101
|
Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proc Natl Acad Sci U S A 2011; 109:2730-5. [PMID: 21482774 DOI: 10.1073/pnas.1018872108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment.
Collapse
|
102
|
Heldring N, Isaacs GD, Diehl AG, Sun M, Cheung E, Ranish JA, Kraus WL. Multiple sequence-specific DNA-binding proteins mediate estrogen receptor signaling through a tethering pathway. Mol Endocrinol 2011; 25:564-74. [PMID: 21330404 DOI: 10.1210/me.2010-0425] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The indirect recruitment (tethering) of estrogen receptors (ERs) to DNA through other DNA-bound transcription factors (e.g. activator protein 1) is an important component of estrogen-signaling pathways, but our understanding of the mechanisms of ligand-dependent activation in this pathway is limited. Using proteomic, genomic, and gene-specific analyses, we demonstrate that a large repertoire of DNA-binding transcription factors contribute to estrogen signaling through the tethering pathway. In addition, we define a set of endogenous genes for which ERα tethering through activator protein 1 (e.g. c-Fos) and cAMP response element-binding protein family members mediates estrogen responsiveness. Finally, we show that functional interplay between c-Fos and cAMP response element-binding protein 1 contributes to estrogen-dependent regulation through the tethering pathway. Based on our results, we conclude that ERα recruitment in the tethering pathway is dependent on the ligand-induced formation of transcription factor complexes that involves interplay between the transcription factors from different protein families.
Collapse
Affiliation(s)
- Nina Heldring
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics 2011; 2:63-76. [PMID: 22704330 PMCID: PMC3365593 DOI: 10.1007/s13148-010-0018-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023] Open
Abstract
Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-қB, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation.
Collapse
Affiliation(s)
- Zhi-Yi Guo
- Experimental and Research Center, Hebei United University, № 57 JianShe South Road, TangShan, Hebei 063000 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
104
|
Habauzit D, Flouriot G, Pakdel F, Saligaut C. Effects of estrogens and endocrine-disrupting chemicals on cell differentiation-survival-proliferation in brain: contributions of neuronal cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:300-327. [PMID: 21790314 DOI: 10.1080/10937404.2011.578554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Estrogens and estrogen receptors (ER) are key actors in the control of differentiation and survival and act on extrareproductive tissues such as brain. Thus, estrogens may display neuritogenic effects during development and neuroprotective effects in the pathophysiological context of brain ischemia and neurodegenerative pathologies like Alzheimer's disease or Parkinson's disease. Some of these effects require classical transcriptional "genomic" mechanisms through ER, whereas other effects appear to rely clearly on "membrane-initiated mechanisms" through cytoplasmic signal transduction pathways. Disturbances of these mechanisms by endocrine-disrupting chemicals (EDC) may exert adverse effects on brain. Some EDC may act via ER-independent mechanisms but might cross-react with endogenous estrogen. Other EDC may act through ER-dependent mechanisms and display agonistic/antagonistic estrogenic properties. Because of these potential effects of EDC, it is necessary to establish sensitive cell-based assays to determine EDC effects on brain. In the present review, some effects of estrogens and EDC are described with focus on ER-mediated effects in neuronal cells. Particular attention is given to PC12 cells, an interesting model to study the mechanisms underlying ER-mediated differentiating and neuroprotective effects of estrogens.
Collapse
Affiliation(s)
- Denis Habauzit
- UMR CNRS 6026 (Interactions Cellulaires et Moléculaires, Equipe RED), Université de Rennes 1, Rennes, France
| | | | | | | |
Collapse
|
105
|
Weiss MS, Peñalver Bernabé B, Bellis AD, Broadbelt LJ, Jeruss JS, Shea LD. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture. PLoS One 2010; 5:e14026. [PMID: 21103341 PMCID: PMC2984444 DOI: 10.1371/journal.pone.0014026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/21/2010] [Indexed: 12/03/2022] Open
Abstract
Background Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs) are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. Methodology/Principal Findings TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. Conclusions/Significance This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a platform for screening therapeutics.
Collapse
Affiliation(s)
- Michael S. Weiss
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Beatriz Peñalver Bernabé
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Abigail D. Bellis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Linda J. Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Jacqueline S. Jeruss
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (LDS); (JSJ)
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Institute for Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (LDS); (JSJ)
| |
Collapse
|
106
|
Kretzer NM, Cherian MT, Mao C, Aninye IO, Reynolds PD, Schiff R, Hergenrother PJ, Nordeen SK, Wilson EM, Shapiro DJ. A noncompetitive small molecule inhibitor of estrogen-regulated gene expression and breast cancer cell growth that enhances proteasome-dependent degradation of estrogen receptor {alpha}. J Biol Chem 2010; 285:41863-73. [PMID: 21041310 DOI: 10.1074/jbc.m110.183723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mechanisms responsible for 17β-estradiol (E(2))-stimulated breast cancer growth and development of resistance to tamoxifen and other estrogen receptor α (ERα) antagonists are not fully understood. We describe a new tool for dissecting ERα action in breast cancer, p-fluoro-4-(1,2,3,6,-tetrahydro-1,3-dimethyl-2-oxo-6-thionpurin-8-ylthio) (TPSF), a potent small-molecule inhibitor of estrogen receptor α that does not compete with estrogen for binding to ERα. TPSF noncompetitively inhibits estrogen-dependent ERα-mediated gene expression with little inhibition of transcriptional activity by NF-κB or the androgen or glucocorticoid receptor. TPSF inhibits E(2)-ERα-mediated induction of the proteinase inhibitor 9 gene, which is activated by ERα binding to estrogen response element DNA, and the cyclin D1 gene, which is induced by tethering ERα to other DNA-bound proteins. TPSF inhibits anchorage-dependent and anchorage-independent E(2)-ERα-stimulated growth of MCF-7 cells but does not inhibit growth of ER-negative MDA-MB-231 breast cancer cells. TPSF also inhibits ERα-dependent growth in three cellular models for tamoxifen resistance; that is, 4-hydroxytamoxifen-stimulated MCF7ERαHA cells that overexpress ERα, fully tamoxifen-resistant BT474 cells that have amplified HER-2 and AIB1, and partially tamoxifen-resistant ZR-75 cells. TPSF reduces ERα protein levels in MCF-7 cells and several other cell lines without altering ERα mRNA levels. The proteasome inhibitor MG132 abolished down-regulation of ERα by TPSF. Thus, TPSF affects receptor levels at least in part due to its ability to enhance proteasome-dependent degradation of ERα. TPSF represents a novel class of ER inhibitor with significant clinical potential.
Collapse
Affiliation(s)
- Nicole M Kretzer
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801-3602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:115-33. [PMID: 21036202 DOI: 10.1016/j.bbcan.2010.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/01/2023]
Abstract
Elevated lifetime estrogen exposure is a major risk factor for breast cancer. Recent advances in the understanding of breast carcinogenesis clearly indicate that induction of estrogen receptor (ER) mediated signaling is not sufficient for the development of breast cancer. The underlying mechanisms of breast susceptibility to estrogen's carcinogenic effect remain elusive. Physiologically achievable concentrations of estrogen or estrogen metabolites have been shown to generate reactive oxygen species (ROS). Recent data implicated that these ROS induced DNA synthesis, increased phosphorylation of kinases, and activated transcription factors, e.g., AP-1, NRF1, E2F, NF-kB and CREB of non-genomic pathways which are responsive to both oxidants and estrogen. Estrogen-induced ROS by increasing genomic instability and by transducing signal through influencing redox sensitive transcription factors play important role (s) in cell transformation, cell cycle, migration and invasion of the breast cancer. The present review discusses emerging data in support of the role of estrogen induced ROS-mediated signaling pathways which may contribute in the development of breast cancer. It is envisioned that estrogen induced ROS mediated signaling is a key complementary mechanism that drives the carcinogenesis process. ROS mediated signaling however occurs in the context of other estrogen induced processes such as ER-mediated signaling and estrogen reactive metabolite-associated genotoxicity. Importantly, estrogen-induced ROS can function as independent reversible modifiers of phosphatases and activate kinases to trigger the transcription factors of downstream target genes which participate in cancer progression.
Collapse
Affiliation(s)
- Victor Okoh
- Department of Environmental and Occupational Health, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
108
|
Steigerová J, Oklešťková J, Levková M, Rárová L, Kolář Z, Strnad M. Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chem Biol Interact 2010; 188:487-96. [PMID: 20833159 DOI: 10.1016/j.cbi.2010.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 11/17/2022]
Abstract
Brassinosteroids (BRs) are plant hormones that appear to be ubiquitous in both lower and higher plants. Recently, we published the first evidence that some natural BRs induce cell growth inhibitory responses in several human cancer cell lines without affecting normal non-tumor cell growth (BJ fibroblasts). The aim of the study presented here was to examine the mechanism of the antiproliferative activity of the natural BRs 28-homocastasterone (28-homoCS) and 24-epibrassinolide (24-epiBL) in human hormone-sensitive and -insensitive (MCF-7 and MDA-MB-468, respectively) breast cancer cell lines. The effects of 6, 12 and 24h treatments with 28-homoCS and 24-epiBL on cancer cells were surveyed using flow cytometry, Western blotting, TUNEL assays and immunofluorescence analyses. The studied BRs inhibited cell growth and induced blocks in the G(1) cell cycle phase. ER-α immunoreactivity was uniformly present in the nuclei of control MCF-7 cells, while cytoplasmic speckles of ER-α immunofluorescence appeared in BR-treated cells (IC(50), 24h). ER-β was relocated to the nuclei following 28-homoCS treatment and found predominantly at the periphery of the nuclei in 24-epiBL-treated cells after 24h of treatment. These changes were also accompanied by down-regulation of the ERs following BR treatment. In addition, BR application to breast cancer cells resulted in G(1) phase arrest. Furthermore, TUNEL staining and double staining with propidium iodide and acridine orange demonstrated the BR-mediated induction of apoptosis in both cell lines, although changes in the expression of apoptosis-related proteins were modulated differently by the BRs in each cell line. The studied BRs seem to exert potent growth inhibitory effects via interactions with the cell cycle machinery, and they could be highly valuable leads for agents for managing breast cancer.
Collapse
Affiliation(s)
- Jana Steigerová
- Department of Pathology, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
109
|
Jain D, Koh JT. A mutant selective anti-estrogen is a pure antagonist on EREs and AP-1 response elements. Bioorg Med Chem Lett 2010; 20:5258-61. [PMID: 20659801 DOI: 10.1016/j.bmcl.2010.06.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
Estrogen receptors (ERs) regulate gene transcription through classic estrogen response elements (EREs) as well as AP-1 responsive genes. The common SERMs Raloxifene, Tamoxifen, and ICI164384 function as ER antagonists on EREs but as ERbeta agonists/partial agonists on AP-1 responsive genes. While developing a mutant selective analog of Raloxifene, that is an antagonist of ERalpha(E353A), we discovered an antagonist of wild-type ERalpha and ERbeta that is also an antagonist of ERbeta/AP-1 response. The analog, DRL527, represses basal AP-1 gene expression and antagonizes Raloxifene stimulated AP-1 expression. Therefore DRL527 has a unique, previously unreported, ERE/AP-1 activity profile.
Collapse
Affiliation(s)
- Disha Jain
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
110
|
EGFR/HER2 inhibitor AEE788 increases ER-mediated transcription in HER2/ER-positive breast cancer cells but functions synergistically with endocrine therapy. Br J Cancer 2010; 102:1235-43. [PMID: 20386540 PMCID: PMC2856013 DOI: 10.1038/sj.bjc.6605641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Cross-talk between receptor tyrosine kinases and the oestrogen receptor (ER) is implicated in resistance to endocrine therapy. We investigated whether AEE788 (a combined inhibitor of EGFR, HER2 and VEGFR) plus tamoxifen or letrozole enhanced the individual anti-tumour effects of these agents. Methods: Breast cancer cell lines modelling endocrine-resistant and -sensitive disease were engineered to express aromatase (A) and examined using proliferation, western blotting and ER-α transcription assays. Results: AEE788 enhanced the anti-proliferative effect of tamoxifen and letrozole in ER+ cell lines (MCF-7 2A, ZR75.1 A3 and BT474 A3). This associated with an elevated G1 arrest and nuclear accumulation of p27. It is noteworthy that AEE788 alone or in combination with endocrine therapy increased the expression of progesterone receptor (PGR) and TFF1 in BT474 A3 cells. This may indicate a mechanism of resistance to AEE788 in ER+/HER2+ breast cancers. In a ZR75.1 A3 xenograft, AEE788 alone or in combination with tamoxifen provided no further benefit compared with letrozole. However, letrozole plus AEE788 produced a significantly greater inhibition of tumour growth compared with letrozole alone. Conclusion: These data suggest that AEE788 plus letrozole in breast cancer overexpressing HER2 may provide superior anti-tumour activity, compared with single agents.
Collapse
|
111
|
Lanzino M, Sisci D, Morelli C, Garofalo C, Catalano S, Casaburi I, Capparelli C, Giordano C, Giordano F, Maggiolini M, Andò S. Inhibition of cyclin D1 expression by androgen receptor in breast cancer cells--identification of a novel androgen response element. Nucleic Acids Res 2010; 38:5351-65. [PMID: 20421209 PMCID: PMC2938215 DOI: 10.1093/nar/gkq278] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cyclin D1 gene (CCND1) is a critical mitogen-regulated cell-cycle control element whose transcriptional modulation plays a crucial role in breast cancer growth and progression. Here we demonstrate that the non-aromatizable androgen 5-α-dihydrotestosterone (DHT) inhibits endogenous cyclin D1 expression, as evidenced by reduction of cyclin D1 mRNA and protein levels, and decrease of CCND1-promoter activity, in MCF-7 cells. The DHT-dependent inhibition of CCND1 gene activity requires the involvement and the integrity of the androgen receptor (AR) DNA-binding domain. Site directed mutagenesis, DNA affinity precipitation assay, electrophoretic mobility shift assay and chromatin immunoprecipitation analyses indicate that this inhibitory effect is ligand dependent and it is mediated by direct binding of AR to an androgen response element (CCND1-ARE) located at −570 to −556-bp upstream of the transcription start site, in the cyclin D1 proximal promoter. Moreover, AR-mediated repression of the CCND1 involves the recruitment of the atypical orphan nuclear receptor DAX1 as a component of a multiprotein repressor complex also embracing the participation of Histone Deacetylase 1. In conclusion, identification of the CCND1-ARE allows defining cyclin D1 as a specific androgen target gene in breast and might contribute to explain the molecular basis of the inhibitory role of androgens on breast cancer cells proliferation.
Collapse
Affiliation(s)
- Marilena Lanzino
- Dipartimento Farmaco-Biologico, University of Calabria, Arcavacata di Rende (CS) 87036, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Zwart W, de Leeuw R, Rondaij M, Neefjes J, Mancini MA, Michalides R. The hinge region of the human estrogen receptor determines functional synergy between AF-1 and AF-2 in the quantitative response to estradiol and tamoxifen. J Cell Sci 2010; 123:1253-61. [DOI: 10.1242/jcs.061135] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human estrogen receptors α and β (ERα and ERβ) greatly differ in their target genes, transcriptional potency and cofactor-binding capacity, and are differentially expressed in various tissues. In classical estrogen response element (ERE)-mediated transactivation, ERβ has a markedly reduced activation potential compared with ERα; the mechanism underlying this difference is unclear. Here, we report that the binding of steroid receptor coactivator-1 (SRC-1) to the AF-1 domain of ERα is essential but not sufficient to facilitate synergy between the AF-1 and AF-2 domains, which is required for a full agonistic response to estradiol (E2). Complete synergy is achieved through the distinct hinge domain of ERα, which enables combined action of the AF-1 and AF-2 domains. AF-1 of ERβ lacks the capacity to interact with SRC-1, which prevents hinge-mediated synergy between AF-1 and AF-2, thereby explaining the reduced E2-mediated transactivation of ERβ. Transactivation of ERβ by E2 requires only the AF-2 domain. A weak agonistic response to tamoxifen occurs for ERα, but not for ERβ, and depends on AF-1 and the hinge-region domain of ERα.
Collapse
Affiliation(s)
- Wilbert Zwart
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Renée de Leeuw
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Mariska Rondaij
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Michael A. Mancini
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rob Michalides
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
113
|
Siewit CL, Gengler B, Vegas E, Puckett R, Louie MC. Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERalpha and c-Jun. Mol Endocrinol 2010; 24:981-92. [PMID: 20219890 DOI: 10.1210/me.2009-0410] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cadmium is an environmental contaminant that enters the body through diet or cigarette smoke. It affects multiple cellular processes, including cell proliferation, differentiation, and apoptosis. Recently, cadmium has been shown to function as an endocrine disruptor, to stimulate estrogen receptor alpha (ERalpha) activity and promote uterine and mammary gland growth in mice. Although cadmium exposure has been associated with the development of breast cancer, the mechanism of action of cadmium remains unclear. To address this deficit, we examined the effects of cadmium treatment on breast cancer cells. We found that ERalpha is required for both cadmium-induced cell growth and modulation of gene expression. We also determined that ERalpha translocates to the nucleus in response to cadmium exposure. Additionally, we provide evidence that cadmium potentiates the interaction between ERalpha and c-Jun and enhances recruitment of this transcription factor complex to the proximal promoters of cyclin D1 and c-myc, thus increasing their expression. This study provides a mechanistic link between cadmium exposure and ERalpha and demonstrates that cadmium plays an important role in the promotion of breast cancer.
Collapse
Affiliation(s)
- Christina L Siewit
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, USA
| | | | | | | | | |
Collapse
|
114
|
Deng Q, Wang Q, Zong WY, Zheng DL, Wen YX, Wang KS, Teng XM, Zhang X, Huang J, Han ZG. E2F8 Contributes to Human Hepatocellular Carcinoma via Regulating Cell Proliferation. Cancer Res 2010; 70:782-91. [DOI: 10.1158/0008-5472.can-09-3082] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
115
|
Seldeen KL, McDonald CB, Deegan BJ, Bhat V, Farooq A. DNA plasticity is a key determinant of the energetics of binding of Jun-Fos heterodimeric transcription factor to genetic variants of TGACGTCA motif. Biochemistry 2010; 48:12213-22. [PMID: 19921846 DOI: 10.1021/bi901392k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Jun-Fos heterodimeric transcription factor is a target of a diverse array of signaling cascades that initiate at the cell surface and converge in the nucleus and ultimately result in the expression of genes involved in a multitude of cellular processes central to health and disease. Here, using isothermal titration calorimetry in conjunction with circular dichroism, we report the effect of introducing single nucleotide variations within the TGACGTCA canonical motif on the binding of bZIP domains of Jun-Fos heterodimer to DNA. Our data reveal that the Jun-Fos heterodimer exhibits differential energetics in binding to such genetic variants in the physiologically relevant micromolar to submicromolar range with the TGACGTCA canonical motif affording the highest affinity. Although binding energetics are largely favored by enthalpic forces and accompanied by entropic penalty, neither the favorable enthalpy nor the unfavorable entropy correlates with the overall free energy of binding in agreement with the enthalpy-entropy compensation phenomenon widely observed in biological systems. However, a number of variants including the TGACGTCA canonical motif bind to the Jun-Fos heterodimer with high affinity through having overcome such enthalpy-entropy compensation barrier, arguing strongly that better understanding of the underlying invisible forces driving macromolecular interactions may be the key to future drug design. Our data also suggest that the Jun-Fos heterodimer has a preference for binding to TGACGTCA variants with higher AT content, implying that the DNA plasticity may be an important determinant of protein-DNA interactions. This notion is further corroborated by the observation that the introduction of genetic variations within the TGACGTCA motif allows it to sample a much greater conformational space. Taken together, these new findings further our understanding of the role of DNA sequence and conformation on protein-DNA interactions in thermodynamic terms.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
116
|
Sisci D, Middea E, Morelli C, Lanzino M, Aquila S, Rizza P, Catalano S, Casaburi I, Maggiolini M, Andò S. 17β-estradiol enhances α(5) integrin subunit gene expression through ERα-Sp1 interaction and reduces cell motility and invasion of ERα-positive breast cancer cells. Breast Cancer Res Treat 2010; 124:63-77. [PMID: 20052536 DOI: 10.1007/s10549-009-0713-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/23/2009] [Indexed: 11/26/2022]
Abstract
In breast tumors the expression of estrogen receptor alpha (ERα) is known to be associated with a more favorable prognosis. ERα expression has been reported to reduce the metastatic potential of breast cancer cells. Recently, we have observed that extracellular matrix proteins activate ERα and that both liganded and unliganded receptor modulate cell invasiveness acting at nuclear level. To explain the mechanisms by which ERα regulates cell adhesion, we have evaluated the expression of α(5)β(1) integrin, prevalently expressed in stationary cells, in response to 17β-estradiol (E2). Here we show that E2/ERα increases the expression of integrin α(5)β(1) through Sp1-mediated binding to a GC-rich region located upstream of an ERE half-site in the 5' flanking region of the α(5) gene forming a ternary ERα-Sp1-DNA complex. Estrogen responsiveness of the α(5) gene promoter, as observed in HeLa cells, underlies a general mechanism of regulation which is not strictly linked to the cell type. Our data reveal novel insight into the molecular mechanisms sustaining the reduced invasiveness of ERα expressing cells demonstrating that α(5)β(1) integrin expression is related to the maintenance of the stationary status of the cells, counteracting E2/ERα capability to enhance breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Diego Sisci
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
ERK activation and cell growth require CaM kinases in MCF-7 breast cancer cells. Mol Cell Biochem 2009; 335:155-71. [DOI: 10.1007/s11010-009-0252-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
118
|
Comstock CE, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, Tindall EA, Wang Y, Burd CJ, Groh EM, Hoang HN, Giles GG, Severi G, Hayes VM, Henderson BE, Marchand LL, Kolonel LN, Haiman CA, Baffa R, Gomella LG, Knudsen ES, Rui H, Henshall SM, Sutherland RL, Knudsen KE. Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate cancer. Clin Cancer Res 2009; 15:5338-49. [PMID: 19706803 PMCID: PMC2849314 DOI: 10.1158/1078-0432.ccr-08-2865] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Alternative CCND1 splicing results in cyclin D1b, which has specialized, protumorigenic functions in prostate not shared by the cyclin D1a (full length) isoform. Here, the frequency, tumor relevance, and mechanisms controlling cyclin D1b were challenged. EXPERIMENTAL DESIGN First, relative expression of both cyclin D1 isoforms was determined in prostate adenocarcinomas. Second, relevance of the androgen axis was determined. Third, minigenes were created to interrogate the role of the G/A870 polymorphism (within the splice site), and findings were validated in primary tissue. Fourth, the effect of G/A870 on cancer risk was assessed in two large case-control studies. RESULTS Cyclin D1b is induced in tumors, and a significant subset expressed this isoform in the absence of detectable cyclin D1a. Accordingly, the isoforms showed noncorrelated expression patterns, and hormone status did not alter splicing. Whereas G/A870 was not independently predictive of cancer risk, A870 predisposed for transcript-b production in cells and in normal prostate. The influence of A870 on overall transcript-b levels was relieved in tumors, indicating that aberrations in tumorigenesis likely alter the influence of the polymorphism. CONCLUSIONS These studies reveal that cyclin D1b is specifically elevated in prostate tumorigenesis. Cyclin D1b expression patterns are distinct from that observed with cyclin D1a. The A870 allele predisposes for transcript-b production in a context-specific manner. Although A870 does not independently predict cancer risk, tumor cells can bypass the influence of the polymorphism. These findings have major implications for the analyses of D-cyclin function in the prostate and provide the foundation for future studies directed at identifying potential modifiers of the G/A870 polymorphism.
Collapse
Affiliation(s)
- Clay E.S. Comstock
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Michael A. Augello
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Ruth Pe Benito
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Jason Karch
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio
| | - Thai H. Tran
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Fransiscus E. Utama
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Elizabeth A. Tindall
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
- Cancer Genetics, Children's Cancer Institute Australia for Medical Research, University of New South Wales, Randwick, NSW, Australia
| | - Ying Wang
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio
| | - Craig J. Burd
- National Institutes of Environmental Health Science, Research Triangle Park, North Carolina
| | - Eric M. Groh
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio
| | - Hoa N. Hoang
- The Cancer Council of Victoria, Carlton, Melbourne, Victoria, Australia
| | - Graham G. Giles
- The Cancer Council of Victoria, Carlton, Melbourne, Victoria, Australia
| | - Gianluca Severi
- The Cancer Council of Victoria, Carlton, Melbourne, Victoria, Australia
| | - Vanessa M. Hayes
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
- Cancer Genetics, Children's Cancer Institute Australia for Medical Research, University of New South Wales, Randwick, NSW, Australia
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, Hawaii
| | - Laurence N. Kolonel
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, Hawaii
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Raffaele Baffa
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department Urology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Leonard G. Gomella
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department Urology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Erik S. Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Hallgeir Rui
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Susan M. Henshall
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Robert L. Sutherland
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Karen E. Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
- Department Urology, Thomas Jefferson University, Philadelphia Pennsylvania
| |
Collapse
|
119
|
Liu M, Dziennis S, Hurn PD, Alkayed NJ. Mechanisms of gender-linked ischemic brain injury. Restor Neurol Neurosci 2009; 27:163-79. [PMID: 19531872 DOI: 10.3233/rnn-2009-0467] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHS-2, Portland, OR 97239-3098, USA.
| | | | | | | |
Collapse
|
120
|
Pejchal J, Österreicher J, Vilasová Z, Tichý A, Vávrová J. Expression of activated ATF-2, CREB and c-Myc in rat colon transversum after whole-body γ-irradiation and its contribution to pathogenesis and biodosimetry. Int J Radiat Biol 2009; 84:315-24. [DOI: 10.1080/09553000801953367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
121
|
Fox EM, Andrade J, Shupnik MA. Novel actions of estrogen to promote proliferation: integration of cytoplasmic and nuclear pathways. Steroids 2009; 74:622-7. [PMID: 18996136 PMCID: PMC2702758 DOI: 10.1016/j.steroids.2008.10.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/25/2008] [Indexed: 12/28/2022]
Abstract
Both steroids and growth factors stimulate proliferation of steroid-dependent tumor cells, and interaction between these signaling pathways occurs at several levels. Steroid receptors are classified as ligand-activated transcription factors, and steps by which they activate target gene transcription are well understood. Several steroid responses have now been functionally linked to other intracellular signaling pathways, including c-Src or tyrosine kinase receptors. Steroids such as 17beta-estradiol (E2), via binding to cytoplasmic or membrane-associated receptors, were also shown to rapidly activate intracellular signaling cascades such as ERK, PI3K and STATs. These E2-stimulated phosphorylations can then contribute to altered tumor cell function. ER-positive breast cancer cells, in which proliferation is stimulated by E2 and suppressed by antiestrogens, have been of particular interest in dissecting nuclear and cytoplasmic roles of estrogen receptors (ER). In some cell contexts, ER interacts directly with the intracellular tyrosine kinase c-Src and other cytoplasmic signaling and adaptor molecules, such as Shc, PI3K, MNAR, and p130 Cas. Although the hierarchy among these associations is not known, it is clear that c-Src plays a fundamental role in both growth factor and E2-stimulated cell growth, and this may also require other growth factor receptors such as those for EGF or IGF-1. STAT transcription factors represent one pathway to integrate E2 cytoplasmic and nuclear signaling. STAT5 is phosphorylated in the cytoplasm at an activating tyrosine in response to E2 or EGF, and then is translocated to the nucleus to stimulate target gene transcription. E2 stimulates recruitment of STAT5 and ER to the promoter of several proliferative genes, and STAT5 knockdown prevents recruitment of either protein to these promoters. STAT5 activation by E2 in breast cancer cells requires c-Src and EGF receptor, and inhibition of c-Src or EGFR, or knockdown of STAT5, prevents E2 stimulation of several genes and breast cancer cell proliferation. Hyperactivation of the growth factor receptor-c-Src pathway can in some contexts decrease growth responses to E2, or render cells and tumors resistant to suppressive actions of endocrine therapies. Crosstalk between growth factors and steroids in both the cytoplasm and nucleus may thus have a profound impact on complex biological processes such as cell growth, and may play a significant role in the treatment of steroid-dependent breast cancers.
Collapse
Affiliation(s)
- Emily M. Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Josefa Andrade
- Department of, Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Margaret A. Shupnik
- Department of, Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
122
|
Cleveland AG, Oikarinen SI, Bynoté KK, Marttinen M, Rafter JJ, Gustafsson JA, Roy SK, Pitot HC, Korach KS, Lubahn DB, Mutanen M, Gould KA. Disruption of estrogen receptor signaling enhances intestinal neoplasia in Apc(Min/+) mice. Carcinogenesis 2009; 30:1581-90. [PMID: 19520794 DOI: 10.1093/carcin/bgp132] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ERs) [ERalpha (Esr1) and ERbeta (Esr2)] are expressed in the human colon, but during the multistep process of colorectal carcinogenesis, expression of both ERalpha and ERbeta is lost, suggesting that loss of ER function might promote colorectal carcinogenesis. Through crosses between an ERalpha knockout and Apc(Min) mouse strains, we demonstrate that ERalpha deficiency is associated with a significant increase in intestinal tumor multiplicity, size and burden in Apc(Min/+) mice. Within the normal intestinal epithelium of Apc(Min/+) mice, ERalpha deficiency is associated with an accumulation of nuclear beta-catenin, an indicator of activation of the Wnt-beta-catenin-signaling pathway, which is known to play a critical role in intestinal cancers. Consistent with the hypothesis that ERalpha deficiency is associated with activation of Wnt-beta-catenin signaling, ERalpha deficiency in the intestinal epithelium of Apc(Min/+) mice also correlated with increased expression of Wnt-beta-catenin target genes. Through crosses between an ERbeta knockout and Apc(Min) mouse strains, we observed some evidence that ERbeta deficiency is associated with an increased incidence of colon tumors in Apc(Min/+) mice. This effect of ERbeta deficiency does not involve modulation of Wnt-beta-catenin signaling. Our studies suggest that ERalpha and ERbeta signaling modulate colorectal carcinogenesis, and ERalpha does so, at least in part, by regulating the activity of the Wnt-beta-catenin pathway.
Collapse
Affiliation(s)
- Alicia G Cleveland
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Differential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: dependence on dose and estrogen receptor subtype. J Neurosci 2009; 29:5616-27. [PMID: 19403828 DOI: 10.1523/jneurosci.0352-09.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, nongenomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100 pm) to 100 nm enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization amplitudes (ADP), and reduced I(AHP) and enhanced I(ADP). The reduction of I(AHP) was occluded by previous blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) beta-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERalpha or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10 pm) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10 pm estradiol reduced firing of GnRH neurons; this was mimicked by an ERalpha agonist. ERalpha agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERbeta agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent on both dose and receptor subtype. In cooperation with genomic actions, nongenomic effects may play a role in feedback regulation of GnRH secretion.
Collapse
|
124
|
Gionet N, Jansson D, Mader S, Pratt MC. NF-κB and estrogen receptor α interactions: Differential function in estrogen receptor-negative and -positive hormone-independent breast cancer cells. J Cell Biochem 2009; 107:448-59. [DOI: 10.1002/jcb.22141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
125
|
Murphy AJ, Guyre PM, Wira CR, Pioli PA. Estradiol regulates expression of estrogen receptor ERalpha46 in human macrophages. PLoS One 2009; 4:e5539. [PMID: 19440537 PMCID: PMC2678254 DOI: 10.1371/journal.pone.0005539] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/18/2009] [Indexed: 12/16/2022] Open
Abstract
Background Monocytes and macrophages are key innate immune effector cells that produce cytokines and chemokines upon activation. We and others have shown that 17β-estradiol (E2) has a direct role in the modulation of monocyte and macrophage immune function. However, relatively little is known about the ability of E2 to regulate isoform expression of estrogen receptors (ERs) in these cells. Methodology/Principal Findings In this study, we quantify expression of ERα and ERβ in human monocytes and macrophages. We also show for the first time that the N-terminal truncated ERα variant, ERα46, is expressed in both cell types. Promoter utilization studies reveal that transcription of ERα in both cell types occurs from upstream promoters E and F. Treatment with E2 induces ERα expression in macrophages but has no effect on ERβ levels in either cell type. During monocyte-to-macrophage differentiation, ERα is upregulated in a time-dependent manner. Previous studies by our group demonstrated that E2 treatment attenuates production of the chemokine CXCL8 in an ER-dependent manner. We now show that ERα expression levels parallel the ability of E2 to suppress CXCL8 production. Conclusions/Significance This work demonstrates for the first time that human macrophages predominantly express the truncated ER variant ERαp46, which is estradiol-inducible. This is mediated through usage of the ERα F promoter. Alternative promoter usage may account for tissue and cell type-specific differences in estradiol-induced effects on gene expression. These studies signify the importance of ERα expression and regulation in the ability of E2 to modulate innate immune responses.
Collapse
Affiliation(s)
- Amy J. Murphy
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Paul M. Guyre
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Charles R. Wira
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Patricia A. Pioli
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
126
|
Nath-Sain S, Marignani PA. LKB1 catalytic activity contributes to estrogen receptor alpha signaling. Mol Biol Cell 2009; 20:2785-95. [PMID: 19369417 DOI: 10.1091/mbc.e08-11-1138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The tumor suppressor serine-threonine kinase LKB1 is mutated in Peutz-Jeghers syndrome (PJS) and in epithelial cancers, including hormone-sensitive organs such as breast, ovaries, testes, and prostate. Clinical studies in breast cancer patients show low LKB1 expression is related to poor prognosis, whereas in PJS, the risk of breast cancer is similar to the risk from germline mutations in breast cancer (BRCA) 1/BRCA2. In this study, we investigate the role of LKB1 in estrogen receptor alpha (ERalpha) signaling. We demonstrate for the first time that LKB1 binds to ERalpha in the cell nucleus in which it is recruited to the promoter of ERalpha-responsive genes. Furthermore, LKB1 catalytic activity enhances ERalpha transactivation compared with LKB1 catalytically deficient mutants. The significance of our discovery is that we demonstrate for the first time a novel functional link between LKB1 and ERalpha. Our discovery places LKB1 in a coactivator role for ERalpha signaling, broadening the scientific scope of this tumor suppressor kinase and laying the groundwork for the use of LKB1 as a target for the development of new therapies against breast cancer.
Collapse
Affiliation(s)
- Suchita Nath-Sain
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
127
|
Umemura S, Shirane M, Takekoshi S, Kusakabe T, Itoh J, Egashira N, Tokuda Y, Mori K, Osamura YR. Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome. Br J Cancer 2009; 100:764-71. [PMID: 19259095 PMCID: PMC2653774 DOI: 10.1038/sj.bjc.6604900] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The purpose of the present study is to identify genes that contribute to cell proliferation or differentiation of breast cancers independent of signalling through the oestrogen receptor (ER) or human epidermal growth factor receptor 2 (HER2). An oligonucleotide microarray assayed 40 tumour samples from ER(+)/HER2(−), ER(+)/HER2(+), ER(−)/HER2(+), and ER(−)/HER2(−) breast cancer tissues. Quantitative reverse transcriptase PCR detected overexpression of a cell cycle-related transcription factor, E2F-5, in ER-negative breast cancers, and fluorescence in situ hybridisation detected gene amplification of E2F-5 in 5 out of 57 (8.8%) breast cancer samples. No point mutations were found in the DNA-binding or DNA-dimerisation domain of E2F-5. Immunohistochemically, E2F-5-positive cancers correlated with a higher Ki-67 labelling index (59.5%, P=0.001) and higher histological grades (P=0.049). E2F-5-positive cancers were found more frequently in ER(−)/progesterone receptor (PgR)(−)/HER2(−) cancer samples (51.9%, P=0.0049) and in breast cancer samples exhibiting a basal phenotype (56.0%, P=0.0012). Disease-free survival in node-negative patients with E2F-5-positive cancers was shorter than for patients with E2F-5-negative cancers. In conclusion, we identify, for the first time, a population of breast cancer cells that overexpress the cell cycle-related transcription factor, E2F-5. This E2F-5-positive breast cancer subtype was associated with an ER(−)/PgR(−)/HER2(−) status, a basal phenotype, and a worse clinical outcome.
Collapse
Affiliation(s)
- S Umemura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Catalano S, Giordano C, Rizza P, Gu G, Barone I, Bonofiglio D, Giordano F, Malivindi R, Gaccione D, Lanzino M, De Amicis F, Andò S. Evidence that leptin through STAT and CREB signaling enhances cyclin D1 expression and promotes human endometrial cancer proliferation. J Cell Physiol 2009; 218:490-500. [DOI: 10.1002/jcp.21622] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
129
|
Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 2009; 121:3853-7. [PMID: 19020303 DOI: 10.1242/jcs.039131] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Eric A Klein
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
130
|
Mérot Y, Ferrière F, Gailhouste L, Huet G, Percevault F, Saligaut C, Flouriot G. Different outcomes of unliganded and liganded estrogen receptor-alpha on neurite outgrowth in PC12 cells. Endocrinology 2009; 150:200-11. [PMID: 18772239 DOI: 10.1210/en.2008-0449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A precise description of the mechanisms by which estrogen receptor-alpha (ERalpha) exerts its influences on cellular growth and differentiation is still pending. Here, we report that the differentiation of PC12 cells is profoundly affected by ERalpha. Importantly, depending upon its binding to 17beta-estradiol (17betaE2), ERalpha is found to exert different effects on pathways involved in nerve growth factor (NGF) signaling. Indeed, upon its stable expression in PC12 cells, unliganded ERalpha is able to partially inhibit the neurite outgrowth induced by NGF. This process involves a repression of MAPK and phosphatidylinositol 3-kinase/Akt signaling pathways, which leads to a negative regulation of markers of neuronal differentiation such as VGF and NFLc. This repressive action of unliganded ERalpha is mediated by its D domain and does not involve its transactivation and DNA-binding domains, thereby suggesting that direct transcriptional activity of ERalpha is not required. In contrast with this repressive action occurring in the absence of 17betaE2, the expression of ERalpha in PC12 cells allows 17betaE2 to potentiate the NGF-induced neurite outgrowth. Importantly, 17betaE2 has no impact on NGF-induced activity of MAPK and Akt signaling pathways. The mechanisms engaged by liganded ERalpha are thus unlikely to rely on an antagonism of the inhibition mediated by the unliganded ERalpha. Furthermore, 17betaE2 enhances NGF-induced response of VGF and NFLc neuronal markers in PC12 clones expressing ERalpha. This stimulatory effect of 17betaE2 requires the transactivation functions of ERalpha and its D domain, suggesting that an estrogen-responsive element-independent transcriptional mechanism is potentially relevant for the neuritogenic properties of 17betaE2 in ERalpha-expressing PC12 cells.
Collapse
Affiliation(s)
- Yohann Mérot
- Université de Rennes 1, Centre National de la Recherche Scientifique, Unité Mixte 6026, Equipe Récepteur des oestrogènes et destinée cellulaire, 35042 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
131
|
Zhang X, Yu S, Galson DL, Luo M, Fan J, Zhang J, Guan Y, Xiao G. Activating transcription factor 4 is critical for proliferation and survival in primary bone marrow stromal cells and calvarial osteoblasts. J Cell Biochem 2008; 105:885-95. [PMID: 18729081 DOI: 10.1002/jcb.21888] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Activating transcription factor 4 (ATF4) is essential for bone formation. However, the mechanism of its actions in bone is poorly understood. The present study examined the role for ATF4 in the regulation of proliferation and survival of primary mouse bone marrow stromal cells (BMSCs) and osteoblasts. Results showed that Atf4(-/-) cells display a severe proliferative defect as measured by multiple cell proliferation assays. Cell cycle progression of Atf4(-/-) BMSCs was largely delayed with significant G1 arrest. Expression of cyclin D1 was decreased both at the mRNA and protein level. A similar proliferation defect was observed in Atf4(-/-) calvarial periosteal osteoblasts when compared with wt control. Knocking down Atf4 mRNA by small interfering RNA in MC3T3-E1 subclone 4 preosteoblasts markedly reduced expression of cyclin D1 and cell proliferation. In contrast, overexpression of ATF4 increased cyclin D1 expression as well as cell proliferation in Atf4(-/-) BMSCs. In addition, apoptosis was significantly increased in Atf4(-/-) BMSCs and calvarial periosteal osteoblasts relative to wt controls. Taken together, these results for the first time demonstrate that ATF4 is a critical regulator of proliferation and survival in BMSCs and osteoblasts in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15240, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Wen J, Li R, Lu Y, Shupnik MA. Decreased BRCA1 confers tamoxifen resistance in breast cancer cells by altering estrogen receptor-coregulator interactions. Oncogene 2008; 28:575-86. [PMID: 18997820 PMCID: PMC2714665 DOI: 10.1038/onc.2008.405] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The breast cancer susceptibility gene 1 (BRCA1) is mutated in approximately 50% of hereditary breast cancers, and its expression is decreased in 30-40% of sporadic breast cancers, suggesting a general role in breast cancer development. BRCA1 physically and functionally interacts with estrogen receptor-alpha (ERalpha) and several transcriptional regulators. We investigated the relationship between cellular BRCA1 levels and tamoxifen sensitivity. Decreasing BRCA1 expression in breast cancer cells by small interfering RNA alleviated tamoxifen-mediated growth inhibition and abolished tamoxifen suppression of several endogenous ER-targeted genes. ER-stimulated transcription and cytoplasmic signaling was increased without detectable changes in ER or ER coregulator expression. Co-immunoprecipitation studies showed that with BRCA1 knockdown, tamoxifen-bound ERalpha was inappropriately associated with coactivators, and not effectively with corepressors. Chromatin immunoprecipitation studies demonstrated that with tamoxifen, BRCA1 knockdown did not change ERalpha promoter occupancy, but resulted in increased coactivator and decreased corepressor recruitment onto the endogenous cyclin D1 promoter. Our results suggest that decreased BRCA1 levels modify ERalpha-mediated transcription and regulation of cell proliferation in part by altering ERalpha-coregulator association. In the presence of tamoxifen, decreased BRCA1 expression results in increased coactivator and decreased corepressor recruitment on ER-regulated gene promoters.
Collapse
Affiliation(s)
- J Wen
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
133
|
Meyuhas R, Pikarsky E, Tavor E, Klar A, Abramovitch R, Hochman J, Lago TG, Honigman A. A Key role for cyclic AMP-responsive element binding protein in hypoxia-mediated activation of the angiogenesis factor CCN1 (CYR61) in Tumor cells. Mol Cancer Res 2008; 6:1397-409. [PMID: 18819928 DOI: 10.1158/1541-7786.mcr-07-2086] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia is a prominent feature of solid tumors known to contribute to malignant progression and therapeutic resistance. Cancer cells adapt to hypoxia using various pathways, allowing tumors to thrive in a low oxygen state. Induction of new blood vessel formation via the secretion of proangiogenic factors is one of the main adaptive responses engaged by tumor cells under hypoxic conditions. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays a pivotal role in mediating such responses. In addition, several other transcription factors have also been implicated in hypoxic gene regulation, either independently or in cooperation with HIF-1. In this work, we show that the expression of the angiogenesis-related, immediate early gene CCN1 (formerly known as CYR61), considered to be involved in tumor growth and invasiveness, is enhanced upon hypoxia stress primarily in a protein kinase A and cyclic AMP-responsive element binding protein (CREB) and CRE-dependent manner in various cell lines. The hypoxia-mediated activation of the CCN1 promoter is independent of HIF-1 and HIF-2, as shown by small interfering RNA knockdown. We identify the cis element in the mouse CCN1 promoter responsible for CREB binding to be one of two partial CRE sites present in the promoter. Moreover, we report for the first time that CREB-mediated CCN1 transcription is enhanced in hypoxic regions of tumors in vivo. Identifying and characterizing the molecular mechanisms that govern the response of tumors to hypoxia may be instrumental to identify the tumors that will respond favorably to inhibition of angiogenesis and thus lead to the development of treatments that could complement hypoxia-inducing treatment modalities.
Collapse
Affiliation(s)
- Ronit Meyuhas
- Department of Virology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Holmes KA, Song JS, Liu XS, Brown M, Carroll JS. Nkx3-1 and LEF-1 function as transcriptional inhibitors of estrogen receptor activity. Cancer Res 2008; 68:7380-5. [PMID: 18794125 DOI: 10.1158/0008-5472.can-08-0133] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor (ER)-associated cofactors and cooperating transcription factors are one of the primary components determining transcriptional activity of estrogen target genes and may constitute potential therapeutic targets. Recent mapping of ER-binding sites on a genome-wide scale has provided insight into novel cooperating factors based on the enrichment of transcription factor motifs within the ER-binding sites. We have used the ER-binding sites in combination with sequence conservation to identify the statistical enrichment of Nkx and LEF motifs. We find that Nkx3-1 and LEF-1 bind to several ER cis-regulatory elements in vivo, but they both function as transcriptional repressors of estrogen signaling. We show that Nkx3-1 and LEF-1 can inhibit ER binding to chromatin, suggesting competition for common chromatin-binding regions. These data provide insight into the role of Nkx3-1 and LEF-1 as potential regulators of the hormone response in breast cancer.
Collapse
Affiliation(s)
- Kelly A Holmes
- Cancer Research UK, Cambridge Research Institute, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
135
|
Chen M, Ni J, Zhang Y, Muyan M, Yeh S. ERAP75 functions as a coactivator to enhance estrogen receptor alpha transactivation in prostate stromal cells. Prostate 2008; 68:1273-82. [PMID: 18563714 DOI: 10.1002/pros.20774] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Estrogen receptor alpha (ER alpha) has been reported to be expressed and function in the prostate stromal cells, and numerous evidences indicated that the stromal ER alpha signal pathway plays critical roles in prostate development and cancer. ER alpha requires distinct coregulators for efficient transcriptional regulation. The goal of this study is to examine physical and functional interaction between ER alpha and ERAP75 in the context of prostate stromal cells. METHOD Yeast two-hybrid assays were used to screen novel ER alpha interaction proteins. The interaction between ER alpha and ERAP75 was confirmed by mammalian two-hybrid, GST pull-down, and co-immunoprecipitation methods. The interaction motif was examined by site-directed mutagenesis. The effect of ERAP75 on ER alpha transactivation and the expression of ER alpha target genes were determined by luciferase assay and real-time PCR, respectively. RESULT ER alpha can interact with the C terminus of ERAP75 via its ligand binding domain both in vivo and in vitro. The conserved LXXLL motif within the C terminus of ERAP75 is required for the interaction between ER alpha and ERAP75. ERAP75 can enhance ER alpha transactivation in a dose-dependent manner and up-regulate the expression of the endogenous ER alpha target gene, stromal-derived factor-1 (SDF-1), in the prostate stromal cells. CONCLUSION ERAP75 functions as a novel coactivator that can modulate ER alpha function in the prostate stromal cells. The understanding of the mechanism of ER alpha transactivation in prostate stromal cells could possibly help in the development of new strategies to control or treat prostate cancer by targeting its transactivation protein complex.
Collapse
Affiliation(s)
- Ming Chen
- Department of Urology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
136
|
Zilli M, Grassadonia A, Tinari N, Di Giacobbe A, Gildetti S, Giampietro J, Natoli C, Iacobelli S. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta Rev Cancer 2008; 1795:62-81. [PMID: 18804516 DOI: 10.1016/j.bbcan.2008.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 01/04/2023]
Abstract
The use of endocrine agents is a safe and effective treatment in the management of hormone-sensitive breast cancer. Unfortunately, sooner or later, tumor cells develop resistance to endocrine manipulation making useless this approach. During the last decade, new molecules and intracellular signaling pathways involved in endocrine resistance have been identified. Several studies have documented that estrogen receptor signaling may maintain a pivotal role in the tumor growth despite the failure of a previous hormonal treatment. In this review we will discuss the general principles for optimizing the choice of endocrine therapy based on an understanding of the molecular mechanisms responsible for resistance to the different anti-hormonal agents.
Collapse
Affiliation(s)
- Marinella Zilli
- Department of Oncology and Neurosciences, University G D'Annunzio Medical School, Via dei Vestini, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kim BK, Lim SO, Park YG. Requirement of the cyclic adenosine monophosphate response element-binding protein for hepatitis B virus replication. Hepatology 2008; 48:361-73. [PMID: 18615500 DOI: 10.1002/hep.22359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED The cyclic adenosine monophosphate-response element (CRE)-transcription factor complex participates in the regulation of viral gene expression and pathologic processes caused by various viruses. The hepatitis B virus (HBV) enhancer I directs liver-specific transcription of viral genes and contains a CRE sequence (HBV-CRE); however, whether the HBV-CRE and CRE-binding protein (CREB) are required for the HBV life cycle remains to be determined. This study was designed to investigate the role of CREB in HBV replication and gene expression. Sequence-comparison analysis of 984 HBVs reported worldwide showed that the HBV-CRE sequence is highly conserved, indicating the possibility that it plays an important role in the HBV life cycle. The binding of CREB to the HBV-CRE site was markedly inhibited by oligonucleotides containing HBV-CRE and consensus CRE sequences in vitro and in vivo. The HBV promoter activity was demonstrated to be dependent upon the transactivation activity of CREB. Treatment with CRE decoy oligonucleotides reduced HBV promoter activity, and this was reversed by CREB overexpression. The levels of viral transcripts, DNA, and antigens were remarkably decreased in response to the overexpression of CREB mutants or treatment with the CRE decoy oligonucleotides, whereas enhancing CREB activity increased the levels of viral transcripts. In addition, introduction of a three-base mutation into the HBV-CRE led to a marked reduction in HBV messenger RNA synthesis. CONCLUSION Taken together, our results demonstrate that both replication and gene expression of HBV require a functional CREB and HBV-CRE. We have also demonstrated that CRE decoy oligonucleotides and the overexpression of CREB mutants can effectively block the HBV life cycle, suggesting that interventions against CREB activity could provide a new avenue to treat HBV infection.
Collapse
Affiliation(s)
- Bo Kyung Kim
- Department of Biochemistry, Korea University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
138
|
Park SH, Cheung LWT, Wong AST, Leung PCK. Estrogen regulates Snail and Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor alpha. Mol Endocrinol 2008; 22:2085-98. [PMID: 18550773 DOI: 10.1210/me.2007-0512] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumorigenesis is a multistep process involving dysregulated cell growth and metastasis. Considerable evidence implicates a mitogenic action of estrogen in early ovarian carcinogenesis. In contrast, its influence in the metastatic cascade of ovarian tumor cells remains obscure. In the present study, we showed that 17beta-estradiol (E2) increased the metastatic potential of human epithelial ovarian cancer cell lines. E2 treatment led to clear morphological changes characteristic of epithelial-mesenchymal transition (EMT) and an enhanced cell migratory propensity. These morphological and functional alterations were associated with changes in the abundance of EMT-related genes. Upon E2 stimulation, expression and promoter activity of the epithelial marker E-cadherin were strikingly suppressed, whereas EMT-associated transcription factors, Snail and Slug, were significantly up-regulated. This up-regulation was attributed to the increase in gene transcription activated by E2. Depletion of endogenous Snail or Slug using small interfering RNA (siRNA) attenuated E2-mediated decrease in E-cadherin. In addition, E2-induced cell migration was also neutralized by the siRNAs, suggesting that both transcription factors are indispensable for the prometastatic actions of E2. More importantly, by using selective estrogen receptor (ER) agonists, forced expression, and siRNA approaches, we identified that E2 triggered the metastatic behaviors exclusively through an ERalpha-dependent pathway. We also showed that ERbeta had an opposing action on ERalpha because the presence of ERbeta completely inhibited the EMT and down-regulation of E-cadherin induced by ERalpha. Collectively, this study provides a compelling argument that estrogen can potentiate tumor progression by EMT induction and highlights the crucial role of ERalpha in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Se-Hyung Park
- Department of Obstetrics and Gynecology, University of British Columbia, 2H-30, 4490 Oak Street, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | |
Collapse
|
139
|
Lambertini E, Tavanti E, Torreggiani E, Penolazzi L, Gambari R, Piva R. ERalpha and AP-1 interact in vivo with a specific sequence of the F promoter of the human ERalpha gene in osteoblasts. J Cell Physiol 2008; 216:101-10. [PMID: 18247370 DOI: 10.1002/jcp.21379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Estrogen-responsive genes often have an estrogen response element (ERE) positioned next to activator protein-1 (AP-1) binding sites. Considering that the interaction between ERE and AP-1 elements has been described for the modulation of bone-specific genes, we investigated the 17-beta-estradiol responsiveness and the role of these cis-elements present in the F promoter of the human estrogen receptor alpha (ERalpha) gene. The F promoter, containing the sequence analyzed here, is one of the multiple promoters of the human ERalpha gene and is the only active promoter in bone tissue. Through electrophoretic mobility shift (EMSA), chromatin immunoprecipitation (ChIP), and re-ChIP assays, we investigated the binding of ERalpha and four members of the AP-1 family (c-Jun, c-fos, Fra-2, and ATF2) to a region located approximately 800 bp upstream of the transcriptional start site of exon F of the human ERalpha gene in SaOS-2 osteoblast-like cells. Reporter gene assay experiments in combination with DNA binding assays demonstrated that F promoter activity is under the control of upstream cis-acting elements which are recognized by specific combinations of ERalpha, c-Jun, c-fos, and ATF2 homo- and heterodimers. Moreover, ChIP and re-ChIP experiments showed that these nuclear factors bind the F promoter in vivo with a simultaneous occupancy stimulated by 17-beta-estradiol. Taken together, our findings support a model in which ERalpha/AP-1 complexes modulate F promoter activity under conditions of 17-beta-estradiol stimulation.
Collapse
Affiliation(s)
- Elisabetta Lambertini
- Department of Biochemistry and Molecular Biology, Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
140
|
Vasudevan N, Pfaff DW. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 2008; 29:238-57. [PMID: 18083219 DOI: 10.1016/j.yfrne.2007.08.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 08/14/2007] [Indexed: 12/16/2022]
Abstract
Ligands for the nuclear receptor superfamily have at least two mechanisms of action: (a) classical transcriptional regulation of target genes (genomic mechanisms); and (b) non-genomic actions, which are initiated at the cell membrane, which could also impact transcription. Though transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. This has led to considerable debate over the physiological relevance of membrane-initiated actions of hormones versus genomic actions of hormones, with genomic actions predominating in the endocrine field. There is good evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium and that these are linked to physiologically relevant scenarios in the brain. We show evidence in this review, that membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription in both the central nervous system and in non-neuronal cell lines. We present a theoretical scenario which can be used to understand this phenomenon. These signaling cascades may occur in parallel or in series but subsequently, converge at the modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other non-cognate hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription, though the relevance of this is less clear. The idea that coupling between membrane-initiated and genomic actions of hormones is a novel idea in neuroendocrinology and provides us with a unified view of hormone action in the central nervous system.
Collapse
Affiliation(s)
- Nandini Vasudevan
- Cell and Molecular Biology Department, Tulane University, LA 70118, USA.
| | | |
Collapse
|
141
|
Teng J, Wang ZY, Jarrard DF, Bjorling DE. Roles of estrogen receptor alpha and beta in modulating urothelial cell proliferation. Endocr Relat Cancer 2008; 15:351-64. [PMID: 18310301 PMCID: PMC3513362 DOI: 10.1677/erc.1.01255] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We reported previously that both subtypes of estrogen receptors, ERalpha and ERbeta, are expressed by human urothelial cells and mediate estrogen-induced cell proliferation in these cells. The aim of this study was to determine the extent to which each ER subtype contributes to urothelial cell proliferation and their possible involvement in the regulation of the cell cycle. We compared the expression of ERalpha and ERbeta mRNAs and protein quantitatively in primarily cultured human bladder urothelial cells obtained from six individuals with three immortalized urothelial (E6, E7, and UROtsa) and two bladder cancer cell lines (HTB-9 and T24). We found that all these cells express similar levels of ERbeta, but immortalized and cancer cells express much higher amounts of ERalpha than primary cells. Higher levels of ERalpha mRNA were also observed in the biopsies of bladder transitional cell carcinoma compared with sample from the same bladder unaffected by tumor. Using the ERalpha-selective agonist PPT, the ERbeta-selective agonist DPN, and specific small interfering RNA against ERalpha or ERbeta, we found that ERbeta predominantly mediates estrogen-induced G1/S transition and cell proliferation in the primary urothelial cells. By contrast, ERalpha predominantly mediates estrogen-induced G1/S transition and cell proliferation in bladder cancer cell lines. Furthermore, we found that 17beta-estradiol (E(2)) rapidly induces phosphorylation of extracellular signal-regulated kinases, but U0126, a mitogen-activated protein kinase kinase (MEK) inhibitor, does not affect E(2)-induced urothelial cell proliferation. E(2) up-regulated cyclin D1 and cyclin E expression in both the primary and bladder cancer cells, and the cancer cells have higher cyclin D1 and cyclin E expression during G0/G1 phases. Our data suggest that estrogen exerts its effects through different ER subtypes in urothelial cells. Increased expression of ERalpha may contribute to early induction of cyclin D1 and cyclin E during the cell cycle in bladder cancer cells.
Collapse
MESH Headings
- Blotting, Western
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/secondary
- Cell Proliferation
- Cyclin D
- Cyclin E/metabolism
- Cyclins/metabolism
- DNA Primers/chemistry
- Estradiol/pharmacology
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Estrogens/pharmacology
- Flow Cytometry
- G1 Phase/drug effects
- G1 Phase/physiology
- Humans
- Immunoenzyme Techniques
- Ligands
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Nitriles/pharmacology
- Phenols
- Pyrazoles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- S Phase/drug effects
- S Phase/physiology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Urothelium/metabolism
Collapse
Affiliation(s)
- Jian Teng
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
142
|
Balk SP, Knudsen KE. AR, the cell cycle, and prostate cancer. NUCLEAR RECEPTOR SIGNALING 2008; 6:e001. [PMID: 18301781 PMCID: PMC2254330 DOI: 10.1621/nrs.06001] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 12/07/2007] [Indexed: 01/17/2023]
Abstract
The androgen receptor (AR) is a critical effector of prostate cancer development and progression. The dependence of this tumor type on AR activity is exploited in treatment of disseminated prostate cancers, wherein ablation of AR function (achieved either through ligand depletion and/or the use of AR antagonists) is the first line of therapeutic intervention. These strategies are initially effective, and induce a mixed response of cell cycle arrest or apoptosis in prostate cancer cells. However, recurrent, incurable tumors ultimately arise as a result of inappropriately restored AR function. Based on these observations, it is imperative to define the mechanisms by which AR controls cancer cell proliferation. Mechanistic investigation has revealed that AR acts as a master regulator of G1-S phase progression, able to induce signals that promote G1 cyclin-dependent kinase (CDK) activity, induce phosphorylation/inactivation of the retinoblastoma tumor suppressor (RB), and thereby govern androgen-dependent proliferation. These functions appear to be independent of the recently identified TMPRSS2-ETS fusions. Once engaged, several components of the cell cycle machinery actively modulate AR activity throughout the cell cycle, thus indicating that crosstalk between the AR and cell cycle pathways likely modulate the mitogenic response to androgen. As will be discussed, discrete aberrations in this process can alter the proliferative response to androgen, and potentially subvert hormonal control of tumor progression.
Collapse
Affiliation(s)
- Steven P Balk
- Cancer Biology Program-Hematology Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
143
|
Budhram-Mahadeo VS, Irshad S, Bowen S, Lee SA, Samady L, Tonini GP, Latchman DS. Proliferation-associated Brn-3b transcription factor can activate cyclin D1 expression in neuroblastoma and breast cancer cells. Oncogene 2008; 27:145-54. [PMID: 17637757 DOI: 10.1038/sj.onc.1210621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brn-3b transcription factor enhances proliferation of neuroblastoma (NB) and breast cancer cell lines in vitro and increases the rate and size of in vivo tumour growth, whereas reducing Brn-3b slows growth, both in vitro and in vivo. Brn-3b is elevated in >65% of breast cancer biopsies, and here we demonstrate that Brn-3b is also elevated in NB tumours. We show a significant correlation between Brn-3b and cyclin D1 (CD1) in breast cancers and NB tumours and cell lines. Brn-3b directly transactivates the CD1 promoter in co-transfection experiments, whereas electrophoretic mobility shift assay and chromatin immunoprecipitation assays demonstrate that Brn-3b protein binds to an octamer sequence located in the proximal CD1 promoter. Site-directed mutagenesis of this sequence resulted in loss of transactivation of the CD1 promoter by Brn-3b. Thus, Brn-3b may act to alter growth properties of breast cancer and NB cells by enhancing CD1 expression in these cells.
Collapse
Affiliation(s)
- V S Budhram-Mahadeo
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
144
|
McCullough LD, Koerner IP, Hurn PD. Effects of gender and sex steroids on ischemic injury. HANDBOOK OF CLINICAL NEUROLOGY 2008; 92:149-69. [PMID: 18790274 DOI: 10.1016/s0072-9752(08)01908-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
145
|
Lalmansingh AS, Uht RM. Estradiol regulates corticotropin-releasing hormone gene (crh) expression in a rapid and phasic manner that parallels estrogen receptor-alpha and -beta recruitment to a 3',5'-cyclic adenosine 5'-monophosphate regulatory region of the proximal crh promoter. Endocrinology 2008; 149:346-57. [PMID: 17947358 PMCID: PMC2194609 DOI: 10.1210/en.2007-0372] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the central nervous system, CRH regulates several affective states. Dysregulation of neuronal crh expression in the paraventricular nucleus of the hypothalamus correlates with some forms of depression, and amygdalar crh expression may modulate levels of anxiety. Because estrogens modulate these states, we sought to determine 17beta-estradiol (E2) effects on crh expression. CRH mRNA levels were measured in the AR-5 amygdaloid cell line by RT-PCR analysis. They increased by 1 min of E2 treatment, suggesting that crh behaves as an immediate-early gene. After peaking at 3 min, CRH mRNA returned to basal levels and then increased by 60 min. To dissect some of the molecular mechanisms underlying these events, we measured occupancy of the crh promoter by estrogen receptors (ERs) and coactivators, using chromatin immunoprecipitation. Because this promoter does not contain palindromic estrogen response elements, we targeted the region of a cAMP regulatory element (CRE), implicated in crh regulation. The temporal pattern of the mRNA response was mimicked by recruitment of ERalpha and -beta, phospho-CRE-binding protein, coactivators steroid receptor coactivator-1 and CRE-binding protein-binding protein (CBP), and an increase in histone 3 and 4 acetylation. Lastly, ERalpha and -beta loading were temporally dissociated, peaking at 1 and 3 min, respectively. The ER peaks were associated with coactivators and acetylation patterns. ERalpha associated with phospho-CRE-binding protein, CBP, steroid receptor coactivator-1, and increased acetylated histone 3. ERbeta associated with CBP and increased acetylated histone 4. The tight temporal correlation between E2-induced CRH mRNA levels and promoter occupancy by ERs strongly suggest that E2 regulates crh expression through an ERalpha- and/or ERbeta-CRE alternate pathway.
Collapse
Affiliation(s)
- Avin S Lalmansingh
- Neuroscience Graduate Program, University of Virginia School of Medicine, P.O. Box 800733, Charlottesville, Virginia 22908-0733, USA
| | | |
Collapse
|
146
|
Umemura S, Yoshida S, Ohta Y, Naito K, Osamura RY, Tokuda Y. Increased phosphorylation of Akt in triple-negative breast cancers. Cancer Sci 2007; 98:1889-92. [PMID: 17892507 PMCID: PMC11158483 DOI: 10.1111/j.1349-7006.2007.00622.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cells from breast cancers lacking hormone receptors (estrogen receptor [ER], progesterone receptor [PgR]) and human epidermal growth factor receptor (HER) 2 strongly express the cell proliferation marker Ki-67. However, the mechanisms of and stimulus signals involved in cell proliferation of this type of breast cancer are not well understood. The aim of the present study was to examine the characteristics of signal transduction in triple-negative (ER-, PgR-, and HER2-negative) breast cancers. For 44 tumor samples, western blotting analysis was conducted to examine the phosphorylation of HER2, external signal-regulated kinase (ERK)1 and -2 and Akt, and the immunohistochemical phenotypes of the samples with respect to ER and HER2 were also assessed. Phosphorylation of HER2 was detected in 4 of 15 immunohistochemically HER2-positive tumor samples (26.7%). ERK1/2 was more highly phosphorylated in triple-negative breast cancers. Phosphorylation of Akt kinase was significantly higher in triple-negative breast cancers. Triple-negative breast cancers are characterized by increased phosphorylation of Akt kinase. In the present study, we found for the first time that there is a population with a significantly activated Akt pathway in this type of breast cancer.
Collapse
Affiliation(s)
- Shinobu Umemura
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | |
Collapse
|
147
|
Barré B, Perkins ND. A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J 2007; 26:4841-55. [PMID: 17962807 PMCID: PMC2099464 DOI: 10.1038/sj.emboj.7601899] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 09/27/2007] [Indexed: 11/09/2022] Open
Abstract
Aberrantly active NF-kappaB complexes can contribute to tumorigenesis by regulating genes that promote the growth and survival of cancer cells. We have investigated NF-kappaB during the cell cycle and find that its ability to regulate the G1-phase expression of key proto-oncogenes is subject to regulation by the integrated activity of IkappaB kinase (IKK)alpha, IKKbeta, Akt and Chk1. The coordinated binding of NF-kappaB subunits to the Cyclin D1, c-Myc and Skp2 promoters is dynamic with distinct changes in promoter occupancy and RelA(p65) phosphorylation occurring through G1, S and G2 phases, concomitant with a switch from coactivator to corepressor recruitment. Akt activity is required for IKK-dependent phosphorylation of NF-kappaB subunits in G1 and G2 phases, where Chk1 is inactive. However, in S-phase, Akt is inactivated, while Chk1 phosphorylates RelA and associates with IKKalpha, inhibiting the processing of the p100 (NF-kappaB2) subunit, which also plays a critical role in the regulation of these genes. These data reveal a complex regulatory network integrating NF-kappaB with the DNA-replication checkpoint and the expression of critical regulators of cell proliferation.
Collapse
Affiliation(s)
- Benjamin Barré
- Division of Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Neil D Perkins
- Division of Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
148
|
DeNardo DG, Cuba VL, Kim H, Wu K, Lee AV, Brown PH. Estrogen receptor DNA binding is not required for estrogen-induced breast cell growth. Mol Cell Endocrinol 2007; 277:13-25. [PMID: 17825481 DOI: 10.1016/j.mce.2007.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/10/2007] [Indexed: 11/16/2022]
Abstract
In this study, we determined whether ER DNA binding is necessary for estrogen to stimulate the growth of breast cancer cells. To investigate the requirement of ER DNA binding we expressed either wild-type or a DNA-binding mutant ERalpha in a clone of the MCF-7 breast cancer cell line that no longer expressed endogenous ERalpha. Estrogen did not activate non-genomic kinase cascades in the parental MCF-7 cells or in cells expressing ERalpha mutant. In cells expressing the ERalpha mutant, estrogen did not induce ERE-dependent gene expression but did induce AP-1- and Sp1-dependent gene expression and the cell cycle regulatory genes cyclin D1 and c-myc. However, we demonstrated that estrogen still induced cell proliferation in MCF-7 cells expressing the ERalpha mutant. These results demonstrate that ER DNA binding is not absolutely required for estrogen to induce breast cancer cell growth.
Collapse
Affiliation(s)
- David G DeNardo
- Department of Molecular and Cellular Biology, and Breast Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
149
|
Bhatnagar AS. The discovery and mechanism of action of letrozole. Breast Cancer Res Treat 2007; 105 Suppl 1:7-17. [PMID: 17912633 PMCID: PMC2001216 DOI: 10.1007/s10549-007-9696-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 07/17/2007] [Indexed: 12/21/2022]
Abstract
Because estrogen contributes to the promotion and progression of breast cancer, a greater understanding of the role of estrogen in breast cancer has led to therapeutic strategies targeting estrogen synthesis, the estrogen receptor, and intracellular signaling pathways. The enzyme aromatase catalyses the final step in estrogen biosynthesis and was identified as an attractive target for selective inhibition. Modern third-generation aromatase inhibitors (AIs) effectively block the production of estrogen without exerting effects on other steroidogenic pathways. The discovery of letrozole (Femara®) achieved the goal of discovering a highly potent and totally selective AI. Letrozole has greater potency than other AIs, including anastrozole, exemestane, formestane, and aminoglutethimide. Moreover, letrozole produces near complete inhibition of aromatase in peripheral tissues and is associated with greater suppression of estrogen than is achieved with other AIs. The potent anti-tumor effects of letrozole were demonstrated in several animal models. Studies with MCF-7Ca xenografts successfully predicted that letrozole would be clinically superior to the previous gold standard tamoxifen and also indicated that it may be more effective than other AIs. An extensive program of randomized clinical trials has demonstrated the clinical benefits of letrozole across the spectrum of hormone-responsive breast cancer in postmenopausal women.
Collapse
Affiliation(s)
- Ajay S Bhatnagar
- World Wide Services Group Ltd, Geispelgasse 13, CH-4132, Muttenz, Switzerland.
| |
Collapse
|
150
|
Hassan MH, Salama SA, Arafa HMM, Hamada FMA, Al-Hendy A. Adenovirus-mediated delivery of a dominant-negative estrogen receptor gene in uterine leiomyoma cells abrogates estrogen- and progesterone-regulated gene expression. J Clin Endocrinol Metab 2007; 92:3949-57. [PMID: 17635941 DOI: 10.1210/jc.2007-0823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CONTEXT Human uterine leiomyomas are very common smooth muscle cell tumors that occur in reproductive-age women and are the leading reason for performing hysterectomies. The present study was conducted to explore the potential mechanism behind the effects exerted by dominant-negative estrogen receptors (DNERs) delivered by adenovirus to leiomyoma cells to ascertain the utility of DNERs as a novel strategy for treatment of uterine fibroids. OBJECTIVE AND METHODS We investigated the ability of DNER to affect estrogen response element (ERE) activity induced by wild-type estrogen receptor (ER) by using the adenovirus ERE luciferase (Ad-ERE-luc) system in ELT3 cells and the effect of graded doses of DNER (10, 50, and 100 plaque-forming units/cell) on the expression of some selected genes controlling cultured human leiomyoma cell proliferation (cyclin D1, Cox2, PCNA, VEGF, and EGF), apoptosis (Bcl2 and Bax), estrogen metabolism (COMT), and extracellular matrix formation (MMP(1)) as well as progesterone receptors (A and B) were assessed using Western blot analysis. These genes are all regulated by estrogen and/or progesterone. RESULTS DNER has the ability to suppress the ERE luc activity induced by wild-type ER (P < 0.01) and significantly (P < 0.05) reverse the expression of all estrogen- and progesterone-regulated genes in this study. CONCLUSIONS These results suggest that interruption of the estrogen signaling pathway using DNER results in modulation of both estrogen- and progesterone-regulated genes that control leiomyoma cell apoptosis, proliferation, extracellular matrix formation, progesterone receptors, and estrogen metabolism, which might account for the DNER mechanism of action.
Collapse
Affiliation(s)
- Memy H Hassan
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0587, USA
| | | | | | | | | |
Collapse
|