steinau HU, Müller KM. Beta-catenin in soft tissue sarcomas: expression is related to proliferative activity in high-grade sarcomas. Mod Pathol 2000; 13:1005-13. [PMID: 11007041 DOI: 10.1038/modpathol.3880181] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides its role in cell adhesion, beta-catenin exerts a function as an oncoprotein. The aim of this study was the characterization of its expression, possible mutation, and the assessment of beta-catenin as a prognostic indicator for soft tissue sarcomas. A total of 115 soft tissue sarcomas were analyzed using immunohistochemistry, immunogold-electron microscopy, and DNA analysis. Information from 56 patients was available for follow-up. A statistically significant correlation was found between intracellular distribution of beta-catenin and the proliferative activity (MIB-1 expression) in high-grade sarcomas (P = .0008). Beta-catenin was identified with intracytoplasmic and nuclear accumulation, showing additional membranous staining in sarcomas with epithelioid pattern. Ultrastructurally, a colocalization between beta-catenin and nuclear heterochromatin was demonstrated. In 22 analyzed tumors, only one (yet undescribed) mutation of the beta-catenin gene (C-A transversion) could be detected. Prognostic validity of the cellular expression of beta-catenin, however, was not proven. Apart from its membranous function as an effective molecule for cell-adhesion in sarcomas with epithelioid pattern, beta-catenin may act as an oncoprotein in sarcomas with intracytoplasmic and nuclear localization with binding to nuclear DNA. A previously discussed stimulation of cell proliferation caused by an increased beta-catenin level can also be postulated for high-grade soft tissue sarcomas in correlation with the rate of proliferation. Mutations of the beta-catenin gene are probably of lesser importance for the accumulation of beta-catenin in soft tissue sarcomas.
Collapse
Affiliation(s)
- C Kuhnen
- Institute for Pathology, Limb Tumor Registry, University Hospital Bergmannsheil, Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2000; 2:653-60. [PMID: 10980707 DOI: 10.1038/35023605] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutational inactivation of the APC gene is a key early event in the development of familial adenomatous polyposis and colon cancer. APC suppresses tumour progression by promoting degradation of the oncogenic transcriptional activator beta-catenin. APC gene mutations can lead to abnormally high levels of beta-catenin in the nucleus, and the consequent activation of transforming genes. Here, we show that APC is a nuclear-cytoplasmic shuttling protein, and that it can function as a beta-catenin chaperone. APC contains two active nuclear export sequences (NES) at the amino terminus, and mutagenesis of these conserved motifs blocks nuclear export dependent on the CRM1 export receptor. Treatment of cells with the CRM1-specific export inhibitor leptomycin B shifts APC from cytoplasm to nucleus. beta-catenin localization is also regulated by CRM1, but in an APC-dependent manner. Transient expression of wild-type APC in SW480 (APCmut/mut) colon cancer cells enhances nuclear export and degradation of beta-catenin, and these effects can be blocked by mutagenesis of the APC NES. These findings suggest that wild-type APC controls the nuclear accumulation of beta-catenin by a combination of nuclear export and cytoplasmic degradation.
Collapse
Affiliation(s)
- B R Henderson
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millenium Institute, Westmead NSW 2145, Australia.
| |
Collapse
|
130
|
Roth W, Wild-Bode C, Platten M, Grimmel C, Melkonyan HS, Dichgans J, Weller M. Secreted Frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene 2000; 19:4210-20. [PMID: 10980594 DOI: 10.1038/sj.onc.1203783] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular resistance to multiple proapoptotic stimuli and invasion of surrounding brain tissue by migrating tumor cells are main obstacles to an effective therapy for human malignant glioma. Here, we report that the Wnt family of embryonic differentiation genes modulate growth of malignant glioma cells in vitro and in vivo and inhibit cellular migration in vitro. sFRPs (soluble Frizzled-related proteins) are soluble proteins that bind to Wnt and interfere with Wnt signaling. We find that sFRP-1 and sFRP-2 are produced by the majority of longterm and ex vivo malignant glioma cell lines. Glioma cells that ectopically express sFRPs exhibit increased clonogenicity and enhanced resistance to serum starvation. In contrast, sFRPs do not modulate glioma cell susceptibility to apoptosis induced by the cytotoxic cytokines, CD95 (Fas/APO-1) ligand (CD95L) or Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL), or various cytotoxic drugs. sFRP-2 strongly promotes the growth of intracranial glioma xenografts in nude mice. In contrast, enhanced expression of sFRPs inhibits the motility of glioma cells in vitro. sFRP-mediated effects on glioma cells are accompanied by decreased expression and activity of matrix metalloproteinase-2 (MMP-2) and decreased tyrosine phosphorylation of beta-catenin. Thus, sFRPs promote survival under non-supportive conditions and inhibit the migration of glioma cells. We suggest that the regulation of these cellular processes involves expression of MMP-2 and tyrosine phosphorylation of beta-catenin. These data support a function for Wnt signaling and its modulation by sFRPs in the biology of human gliomas. Oncogene (2000) 19, 4210 - 4220
Collapse
Affiliation(s)
- W Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Tübingen, School of Medicine, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
BACKGROUND The E-cadherin-catenin complex plays a crucial role in epithelial cell-cell adhesion and in the maintenance of tissue architecture. Perturbation in the expression or function of this complex results in loss of intercellular adhesion, with possible consequent cell transformation and tumour progression. Recently, much progress has been made in understanding the interaction between the different components of this protein complex and how this cell-cell adhesion complex is modulated in cancer cells. METHODS This is an update of the role of the E-cadherin-catenin complex in human cancers. It emphasizes new features and the possible role of the complex in clinical practice, discussed in the light of 165 references obtained from the Medline database from 1995 to 1999. RESULTS More evidence is now appearing to suggest that disturbance in protein-protein interaction in the E-cadherin-catenin adhesion complex is one of the main events in the early and late steps of cancer development. An inverse correlation is found between expression of the E-cadherin-catenin complex and the invasive behaviour of tumour cells. Therefore, E-cadherin-catenin may become a significant prognostic marker for tumour behaviour. Besides its role in establishing tight cell-cell adhesion, beta- catenin plays a major role in cell signalling and promotion of neoplastic growth. This suggests its dual role as a tumour suppressor and as an oncogene in human cancers. CONCLUSION Recent developments show that the E-cadherin-catenin complex is more than a 'sticky molecular complex'. Further studies may yield greater insight into the early molecular interactions critical to the initiation and progression of tumours. This should aid the development of novel strategies for both prevention and treatment of cancer.
Collapse
Affiliation(s)
- B P Wijnhoven
- Departments of Surgery and Pathology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | | |
Collapse
|
132
|
Abstract
The wnt signal transduction pathway is involved in various differentiation events during embryonic development and leads to tumor formation when aberrantly activated. The wnt signal is transmitted to the nucleus by the cytoplasmic component beta-catenin: in the absence of wnts, beta-catenin is constitutively degraded in proteasomes, whereas in the presence of wnts beta-catenin is stabilized and can associate with HMG box transcription factors of the LEF/TCF family. The LEF/TCF/beta-catenin complexes activate specific wnt target genes. In tumors, beta-catenin degradation is blocked by mutations of beta-catenin or of the tumor suppressor gene product APC. As a consequence, beta-catenin is stabilized, constitutive complexes with LEF/TCF factors are formed, and oncogenic target genes, such as c-myc, cyclin D1, and c-jun, are activated. Thus, control of beta-catenin is a major regulatory event in normal wnt signaling and during tumor formation. It has been found that a multiprotein complex assembled by the cytoplasmic component conductin induces degradation of cytoplasmic beta-catenin. The complex includes APC, the serine/threonine kinase GSK3 beta, and beta-catenin, which bind to conductin at distinct domains. In colon carcinoma cells, forced expression of conductin downregulates beta-catenin, whereas in normal cells mutants of conductin that are deficient in complex formation stabilize beta-catenin. Fragments of APC that contain a conductin-binding domain also block beta-catenin degradation. In Xenopus embryos, conductin inhibits the wnt pathway. In situ hybridization analysis shows that conductin is expressed in various embryonal tissues known to be regulated by wnts, such as the developing brain, mesenchyme below the epidermis, lung mesenchyme, and kidney. It is suggested that conductin controls wnt signaling by assembling the essential components of the beta-catenin degradation pathway. Alterations of conductin function may lead to tumor formation.
Collapse
Affiliation(s)
- J Behrens
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
133
|
Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 2000; 19:1839-50. [PMID: 10775268 PMCID: PMC302022 DOI: 10.1093/emboj/19.8.1839] [Citation(s) in RCA: 451] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Wnt growth factors regulate a variety of developmental processes by altering specific gene expression patterns. In vertebrates beta-catenin acts as transcriptional activator, which is needed to overcome target gene repression by Groucho/TLE proteins, and to permit promoter activation as the final consequence of Wnt signaling. However, the molecular mechanisms of transcriptional activation by beta-catenin are only poorly understood. Here we demonstrate that the closely related acetyltransferases p300 and CBP potentiate beta-catenin-mediated activation of the siamois promoter, a known Wnt target. beta-catenin and p300 also synergize to stimulate a synthetic reporter gene construct, whereas activation of the cyclin D1 promoter by beta-catenin is refractory to p300 stimulation. Axis formation and activation of the beta-catenin target genes siamois and Xnr-3 in Xenopus embryos are sensitive to the E1A oncoprotein, a known inhibitor of p300/CBP. The C-terminus of beta-catenin interacts directly with a region overlapping the CH-3 domain of p300. p300 could participate in alleviating promoter repression imposed by chromatin structure and in recruiting the basal transcription machinery to promoters of particular Wnt target genes.
Collapse
Affiliation(s)
- A Hecht
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
134
|
Reichert M, Müller T, Hunziker W. The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem 2000; 275:9492-500. [PMID: 10734097 DOI: 10.1074/jbc.275.13.9492] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrity of cell-cell contacts such as adherens junctions (AJ) and tight junctions (TJ) is essential for the function of epithelia. During carcinogenesis, the increased motility and invasiveness of tumor cells reflect the loss of characteristic epithelial features, including cell adhesion. While beta-catenin, a component of AJ, plays a well characterized dual role in cell adhesion and signal transduction leading to epithelial cell transformation, little is known about possible roles of tight junction components in signaling processes. Here we show that mutants of the TJ protein zonula occludens protein-1 (ZO-1), which encode the PDZ domains (ZO-1 PDZ) but no longer localize at the plasma membrane, induce a dramatic epithelial to mesenchymal transition (EMT) of Madin-Darby canine kidney I (MDCKI) cells. The observed EMT of these MDCK-PDZ cells is characterized by a repression of epithelial marker genes, a restricted differentiation potential and a significantly induced tumorigenicity. Intriguingly, the beta-catenin signaling pathway is activated in the cells expressing the ZO-1 PDZ protein. Ectopic expression of the adenomatous polyposis coli tumor suppressor gene, known to down-regulate activated beta-catenin signaling, reverts the transformed fibroblastoid phenotype of MDCK-PDZ cells. Thus, cytoplasmic localization of the ZO-1 PDZ domains induces an EMT in MDCKI cells, most likely by modulating beta-catenin signaling.
Collapse
Affiliation(s)
- M Reichert
- Institute of Biochemistry, University of Lausanne, Switzerland
| | | | | |
Collapse
|
135
|
Abstract
The Wnt signal transduction pathway regulates various aspects of embryonal development and is involved in cancer formation. Wnts induce the stabilisation of cytosolic (beta)-catenin, which then associates with TCF transcription factors to regulate expression of Wnt-target genes. At various levels the Wnt pathway is subject to cross-regulation by other components. Recent evidence suggests that a specific MAP kinase pathway involving the MAP kinase kinase kinase TAK1 and the MAP kinase NLK counteract Wnt signalling. In particular, homologues of TAK1 and NLK, MOM-4 and LIT-1, negatively regulate Wnt-controlled cell fate decision in the early Caenorhabditis elegans embryo. Moreover, TAK1 activates NLK, which phosphorylates TCFs bound to (beta)-catenin. This blocks nuclear localization and DNA binding of TCFs. Since TAK1 is activated by TGF-(beta) and various cytokines, it might provide an entry point for regulation of the Wnt system by other pathways. In addition, alterations in TAK1-NLK might play a role in cancer.
Collapse
Affiliation(s)
- J Behrens
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, Germany.
| |
Collapse
|
136
|
Seidensticker MJ, Behrens J. Biochemical interactions in the wnt pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1495:168-82. [PMID: 10656974 DOI: 10.1016/s0167-4889(99)00158-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The wnt signal transduction pathway is involved in many differentiation events during embryonic development and can lead to tumor formation after aberrant activation of its components. The cytoplasmic component beta-catenin is central to the transmission of wnt signals to the nucleus: in the absence of wnts beta-catenin is constitutively degraded in proteasomes, whereas in the presence of wnts beta-catenin is stabilized and associates with HMG box transcription factors of the LEF/TCF family. In tumors, beta-catenin degradation is blocked by mutations of the tumor suppressor gene APC (adenomatous polyposis coli), or of beta-catenin itself. As a consequence, constitutive TCF/beta-catenin complexes are formed and activate oncogenic target genes. This review discusses the mechanisms that silence the pathway in cells that do not receive a wnt signal and goes on to describe the regulatory steps involved in the activation of the pathway.
Collapse
Affiliation(s)
- M J Seidensticker
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13122, Berlin, Germany
| | | |
Collapse
|
137
|
Vonica A, Weng W, Gumbiner BM, Venuti JM. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis. Dev Biol 2000; 217:230-43. [PMID: 10625549 DOI: 10.1006/dbio.1999.9551] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of animal-vegetal (AV) axis formation in the sea urchin embryo is incompletely understood. Specification of the axis is thought to involve a combination of cell-cell signals and as yet unidentified maternal determinants. In Xenopus the Wnt pathway plays a crucial role in defining the embryonic axes. Recent experiments in sea urchins have shown that at least two components of the Wnt signaling pathway, GSK3beta and beta-catenin, are involved in embryonic AV axis patterning. These results support the notion that the developmental network that regulates axial patterning in deuterostomes is evolutionarily conserved. To further test this hypothesis, we have examined the role of beta-catenin nuclear binding partners, members of the TCF family of transcriptional regulators, in sea urchin AV axis patterning. To test the role of TCFs in mediating beta-catenin signals in sea urchin AV axis development we examined the consequences of microinjecting RNAs encoding altered forms of TCF on sea urchin development. We show that expression of a dominant negative TCF results in a classic "animalized" embryo. In contrast, microinjected RNA encoding an activated TCF produces a highly "vegetalized" embryo. We show that the transactivational activity of endogenous sea urchin TCF is potentiated by LiCl treatment, which vegetalizes embryos by inhibiting GSK3, consistent with an in vivo interaction between endogenous beta-catenin and TCF. We also provide evidence indicating that all of beta-catenin's activity in patterning the sea urchin AV axis is mediated by TCF. Using a glucocorticoid-responsive TCF, we show that TCF transcriptional activity affects specification along the AV axis between fertilization and the 60-cell stage.
Collapse
Affiliation(s)
- A Vonica
- Department of Anatomy, College of Physicians and Surgeons, New York, New York, 10032, USA
| | | | | | | |
Collapse
|
138
|
Kolligs FT, Hu G, Dang CV, Fearon ER. Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 1999; 19:5696-706. [PMID: 10409758 PMCID: PMC84421 DOI: 10.1128/mcb.19.8.5696] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current models predict that beta-catenin (beta-cat) functions in Wnt signaling via activation of Tcf/Lef target genes and that its abundance is regulated by the adenomatous polyposis coli (APC) and glycogen synthase kinase 3beta (GSK3beta) proteins. In colon and other cancers, mutations in APC or presumptive GSK3beta phosphorylation sites of beta-cat are associated with constitutive activation of Tcf/Lef transcription. In spite of assumptions about its oncogenic potential, prior efforts to demonstrate that mutated beta-cat will induce neoplastic transformation have yielded equivocal results. We report here that mutated, but not wild-type, beta-cat proteins induced neoplastic transformation of RK3E, an adenovirus E1A-immortalized epithelial cell line. Analysis of the properties of mutant beta-cat proteins and studies with a dominant negative Tcf-4 mutant indicated that the ability of beta-cat to bind and activate Tcf/Lef factors is crucial for transformation. c-myc has recently been implicated as a critical Tcf-regulated target gene. However, c-myc was not consistently activated in beta-cat-transformed RK3E cells, and a dominant negative c-Myc mutant protein failed to inhibit beta-cat transformation. Our findings underscore the role of beta-cat mutations and Tcf/Lef activation in cancer and illustrate a useful system for defining critical factors in beta-cat transformation.
Collapse
Affiliation(s)
- F T Kolligs
- Division of Molecular Medicine & Genetics and the Cancer Center, Departments of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
139
|
Wang B, Kishihara K, Zhang D, Sakamoto T, Nomoto K. Transcriptional regulation of a receptor protein tyrosine phosphatase gene hPTP-J by PKC-mediated signaling pathways in Jurkat and Molt-4 T lymphoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:331-40. [PMID: 10395944 DOI: 10.1016/s0167-4889(99)00064-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recently cloned type II receptor protein tyrosine phosphatase (RPTP) gene hPTP-J is a new member of the MAM (meprin, A5, PTPmicro) domain subfamily. We previously reported that hPTP-J mRNA was detected significantly in Jurkat T lymphoma cells and its expression was completely down-regulated by phorbol myristate acetate (PMA). In this study, we investigated what signaling pathways/molecules are involved in the transcriptional regulation of hPTP-J expression in Jurkat and Molt-4 T cell lines. The hPTP-J transcription was transiently up-regulated 20 min after the addition of PMA (20 ng/ml) to the Jurkat culture, followed by the complete down-regulation in 8 h after PMA addition. The transient up-regulation and the complete down-regulation induced by PMA was blocked by a PKC-specific inhibitor, GF109203X, suggesting that the regulatory effect of PMA on the hPTP-J transcription depends on protein kinase C activation. hPTP-J transcription was down-regulated not only by PMA but also by several signaling modulators including 1-oleoyl-2-acetylglycerol, forskolin, orthovanadate, manumycin and okadaic acid. Therefore, several signaling molecules such as protein tyrosine phosphatases, PP2A/CaMKIV and Ras are required for hPTP-J transcription in Jurkat and Molt-4 cells.
Collapse
Affiliation(s)
- B Wang
- Department of Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
140
|
Hecht A, Litterst CM, Huber O, Kemler R. Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 1999; 274:18017-25. [PMID: 10364252 DOI: 10.1074/jbc.274.25.18017] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
beta-Catenin, a member of the family of Armadillo repeat proteins, plays a dual role in cadherin-mediated cell adhesion and in signaling by Wnt growth factors. Upon Wnt stimulation beta-catenin undergoes nuclear translocation and serves as transcriptional coactivator of T cell factor DNA-binding proteins. Previously the transactivation potential of different portions of beta-catenin has been demonstrated, but the precise location of transactivating elements has not been established. Also, the mechanism of transactivation by beta-catenin and the molecular basis for functional differences between beta-catenin and the closely related proteins Armadillo and Plakoglobin are poorly understood. Here we have used a yeast system for the detailed characterization of the transactivation properties of beta-catenin. We show that its transactivation domains possess a modular structure, consist of multiple subelements that cover broad regions at its N and C termini, and extend considerably into the Armadillo repeat region. Compared with beta-catenin the N termini of Plakoglobin and Armadillo have different transactivation capacities that may explain their distinct signaling properties. Furthermore, transactivating elements of beta-catenin interact specifically and directly with the TATA-binding protein in vitro providing further evidence that a major function of beta-catenin during Wnt signaling is to recruit the basal transcription machinery to promoter regions of Wnt target genes.
Collapse
Affiliation(s)
- A Hecht
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | | | | | |
Collapse
|
141
|
Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci U S A 1999; 96:2077-81. [PMID: 10051597 PMCID: PMC26739 DOI: 10.1073/pnas.96.5.2077] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/1998] [Indexed: 11/18/2022] Open
Abstract
The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation.
Collapse
Affiliation(s)
- B H Jiang
- The Scripps Research Institute, BCC-239, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|