101
|
Alfonso-Loeches S, Guerri C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 2011; 48:19-47. [PMID: 21657944 DOI: 10.3109/10408363.2011.580567] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The brain is one of the major target organs of alcohol actions. Alcohol abuse can lead to alterations in brain structure and functions and, in some cases, to neurodegeneration. Cognitive deficits and alcohol dependence are highly damaging consequences of alcohol abuse. Clinical and experimental studies have demonstrated that the developing brain is particularly vulnerable to alcohol, and that drinking during gestation can lead to a range of physical, learning and behavioral defects (fetal alcohol spectrum disorders), with the most dramatic presentation corresponding to fetal alcohol syndrome. Recent findings also indicate that adolescence is a stage of brain maturation and that heavy drinking at this stage can have a negative impact on brain structure and functions causing important short- and long-term cognitive and behavioral consequences. The effects of alcohol on the brain are not uniform; some brain areas or cell populations are more vulnerable than others. The prefrontal cortex, the hippocampus, the cerebellum, the white matter and glial cells are particularly susceptible to the effects of ethanol. The molecular actions of alcohol on the brain are complex and involve numerous mechanisms and signaling pathways. Some of the mechanisms involved are common for the adult brain and for the developing brain, while others depend on the developmental stage. During brain ontogeny, alcohol causes irreversible alterations to the brain structure. It also impairs several molecular, neurochemical and cellular events taking place during normal brain development, including alterations in both gene expression regulation and the molecules involved in cell-cell interactions, interference with the mitogenic and growth factor response, enhancement of free radical formation and derangements of glial cell functions. However, in both adult and adolescent brains, alcohol damages specific brain areas through mechanisms involving excitotoxicity, free radical formation and neuroinflammatory damage resulting from activation of the innate immune system mediated by TLR4 receptors. Alcohol also acts on specific membrane proteins, such as neurotransmitter receptors (e.g. NMDA, GABA-A), ion channels (e.g. L-type Ca²⁺ channels, GIRKs), and signaling pathways (e.g. PKA and PKC signaling). These effects might underlie the wide variety of behavioral effects induced by ethanol drinking. The neuroadaptive changes affecting neurotransmission systems which are more sensitive to the acute effects of alcohol occur after long-term alcohol consumption. Alcohol-induced maladaptations in the dopaminergic mesolimbic system, abnormal plastic changes in the reward-related brain areas and genetic and epigenetic factors may all contribute to alcohol reinforcement and alcohol addiction. This manuscript reviews the mechanisms by which ethanol impacts the adult and the developing brain, and causes both neural impairments and cognitive and behavioral dysfunctions. The identification and the understanding of the cellular and molecular mechanisms involved in ethanol toxicity might contribute to the development of treatments and/or therapeutic agents that could reduce or eliminate the deleterious effects of alcohol on the brain.
Collapse
|
102
|
Non-steroidal anti-inflammatory drugs and cognitive function: are prostaglandins at the heart of cognitive impairment in dementia and delirium? J Neuroimmune Pharmacol 2011; 7:60-73. [PMID: 21932048 PMCID: PMC3280386 DOI: 10.1007/s11481-011-9312-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/29/2011] [Indexed: 12/11/2022]
Abstract
Studies of non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatoid arthritis imply that inflammation is important in the development of Alzheimer’s disease (AD). However, these drugs have not alleviated the symptoms of AD in those who have already developed dementia. This suggests that the primary mediator targeted by these drugs, PGE2, is not actively suppressing memory function in AD. Amyloid-β oligomers appear to be important for the mild cognitive changes seen in AD transgenic mice, yet amyloid immunotherapy has also proven unsuccessful in clinical trials. Collectively, these findings indicate that NSAIDs may target a prodromal process in mice that has already passed in those diagnosed with AD, and that synaptic and neuronal loss are key determinants of cognitive dysfunction in AD. While the role of inflammation has not yet become clear, inflammatory processes definitely have a negative impact on cognitive function during episodes of delirium during dementia. Delirium is an acute and profound impairment of cognitive function frequently occurring in aged and demented patients exposed to systemic inflammatory insults, which is now recognised to contribute to long-term cognitive decline. Recent work in animal models is beginning to shed light on the interactions between systemic inflammation and CNS pathology in these acute exacerbations of dementia. This review will assess the role of prostaglandin synthesis in the memory impairments observed in dementia and delirium and will examine the relative contribution of amyloid, synaptic and neuronal loss. We will also discuss how understanding the role of inflammatory mediators in delirious episodes will have major implications for ameliorating the rate of decline in the demented population.
Collapse
|
103
|
Inhibition of prostaglandin E2 EP3 receptors improves stroke injury via anti-inflammatory and anti-apoptotic mechanisms. J Neuroimmunol 2011; 238:34-43. [DOI: 10.1016/j.jneuroim.2011.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 01/05/2023]
|
104
|
Sang N, Yun Y, Yao GY, Li HY, Guo L, Li GK. SO2-Induced Neurotoxicity Is Mediated by Cyclooxygenases-2-Derived Prostaglandin E2 and its Downstream Signaling Pathway in Rat Hippocampal Neurons. Toxicol Sci 2011; 124:400-13. [DOI: 10.1093/toxsci/kfr224] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
105
|
Bicca MA, Figueiredo CP, Piermartiri TC, Meotti FC, Bouzon ZL, Tasca CI, Medeiros R, Calixto JB. The selective and competitive N-methyl-D-aspartate receptor antagonist, (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-β in mice. Neuroscience 2011; 192:631-41. [PMID: 21756976 DOI: 10.1016/j.neuroscience.2011.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
The toxicity of amyloid β (Aβ) is highly associated with Alzheimer's disease (AD), which has a high incidence in elderly people worldwide. While the current treatment for moderate and severe AD includes blockage of the N-methyl-d-aspartate receptor (NMDAR), the molecular mechanisms of its effect are still poorly understood. Herein, we report that a single i.p. administration of the selective and competitive (NMDAR) antagonist LY235959 reduced Aβ neurotoxicity by preventing the down-regulation of glial glutamate transporters (glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)), the decrease in glutamate uptake, and the production of reactive oxygen species (ROS) induced by Aβ(1-40). Importantly, the blockage of NMDAR restored the Aβ(1-40)-induced synaptic dysfunction and cognitive impairment. However, LY235959 failed to prevent the inflammatory response associated with Aβ(1-40) treatment. Altogether, our data indicate that the acute administration of Aβ promotes oxidative stress, a decrease in glutamate transporter expression, and neurotoxicity. Our results reinforce the idea that NMDAR plays a critical regulatory action in Aβ toxicity and they provide further pre-clinical evidence for the potential role of the selective and competitive NMDAR antagonists in the treatment of AD.
Collapse
Affiliation(s)
- M A Bicca
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Hugyecz M, Mracskó E, Hertelendy P, Farkas E, Domoki F, Bari F. Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus. Brain Res 2011; 1404:31-8. [PMID: 21718970 DOI: 10.1016/j.brainres.2011.05.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 01/23/2023]
Abstract
Transient global cerebral ischemia (TGCI) occurs during acute severe hypotension depriving the brain of oxygen and glucose for a short period of time. During reperfusion, several mechanisms can induce secondary neuronal damage, including the increased production of reactive oxygen species (ROS). Hydrogen gas-enriched air inhalation is a neuroprotective approach with proven antioxidant potential, which has not yet been examined in TGCI. Accordingly, we set out to describe the effect of inhalation of 2.1% hydrogen supplemented room air (H(2)-RA) in comparison with a well studied neuroprotective agent, rosiglitazone (RSG) in a TGCI rat model. Male Wistar rats were exposed to TGCI (n=26) or sham operation (n=26), while a third group served as intact control (naive, n=5). The operated groups were further divided into non-treated, H(2)-RA, RSG (6 mg/kg i.v.) and vehicle treated animals. Tissue samples from the hippocampus and frontal cortex were taken 3 days following surgery. Western blot analysis was applied to determine the expressions of cyclooxygenase-2 (COX-2), neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively), manganese superoxide dismutase (MnSOD) and glial connexin proteins: connexin 30 and connexin 43. The expressions of COX-2, and connexin proteins were upregulated, while nNOS was downregulated 3 days after TGCI. Both RSG and H(2)-RA prevented the changes of enzyme and connexin levels. Considering the lack of harmful side effects, inhalation of H(2)-RA can be a promising approach to reduce neuronal damage after TGCI.
Collapse
Affiliation(s)
- Marietta Hugyecz
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Dóm tér 10, H-6720, Hungary
| | | | | | | | | | | |
Collapse
|
107
|
Ganea D, Kocieda V, Kong W, Yen JH. Modulation of dendritic cell function by PGE2 and DHA: a framework for understanding the role of dendritic cells in neuroinflammation. ACTA ACUST UNITED AC 2011; 6:277-291. [PMID: 21804863 DOI: 10.2217/clp.11.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroinflammation characterizes various neurological disorders. Peripheral immune cells and CNS-resident glia contribute to neuroinflammation and impact CNS degeneration, recovery and regeneration. Recently, the role of dendritic cells in neuroinflammation received special attention. The function of infiltrating immune cells and resident glia is affected by various factors, including lipid mediators. Polyunsaturated fatty acids, especially n-6 arachidonic acid and n-3 docosahexaenoic acid (DHA), the most abundant in the CNS, play an important role in neuroinflammation. The major arachidonic acid bioactive derivative in immune cells, PGE2, and DHA have been reported to have opposite effects on dendritic cells in terms of cytokine production and activation/differentiation of CD4(+) T cells. Here we review the existing information on PGE2 and DHA modulation of dendritic cell function and the potential impact of these lipid mediators of dendritic cells in CNS inflammatory disorders.
Collapse
Affiliation(s)
- Doina Ganea
- Department of Microbiology & Immunology, Temple University School of Medicine, 3500 N Broad Sreet, PA 19140, USA
| | | | | | | |
Collapse
|
108
|
Sutherland BA, Shaw OM, Clarkson AN, Winburn IC, Errington AC, Dixon CL, Lees G, Sammut IA, Appleton I. Tin protoporphyrin provides protection following cerebral hypoxia-ischemia: involvement of alternative pathways. J Neurosci Res 2011; 89:1284-94. [PMID: 21538467 DOI: 10.1002/jnr.22661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/20/2011] [Accepted: 03/10/2011] [Indexed: 11/06/2022]
Abstract
The contribution of heme oxygenase (HO)-linked pathways to neurodegeneration following cerebral hypoxia-ischemia (HI) remains unclear. We investigated whether HO modulators affected HI-induced brain damage and explored potential mechanisms involved. HI was induced in 26-day-old male Wistar rats by left common carotid artery ligation, followed by exposure to a humidified atmosphere of 8% oxygen for 1 hr. Tin protoporphyrin (SnPP; an HO inhibitor), ferriprotoporphyrin (FePP; an HO inducer), or saline was administered intraperitoneally once daily from 1 day prior to HI until sacrifice at 3 days post-HI. SnPP reduced (P < 0.05) infarct volume compared with saline-treated animals, but FePP had no effect on brain injury. SnPP did not significantly inhibit HO activity at 3 days post-HI, but SnPP increased (P < 0.001) total nitric oxide synthase (NOS) activity compared with HI + saline. Both inducible NOS and cyclooxygenase activities were attenuated (P < 0.05) by SnPP, whereas mitochondrial complex I and V activities were augmented (P < 0.05) by SnPP. SnPP had no effect on NMDA receptor currents. Overall, like other HO inhibitors, SnPP produced many nonselective effects, such as attenuation of inflammatory enzymes and increased mitochondrial respiratory function, which were associated with a protective response 3 days post-HI.
Collapse
Affiliation(s)
- Brad A Sutherland
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Licofelone attenuates quinolinic acid induced Huntington like symptoms: possible behavioral, biochemical and cellular alterations. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:607-15. [PMID: 21237233 DOI: 10.1016/j.pnpbp.2011.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/08/2010] [Accepted: 01/05/2011] [Indexed: 11/22/2022]
Abstract
Cyclo-oxygenase and lipoxygenase enzymes are involved in arachidonic acid metabolism. Emerging evidence indicates that cyclo-oxygenase and lipoxygenase inhibitors prevent neurodegenerative processes and related complications. Therefore, the present study has been designed to explore the neuroprotective potential of licofelone (dual COX-2/5-LOX inhibitor) against quinolinic acid induced Huntington like symptom in rats. Intrastriatal administration of quinolinic acid significantly caused reduction in body weight and motor function (locomotor activity, rotarod performance and beam walk test), oxidative defense (as evidenced by increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidant enzymes), alteration in mitochondrial enzyme complex (I, II and IV) activities, raised TNF-α level and striatal lesion volume as compared to sham treated animals. Licofelone (2.5, 5 and 10 mg/kg) treatment significantly improved body weight, locomotor activity, rotarod performance, balance beam walk performance, oxidative defense, mitochondrial enzyme complex activities and attenuated TNF-α level and striatal lesion as compared to control (quinolinic acid). The present study highlights that licofelone attenuates behavioral, biochemical and cellular alterations against quinolinic acid induced neurotoxicity and this could be an important therapeutic avenue to ameliorate the Huntington like symptoms.
Collapse
|
110
|
Kendall GS, Hristova M, Hirstova M, Horn S, Dafou D, Acosta-Saltos A, Almolda B, Zbarsky V, Rumajogee P, Heuer H, Castellano B, Pfeffer K, Nedospasov SA, Peebles DM, Raivich G. TNF gene cluster deletion abolishes lipopolysaccharide-mediated sensitization of the neonatal brain to hypoxic ischemic insult. J Transl Med 2011; 91:328-41. [PMID: 21135813 DOI: 10.1038/labinvest.2010.192] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the current study, we explored the role of TNF cluster cytokines on the lipopolysaccharide (LPS)-mediated, synergistic increase in brain injury after hypoxic ischemic insult in postnatal day 7 mice. Pretreatment with moderate doses of LPS (0.3 μg/g) resulted in particularly pronounced synergistic injury within 12 h. Systemic application of LPS alone resulted in a strong upregulation of inflammation-associated cytokines TNFα, LTβ, interleukin (IL) 1β, IL6, chemokines, such as CXCL1, and adhesion molecules E-Selectin, P-Selectin and intercellular adhesion molecule-1 (ICAM1), as well as a trend toward increased LTα levels in day 7 mouse forebrain. In addition, it was also associated with strong activation of brain blood vessel endothelia and local microglial cells. Here, deletion of the entire TNF gene cluster, removing TNFα, LTβ and LTα completely abolished endotoxin-mediated increase in the volume of cerebral infarct. Interestingly, the same deletion also prevented endothelial and microglial activation following application of LPS alone, suggesting the involvement of these cell types in bringing about the LPS-mediated sensitization to neonatal brain injury.
Collapse
Affiliation(s)
- Giles S Kendall
- Perinatal Brain Repair Group, Centre for Perinatal Brain Protection and Repair, Institute of Women's Health, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Chan SJ, Wong WSF, Wong PTH, Bian JS. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol 2011; 161:668-79. [PMID: 20880404 DOI: 10.1111/j.1476-5381.2010.00906.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Andrographolide is a diterpenoid lactone isolated from a traditional medicinal herb, Andrographis paniculata. It possesses potent anti-inflammatory activity. The present study examined potential therapeutic effects of andrographolide on cerebral ischaemia using a rat model with permanent middle cerebral artery occlusion (pMCAO). EXPERIMENTAL APPROACH The MCA in rats was permanently occluded (by cautery), and 24 h later neurological effects were assessed with behavioural scores. Infarct volume and microglial activation were determined histologically. The p65 form of the transcription factor, nuclear factor-κB (NF-κB), was measured by Western blot, and cytokines by immunoassay of brain extracts. KEY RESULTS Andrographolide, given i.p. 1 h after pMCAO, reduced infarct volume with a maximum reduction of approximately 50% obtained at 0.1 mg·kg(-1). Neurological deficits were also reduced by andrographolide, reflecting a correlation between infarct volume and neurological deficits. pMCAO was found to induce activation of microglia and elevate tumour necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin (PG)E(2) in the ischaemic brain areas. Andrographolide (0.1 mg·kg(-1)) significantly attenuated or abolished these effects. In addition, andrographolide suppressed the translocation of p65 from cytosol to nucleus, indicating reduced NF-κB activation. CONCLUSIONS AND IMPLICATIONS Andrographolide exhibited neuroprotective effects, with accompanying suppression of NF-κB and microglial activation, and reduction in the production of cytokines including TNF-α and IL-1β, and pro-inflammatory factors such as PGE(2). Our findings suggest that andrographolide may have therapeutic value in the treatment of stroke.
Collapse
Affiliation(s)
- Su Jing Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
112
|
Glycyrrhizin Treatment Is Associated with Attenuation of Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression. J Surg Res 2011; 165:e29-35. [DOI: 10.1016/j.jss.2010.10.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 11/22/2022]
|
113
|
Ryan JC, Cross CA, Van Dolah FM. Effects of COX inhibitors on neurodegeneration and survival in mice exposed to the marine neurotoxin domoic acid. Neurosci Lett 2011; 487:83-7. [DOI: 10.1016/j.neulet.2010.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 02/02/2023]
|
114
|
|
115
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
116
|
Kunz A, Dirnagl U, Mergenthaler P. Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract Res Clin Anaesthesiol 2010; 24:495-509. [DOI: 10.1016/j.bpa.2010.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/11/2010] [Indexed: 12/23/2022]
|
117
|
Acute 17β-Estradiol Pretreatment Protects Against Abdominal Aortic Occlusion Induced Spinal Cord Ischemic-Reperfusion Injury. Neurochem Res 2010; 36:268-80. [DOI: 10.1007/s11064-010-0314-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2010] [Indexed: 11/26/2022]
|
118
|
Ikeda-Matsuo Y, Tanji H, Ota A, Hirayama Y, Uematsu S, Akira S, Sasaki Y. Microsomal prostaglandin E synthase-1 contributes to ischaemic excitotoxicity through prostaglandin E2 EP3 receptors. Br J Pharmacol 2010; 160:847-59. [PMID: 20590584 DOI: 10.1111/j.1476-5381.2010.00711.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Although microsomal prostaglandin E synthase (mPGES)-1 is known to contribute to stroke injury, the underlying mechanisms remain poorly understood. This study examines the hypothesis that EP(3) receptors contribute to stroke injury as downstream effectors of mPGES-1 neurotoxicity through Rho kinase activation. EXPERIMENTAL APPROACH We used a glutamate-induced excitotoxicity model in cultured rat and mouse hippocampal slices and a mouse middle cerebral artery occlusion-reperfusion model. Effects of an EP(3) receptor antagonist on neuronal damage in mPGES-1 knockout (KO) mice was compared with that in wild-type (WT) mice. KEY RESULTS In cultures of rat hippocampal slices, the mRNAs of EP(1-4) receptors were constitutively expressed and only the EP(3) receptor antagonist ONO-AE3-240 attenuated and only the EP(3) receptor agonist ONO-AE-248 augmented glutamate-induced excitotoxicity in CA1 neurons. Hippocampal slices from mPGES-1 KO mice showed less excitotoxicity than those from WT mice and the EP(3) receptor antagonist did not attenuate the excitotoxicity. In transient focal ischaemia models, injection (i.p.) of an EP(3) antagonist reduced infarction, oedema and neurological dysfunction in WT mice, but not in mPGES-1 KO mice, which showed less injury than WT mice. EP(3) receptor agonist-induced augmentation of excitotoxicity in vitro was ameliorated by the Rho kinase inhibitor Y-27632 and Pertussis toxin. The Rho kinase inhibitor HA-1077 also ameliorated stroke injury in vivo. CONCLUSION AND IMPLICATIONS Activity of mPGES-1 exacerbated stroke injury through EP(3) receptors and activation of Rho kinase and/or G(i). Thus, mPGES-1 and EP(3) receptors may be valuable therapeutic targets for treatment of human stroke.
Collapse
Affiliation(s)
- Y Ikeda-Matsuo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
119
|
Poddar R, Deb I, Mukherjee S, Paul S. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death. J Neurochem 2010; 115:1350-62. [PMID: 21029094 DOI: 10.1111/j.1471-4159.2010.07035.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study examines the role of a neuron-specific tyrosine phosphatase (STEP, striatal-enriched tyrosine phosphatase) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation. Conversely, activation of NR2B-NMDA receptors leads to dephosphorylation and subsequent activation of STEP, which in turn leads to inactivation of p38 MAPK. Thus, during transient NMDA receptor stimulation, increases in STEP activity appears to limit the duration of activation of p38 MAPK and improves neuronal survival. However, if NR2B-NMDA receptor stimulation is sustained, protective effects of STEP activation are lost, as these stimuli cause significant degradation of active STEP, leading to secondary activation of p38 MAPK. Consistent with this observation, a cell transducible TAT-STEP peptide that constitutively binds to p38 MAPK attenuated neuronal cell death caused by sustained NMDA receptor stimulation. The findings imply that the activation and levels of STEP are dependent on the duration and magnitude of NR2B-NMDA receptor stimulation and STEP serves as a modulator of NMDA receptor dependent neuronal injury, through its regulation of p38 MAPK.
Collapse
Affiliation(s)
- Ranjana Poddar
- University of New Mexico Health Sciences Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
120
|
Zhao Y, Rempe DA. Targeting astrocytes for stroke therapy. Neurotherapeutics 2010; 7:439-51. [PMID: 20880507 PMCID: PMC5084305 DOI: 10.1016/j.nurt.2010.07.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/01/2010] [Accepted: 07/26/2010] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major health problem and is a leading cause of death and disability. Past research and neurotherapeutic clinical trials have targeted the molecular mechanisms of neuronal cell death during stroke, but this approach has uniformly failed to reduce stroke-induced damage or to improve functional recovery. Beyond the intrinsic molecular mechanisms inducing neuronal death during ischemia, survival and function of astrocytes is absolutely required for neuronal survival and for functional recovery after stroke. Many functions of astrocytes likely improve neuronal viability during stroke. For example, uptake of glutamate and release of neurotrophins enhances neuronal viability during ischemia. Under certain conditions, however, astrocyte function may compromise neuronal viability. For example, astrocytes may produce inflammatory cytokines or toxic mediators, or may release glutamate. The only clinical neurotherapeutic trial for stroke that specifically targeted astrocyte function focused on reducing release of S-100β from astrocytes, which becomes a neurotoxin when present at high levels. Recent work also suggests that astrocytes, beyond their influence on cell survival, also contribute to angiogenesis, neuronal plasticity, and functional recovery in the several days to weeks after stroke. If these delayed functions of astrocytes could be targeted for enhancing stroke recovery, it could contribute importantly to improving stroke recovery. This review focuses on both the positive and the negative influences of astrocytes during stroke, especially as they may be targeted for translation to human trials.
Collapse
Affiliation(s)
- Yanxin Zhao
- grid.16416.340000000419369174Department of Neurology in the Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, 14642 Rochester, New York
| | - David A. Rempe
- grid.16416.340000000419369174Department of Neurology in the Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, 14642 Rochester, New York
| |
Collapse
|
121
|
Holtman L, van Vliet EA, Edelbroek PM, Aronica E, Gorter JA. Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res 2010; 91:49-56. [DOI: 10.1016/j.eplepsyres.2010.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/02/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
|
122
|
Kishimoto K, Li RC, Zhang J, Klaus JA, Kibler KK, Doré S, Koehler RC, Sapirstein A. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice. J Neuroinflammation 2010; 7:42. [PMID: 20673332 PMCID: PMC2923122 DOI: 10.1186/1742-2094-7-42] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 07/30/2010] [Indexed: 02/06/2023] Open
Abstract
Background The enzyme cytosolic phospholipase A2 alpha (cPLA2α) has been implicated in the progression of cerebral injury following ischemia and reperfusion. Previous studies in rodents suggest that cPLA2α enhances delayed injury extension and disruption of the blood brain barrier many hours after reperfusion. In this study we investigated the role of cPLA2α in early ischemic cerebral injury. Methods Middle cerebral artery occlusion (MCAO) was performed on cPLA2α+/+ and cPLA2α-/- mice for 2 hours followed by 0, 2, or 6 hours of reperfusion. The levels of cPLA2α, cyclooxygenase-2, neuronal morphology and reactive oxygen species in the ischemic and contralateral hemispheres were evaluated by light and fluorescent microscopy. PGE2 content was compared between genotypes and hemispheres after MCAO and MCAO and 6 hours reperfusion. Regional cerebral blood flow was measured during MCAO and phosphorylation of relevant MAPKs in brain protein homogenates was measured by Western analysis after 6 hours of reperfusion. Results Neuronal cPLA2α protein increased by 2-fold immediately after MCAO and returned to pre-MCAO levels after 2 hours reperfusion. Neuronal cyclooxygenase-2 induction and PGE2 concentration were greater in cPLA2α+/+ compared to cPLA2α-/- ischemic cortex. Neuronal swelling in ischemic regions was significantly greater in the cPLA2α+/+ than in cPLA2α-/- brains (+/+: 2.2 ± 0.3 fold vs. -/-: 1.7 ± 0.4 fold increase; P < 0.01). The increase in reactive oxygen species following 2 hours of ischemia was also significantly greater in the cPLA2α+/+ ischemic core than in cPLA2α-/- (+/+: 7.12 ± 1.2 fold vs. -/-: 3.1 ± 1.4 fold; P < 0.01). After 6 hours of reperfusion ischemic cortex of cPLA2α+/+, but not cPLA2α-/-, had disruption of neuron morphology and decreased PGE2 content. Phosphorylation of the MAPKs-p38, ERK 1/2, and MEK 1/2-was significantly greater in cPLA2a+/+ than in cPLA2α-/- ischemic cortex 6 hours after reperfusion. Conclusions These results indicate that cPLA2α modulates the earliest molecular and injury responses after cerebral ischemia and have implications for the potential clinical use of cPLA2α inhibitors.
Collapse
Affiliation(s)
- Koji Kishimoto
- The Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BRS, Drummond GR, Sobey CG. Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 2010; 30:1306-17. [PMID: 20145655 PMCID: PMC2949221 DOI: 10.1038/jcbfm.2010.14] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral infarct volume is typically smaller in premenopausal females than in age-matched males after ischemic stroke, but the underlying mechanisms are poorly understood. In this study we provide evidence in mice that this gender difference only occurs when the ischemic brain is reperfused. The limited tissue salvage achieved by reperfusion in male mice is associated with increased expression of proinflammatory proteins, including cyclooxygenase-2 (Cox-2), Nox2, and vascular cell adhesion molecule-1 (VCAM-1), and infiltration of Nox2-containing T lymphocytes into the infarcted brain, whereas such changes are minimal in female mice after ischemia-reperfusion (I-R). Infarct volume after I-R was no greater at 72 h than at 24 h in either gender. Infarct development was Nox2 dependent in male but not in female mice, and Nox2 within the infarct was predominantly localized in T lymphocytes. Stroke resulted in an approximately 15-fold increase in Nox2-dependent superoxide production by circulating, but not spleen-derived, T lymphocytes in male mice, and this was approximately sevenfold greater than in female mice. These circulating immune cells may thus represent a major and previously unrecognized source of superoxide in the acutely ischemic and reperfused brain of males (and potentially in postmenopausal females). Our findings provide novel insights into mechanisms that could be therapeutically targeted in acute ischemic stroke patients who receive thrombolysis therapy to induce cerebral reperfusion.
Collapse
Affiliation(s)
- Vanessa H Brait
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Yagami T. Cerebral arachidonate cascade in dementia: Alzheimer's disease and vascular dementia. Curr Neuropharmacol 2010; 4:87-100. [PMID: 18615138 DOI: 10.2174/157015906775203011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/17/2005] [Accepted: 09/30/2005] [Indexed: 11/22/2022] Open
Abstract
Phospholipase A(2) (PLA(2)), cyclooxygenase (COX) and prostaglandin (PG) synthase are enzymes involved in arachidonate cascade. PLA(2) liberates arachidonic acid (AA) from cell membrane lipids. COX oxidizes AA to PGG(2) followed by an endoperoxidase reaction that converts PGG(2) into PGH(2). PGs are generated from astrocytes, microglial cells and neurons in the central nervous system, and are altered in the brain of demented patients. Dementia is principally diagnosed into Alzheimer's disease (AD) and vascular dementia (VaD). In older patients, the brain lesions associated with each pathological process often occur together. Regional brain microvascular abnormalities appear before cognitive decline and neurodegeneration. The coexistence of AD and VaD pathology is often termed mixed dementia. AD and VaD brain lesions interact in important ways to decline cognition, suggesting common pathways of the two neurological diseases. Arachidonate cascade is one of the converged intracellular signal transductions between AD and VaD. PLA(2) from mammalian sources are classified as secreted (sPLA(2)), Ca(2+)-dependent, cytosolic (cPLA(2)) and Ca(2+)-independent cytosolic PLA(2) (iPLA(2)). PLA(2) activity can be regulated by calcium, by phosphorylation, and by agonists binding to G-protein-coupled receptors. cPLA(2) is upregulalted in AD, but iPLA(2) is downregulated. On the other hand, sPLA(2) is increased in animal models for VaD. COX-2 is induced and PGD(2) are elevated in both AD and VaD. This review presents evidences for central roles of PLA(2)s, COXs and PGs in the dementia.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Faculty of Health Care Sciences, Himeji Dokkyo University, 2-1, Kami-ohno 7-Chome, Himeji, Hyogo, 670-8524, Japan.
| |
Collapse
|
125
|
Moore AH, Bigbee MJ, Boynton GE, Wakeham CM, Rosenheim HM, Staral CJ, Morrissey JL, Hund AK. Non-Steroidal Anti-Inflammatory Drugs in Alzheimer's Disease and Parkinson's Disease: Reconsidering the Role of Neuroinflammation. Pharmaceuticals (Basel) 2010; 3:1812-1841. [PMID: 27713331 PMCID: PMC4033954 DOI: 10.3390/ph3061812] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/10/2010] [Accepted: 06/02/2010] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases with age as the greatest risk factor. As the general population experiences extended life span, preparation for the prevention and treatment of these and other age-associated neurological diseases are warranted. Since epidemiological studies suggested that non-steroidal anti-inflammatory drug (NSAID) use decreased risk for AD and PD, increasing attention has been devoted to understanding the costs and benefits of the innate neuroinflammatory response to functional recovery following pathology onset. This review will provide a general overview on the role of neuroinflammation in these neurodegenerative diseases and an update on NSAID treatment in recent experimental animal models, epidemiological analyses, and clinical trials.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA.
| | - Matthew J Bigbee
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Grace E Boynton
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Colin M Wakeham
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Hilary M Rosenheim
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Christopher J Staral
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - James L Morrissey
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Amanda K Hund
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| |
Collapse
|
126
|
Effects of treadmill exercise on cyclooxygenase-2 in the hippocampus in type 2 diabetic rats: Correlation with the neuroblasts. Brain Res 2010; 1341:84-92. [DOI: 10.1016/j.brainres.2010.02.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/07/2010] [Accepted: 02/19/2010] [Indexed: 11/20/2022]
|
127
|
Aid S, Parikh N, Palumbo S, Bosetti F. Neuronal overexpression of cyclooxygenase-2 does not alter the neuroinflammatory response during brain innate immune activation. Neurosci Lett 2010; 478:113-8. [PMID: 20451580 DOI: 10.1016/j.neulet.2010.04.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 04/05/2010] [Accepted: 04/30/2010] [Indexed: 11/29/2022]
Abstract
Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells.
Collapse
Affiliation(s)
- Saba Aid
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
128
|
Knutson N, Wood CE. Interaction of PGHS-2 and glutamatergic mechanisms controlling the ovine fetal hypothalamus-pituitary-adrenal axis. Am J Physiol Regul Integr Comp Physiol 2010; 299:R365-70. [PMID: 20445154 DOI: 10.1152/ajpregu.00163.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandins, generated within the fetal brain, are integral components of the mechanism controlling the fetal hypothalamus-pituitary-adrenal (HPA) axis. Previous studies in this laboratory demonstrated that prostaglandin G/H synthase isozyme 2 (PGHS-2) inhibition reduces the fetal HPA axis response to cerebral hypoperfusion, blocks the preparturient rise in fetal plasma ACTH concentration, and delays parturition. We also discovered that blockade of N-methyl-d-aspartate (NMDA) receptors reduces the fetal ACTH response to cerebral hypoperfusion. The present study was designed to test the hypothesis that PGHS-2 action and the downstream effect of HPA axis stimulation are stimulated by NMDA-mediated glutamatergic neurotransmission. Chronically catheterized late-gestation fetal sheep (n = 8) were injected with NMDA (1 mg iv). All responded with increases in fetal plasma ACTH and cortisol concentrations. Pretreatment with resveratrol (100 mg iv, n = 5), a specific inhibitor of PGHS-1, did not alter the magnitude of the HPA axis response to NMDA. Pretreatment with nimesulide (10 mg iv, n = 6), a specific inhibitor of PGHS-2, significantly reduced the HPA axis response to NMDA. To further explore this interaction, we injected NMDA in six chronically catheterized fetal sheep that were chronically infused with nimesulide (n = 6) at a rate of 1 mg/day into the lateral cerebral ventricle for 5-7 days. In this group, there was no significant ACTH response to NMDA. Finally, we tested whether the HPA axis response to prostaglandin E(2) (PGE(2)) is mediated by NMDA receptors. Seven chronically catheterized late-gestation fetal sheep were injected with 100 ng of PGE(2), which significantly increased fetal plasma ACTH and cortisol concentrations. Pretreatment with ketamine (10 mg iv), an NMDA antagonist, did not alter the ACTH or cortisol response to PGE(2). We conclude that generation of prostanoids via the action of PGHS-2 in the fetal brain augments the fetal HPA axis response to NMDA-mediated glutamatergic stimulation.
Collapse
Affiliation(s)
- Nathan Knutson
- Departments of Pediatrics and Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610-0274, USA
| | | |
Collapse
|
129
|
Kim SK, Choi JW, Hwang IK, Yoo DY, Yoo KY, Lee CH, Choi JH, Shin HC, Seong JK, Yoon YS, Won MH. Species-difference of cyclooxygenase-2 in the hippocampus of rodents. J Vet Med Sci 2010; 72:1153-8. [PMID: 20424394 DOI: 10.1292/jvms.09-0449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclooxygenase (COX) generates free radicals and it is important in inflammatory response. In this study, we observed the immunoreactivity in mice (ICR and C57BL/6 strain), rats and gerbils. In these animals, COX-2 immunoreactivity was mainly detected in pyramidal cells of the hippocampal CA2/3 region and in granule cells of the dentate gyrus. COX-2 immunoreactivity in the CA2/3 region was the highest in ICR mice, while in gerbils COX-2 immunoreactivity was the lowest; COX-2 immunoreactivity in the dentate gyrus was the highest in rats and the lowest in gerbils. The protein levels of COX-2 were similar to the immunohistochemical data. COX-2 mRNA transcript was the highest in the gerbil and the lowest in the rat. In brief, COX-2 protein, not mRNA, in the hippocampus is generally higher in mice (ICR and C57BL/6 strain) than rats and gerbils.
Collapse
Affiliation(s)
- Sung Koo Kim
- Department of Pediatrics, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Carlson NG, Rojas MA, Redd JW, Tang P, Wood B, Hill KE, Rose JW. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J Neuroinflammation 2010; 7:25. [PMID: 20388219 PMCID: PMC2873241 DOI: 10.1186/1742-2094-7-25] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously found that cyclooxygenase 2 (COX-2) was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of multiple sclerosis (MS) (Carlson et al. J.Neuroimmunology 2006, 149:40). This suggests that COX-2 may contribute to death of oligodendrocytes. OBJECTIVE The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination. METHODS The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death. RESULTS COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA). Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a significant decrease in sensitivity to KA induced death. CONCLUSIONS COX-2 expression was associated with dying oligodendrocytes in MS lesions and appeared to increase excitotoxic death of oligodendrocytes in culture. An understanding of how COX-2 expression influences oligodendrocyte death leading to demyelination may have important ramifications for future treatments for MS.
Collapse
Affiliation(s)
- Noel G Carlson
- Geriatric Research, Education Clinical Center (GRECC) VASLCHCS, Salt Lake City, UT, USA.
| | | | | | | | | | | | | |
Collapse
|
131
|
|
132
|
Antioxidant CR-6 protects against reperfusion injury after a transient episode of focal brain ischemia in rats. J Cereb Blood Flow Metab 2010; 30:638-52. [PMID: 19904289 PMCID: PMC2949133 DOI: 10.1038/jcbfm.2009.237] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative and nitrosative stress are targets for intervention after ischemia/reperfusion. The aim of this study was to explore the effect of CR-6, a vitamin-E analogue that is antioxidant and scavenger of nitrogen-reactive species. Sprague-Dawley rats had the middle cerebral artery (MCA) occluded either for 90 mins or permanently. Cortical perfusion was continuously monitored by laser-Doppler flowmetry. CR-6 (100 mg/kg) was administered orally either at 2 and 8 h after MCA occlusion, or at 2 h only. Infarct volume, neurological deficit, and signs of reperfusion injury were evaluated. CR-6 was detected in plasma and brain by HPLC. CR-6 reduced glutathione consumption in the ischemic brain and superoxide generation in the isolated MCA. CR-6 decreased infarct volume and attenuated the neurological deficit at 1 and 7 days after ischemia/reperfusion, but not after permanent ischemia. Immediately after reperfusion, cortical blood flow values returned to their baseline (+/-20%) in several animals, whereas others showed hyper-perfusion (>20% of baseline). Reactive hyperemia was associated with adverse events such as increased cortical BBB leakage, edema, protein nitrotyrosination, COX-2 expression, and neutrophil accumulation; and with a poorer outcome, and CR-6 attenuated these effects. In conclusion, oral CR-6 administration after transient ischemia protects the brain from reperfusion injury.
Collapse
|
133
|
Alvarez S, Blanco A, Fresno M, Muñoz-Fernández MA. Nuclear factor-kappaB activation regulates cyclooxygenase-2 induction in human astrocytes in response to CXCL12: role in neuronal toxicity. J Neurochem 2010; 113:772-83. [PMID: 20180883 DOI: 10.1111/j.1471-4159.2010.06646.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurodegenerative and neuroinflammatory disorders are commonly associated with local chemokine release. In other way, emerging data indicate that the prostaglandin E2 (PGE(2)), one of the major prostaglandins produced in the brain, play a central role in several pathological diseases. In this study, we investigated the relationship between CXCL12, cyclooxygenase (COX)-2 and PGE(2) in human brain cells. CXCL12 induced COX-2 and secretion of PGE(2) in a dose-dependent manner in human astrocytes. This induction was abolished by treatment with pertussis toxin and AMD3100, confirming the role of CXCR4 signaling. The nuclear factor-kappaB involvement was confirmed by using pyrrolidine dithiocarbamate, and with transient transfection assays. Over-expression of inhibitory proteins of nuclear factor-kappaB abrogated COX-2 induction, and CXCL12 induced p65/relA translocation. Culture supernatants from CXCL12-treated astrocytes reduced viability of neuroblastoma cells, and COX inhibitors abrogated this toxicity. Therefore, the relationship between chemokines and PGs could differentially influence the pathogenic network responsible for neurodegeneration.
Collapse
Affiliation(s)
- Susana Alvarez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
134
|
Guerri C, Pascual M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol 2010; 44:15-26. [PMID: 20113871 DOI: 10.1016/j.alcohol.2009.10.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 01/13/2023]
Abstract
Studies over the last decade demonstrate that adolescence is a brain maturation period from childhood to adulthood. Plastic and dynamic processes drive adolescent brain development, creating flexibility that allows the brain to refine itself, specialize, and sharpen its functions for specific demands. Maturing connections enable increased communication among brain regions, allowing greater integration and complexity. Compelling evidence has shown that the developing brain is vulnerable to the damaging effects of ethanol. It is possible to infer, therefore, that alcohol exposure during the critical adolescent developmental stages could disrupt the brain plasticity and maturation processes, resulting in behavioral and cognitive deficits. Recent neuroimaging studies have provided evidence of the impact of human adolescent drinking in brain structure and functions. Findings in experimental animals have also given new insight into the potential mechanisms of the toxic effects of ethanol on both adolescent brain maturation and the short- and long-term cognitive consequences of adolescent drinking. Adolescence is also characterized by the rapid maturation of brain systems mediating reward and by changes in the secretion of stress-related hormones, events that might participate in the increasing in anxiety and the initiation pattern of alcohol and drug consumption. Studies in human adolescents demonstrate that drinking at early ages can enhance the likelihood of developing alcohol-related problems. Experimental evidence suggests that early exposure to alcohol sensitizes the neurocircuitry of addiction and affects chromatin remodeling, events that could induce abnormal plasticity in reward-related learning processes that contribute to adolescents' vulnerability to drug addiction. In this article, we review the potential mechanisms by which ethanol impacts brain development and lead to brain impairments and cognitive and behavioral dysfunctions as well as the neurobiological and neurochemical processes underlying the adolescent-specific vulnerability to drug addiction.
Collapse
Affiliation(s)
- Consuelo Guerri
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | | |
Collapse
|
135
|
Ikeda-Matsuo Y, Hirayama Y, Ota A, Uematsu S, Akira S, Sasaki Y. Microsomal prostaglandin E synthase-1 and cyclooxygenase-2 are both required for ischaemic excitotoxicity. Br J Pharmacol 2010; 159:1174-86. [PMID: 20128796 DOI: 10.1111/j.1476-5381.2009.00595.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Although both microsomal prostaglandin E synthase (mPGES)-1 and cyclooxygenase (COX)-2 are critical factors in stroke injury, but the interactions between these enzymes in the ischaemic brain is still obscure. This study examines the hypothesis that mPGES-1 activity is required for COX-2 to cause neuronal damage in ischaemic injury. EXPERIMENTAL APPROACH We used a glutamate-induced excitotoxicity model in cultures of rat or mouse hippocampal slices and a mouse middle cerebral artery occlusion-reperfusion model in vivo. The effect of a COX-2 inhibitor on neuronal damage in mPGES-1 knockout (KO) mice was compared with that in wild-type (WT) mice. KEY RESULTS In rat hippocampal slices, glutamate-induced excitotoxicity, as well as prostaglandin (PG) E(2) production and PGES activation, was significantly attenuated by either MK-886 or NS-398, inhibitors of mPGES-1 and COX-2 respectively; however, co-application of these inhibitors had neither an additive nor a synergistic effect. The protective effect of NS-398 on the excitotoxicity observed in WT slices was completely abolished in mPGES-1 KO slices, which showed less excitotoxicity than WT slices. In the transient focal ischaemia model, mPGES-1 and COX-2 were co-localized in the infarct region of the cortex. Injection of NS-398 reduced not only ischaemic PGE(2) production, but also ischaemic injuries in WT mice, but not in mPGES-1 KO mice, which showed less dysfunction than WT mice. CONCLUSION AND IMPLICATIONS Microsomal prostaglandin E synthase-1 and COX-2 are co-induced by excess glutamate in ischaemic brain. These enzymes are co-localized and act together to exacerbate stroke injury, by excessive PGE(2) production.
Collapse
|
136
|
Sang N, Yun Y, Li H, Hou L, Han M, Li G. SO2 Inhalation Contributes to the Development and Progression of Ischemic Stroke in the Brain. Toxicol Sci 2010; 114:226-36. [DOI: 10.1093/toxsci/kfq010] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
137
|
Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor. Proc Natl Acad Sci U S A 2010; 107:2307-12. [PMID: 20080612 DOI: 10.1073/pnas.0909310107] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the Galphas-coupled EP2 receptor for prostaglandin E2 (PGE(2)) promotes cell survival in several models of tissue damage. To advance understanding of EP2 functions, we designed experiments to develop allosteric potentiators of this key prostaglandin receptor. Screens of 292,000 compounds identified 93 that at 20 microM (i) potentiated the cAMP response to a low concentration of PGE(2) by > 50%; (ii) had no effect on EP4 or beta2 adrenergic receptors, the cAMP assay itself, or the parent cell line; and (iii) increased the potency of PGE(2) on EP2 receptors at least 3-fold. In aqueous solution, the active compounds are largely present as nanoparticles that appear to serve as active reservoirs for bioactive monomer. From 94 compounds synthesized or purchased, based on the modification of one hit compound, the most active increased the potency of PGE(2) on EP2 receptors 4- to 5-fold at 10 to 20 microM and showed substantial neuroprotection in an excitotoxicity model. These small molecules represent previously undescribed allosteric modulators of a PGE(2) receptor. Our results strongly reinforce the notion that activation of EP2 receptors by endogenous PGE(2) released in a cell-injury setting is neuroprotective.
Collapse
|
138
|
King MD, Laird MD, Ramesh SS, Youssef P, Shakir B, Vender JR, Alleyne CH, Dhandapani KM. Elucidating novel mechanisms of brain injury following subarachnoid hemorrhage: an emerging role for neuroproteomics. Neurosurg Focus 2010; 28:E10. [PMID: 20043714 PMCID: PMC3151677 DOI: 10.3171/2009.10.focus09223] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating neurological injury associated with significant patient morbidity and death. Since the first demonstration of cerebral vasospasm nearly 60 years ago, the preponderance of research has focused on strategies to limit arterial narrowing and delayed cerebral ischemia following SAH. However, recent clinical and preclinical data indicate a functional dissociation between cerebral vasospasm and neurological outcome, signaling the need for a paradigm shift in the study of brain injury following SAH. Early brain injury may contribute to poor outcome and early death following SAH. However, elucidation of the complex cellular mechanisms underlying early brain injury remains a major challenge. The advent of modern neuroproteomics has rapidly advanced scientific discovery by allowing proteome-wide screening in an objective, nonbiased manner, providing novel mechanisms of brain physiology and injury. In the context of neurosurgery, proteomic analysis of patient-derived CSF will permit the identification of biomarkers and/or novel drug targets that may not be intuitively linked with any particular disease. In the present report, the authors discuss the utility of neuroproteomics with a focus on the roles for this technology in understanding SAH. The authors also provide data from our laboratory that identifies high-mobility group box protein-1 as a potential biomarker of neurological outcome following SAH in humans.
Collapse
Affiliation(s)
- Melanie D King
- Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia 30809, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Cąkała M, B. Strosznajder J. Znaczenie cyklooksygenaz w neurotoksyczności peptydów amyloidu β w chorobie Alzheimera. Neurol Neurochir Pol 2010; 44:65-79. [DOI: 10.1016/s0028-3843(14)60407-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
140
|
Ikeda-Matsuo Y. Microsomal prostaglandin E synthase-1 is involved in the brain ischemic injury. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
141
|
Choi SH, Aid S, Choi U, Bosetti F. Cyclooxygenases-1 and -2 differentially modulate leukocyte recruitment into the inflamed brain. THE PHARMACOGENOMICS JOURNAL 2009; 10:448-57. [PMID: 20038958 DOI: 10.1038/tpj.2009.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peripheral leukocyte recruitment in neuroinflammatory conditions can exacerbate brain tissue damage by releasing cytotoxic mediators and by increasing vascular permeability. Cyclooxygenase (COX)-derived prostaglandins promote the migration of several immune cells in vitro, however, the specific roles of COX-1 and -2 on leukocyte recruitment in vivo have not been investigated. To examine the specific effects of COX-1 or COX-2 deficiency on neuroinflammation-induced leukocyte infiltration, we used a model of intracerebroventricular lipopolysaccharide (LPS)-induced neuroinflammation in COX-1(-/-), COX-2(-/-), and their respective wild-type (WT) ((+/+)) mice. After LPS, leukocyte infiltration and inflammatory response were attenuated in COX-1(-/-) and increased in COX-2(-/-) mice, compared with their respective WT controls. This influx of leukocytes was accompanied by a marked disruption of blood-brain barrier and differential expression of chemokines. These results indicate that COX-1 and COX-2 deletion differentially modulate leukocyte recruitment during neuroinflammation, and suggest that inhibition of COX-1 activity is beneficial, whereas COX-2 inhibition is detrimental, during a primary neuroinflammatory response.
Collapse
Affiliation(s)
- S-H Choi
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
142
|
Li W, Xu J, Wang X, Chen J, Zhang C, Sun K, Hui R. Cyclooxygenase-2 (COX-2) G-765C is a protective factor for coronary artery disease but not for ischemic stroke: A meta-analysis. Atherosclerosis 2009; 207:492-5. [DOI: 10.1016/j.atherosclerosis.2009.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/05/2009] [Accepted: 06/27/2009] [Indexed: 11/15/2022]
|
143
|
Abstract
The mechanisms of brain ischemic insult include glutamate excitoxicity, calcium toxicity, free radicals, nitric oxide, inflammatory reactions, as well as dysfunctions of endoplasmic reticulum and mitochondrion. These injury cascades are interconnected in complex ways, thus it is hard to compare their pathogenic importances in ischemia models. And the research in cellular and molecular pathways has spurred the studies in potential neuroprotections mainly in pharmacological fields, such as anti-excitotoxic treatment, calcium-channel antagonism, approaches for inhibition of oxidation, inflammation and apoptosis, etc. Besides, other protective interventions including thrombolysis, arteriogenesis, regeneration therapy, and ischemia preconditioning or postconditioning, are also under investigations. Despite the present difficulties, we are quite optimistic towards future clinical applications of neuroprotective agents, by optimizing experimental approaches and clinical trials.
Collapse
|
144
|
Munhoz CD, García-Bueno B, Madrigal JLM, Lepsch LB, Scavone C, Leza JC. Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J Med Biol Res 2009; 41:1037-46. [PMID: 19148364 DOI: 10.1590/s0100-879x2008001200001] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Accepted: 11/12/2008] [Indexed: 12/22/2022] Open
Abstract
Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARgamma, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFkappaB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-alpha also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-alpha activation and release, inhibitors of NFkappaB, specific inhibitors of iNOS and COX-2 activities and PPARgamma agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- C D Munhoz
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
145
|
Stone DK, Reynolds AD, Mosley RL, Gendelman HE. Innate and adaptive immunity for the pathobiology of Parkinson's disease. Antioxid Redox Signal 2009; 11:2151-66. [PMID: 19243239 PMCID: PMC2788126 DOI: 10.1089/ars.2009.2460] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Innate and adaptive immunity affect the pathogenesis of Parkinson's disease (PD). In particular, activation of microglia influences degeneration of dopaminergic neurons. Cell-to-cell interactions and immune regulation critical for neuronal homeostasis also influence immune responses. The links between T cell immunity and nigrostriatal degeneration are supported by laboratory, animal model, and human pathologic investigations. Immune-associated biomarkers in spinal fluids and brain tissue of patients with idiopathic or familial forms of PD provide means to improve diagnosis and therapeutic monitoring. Relationships between oxidative stress, inflammation, and immune-mediated cell death pathways are examined in this review as they are linked to PD pathogenesis. Harnessing the immune system by drugs or by vaccination remain promising future therapeutic options.
Collapse
Affiliation(s)
- David K Stone
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | |
Collapse
|
146
|
Cyclooxygenase-2 plays a critical role in retinal ganglion cell death after transient ischemia: real-time monitoring of RGC survival using Thy-1-EGFP transgenic mice. Neurosci Res 2009; 65:319-25. [PMID: 19698752 DOI: 10.1016/j.neures.2009.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/13/2009] [Accepted: 08/11/2009] [Indexed: 01/26/2023]
Abstract
The exact role of cyclooxygenase-2 (COX-2) in neurodegeneration of retinal ganglion cells (RGCs) in vivo following ischemia-reperfusion injury of the retina was unknown. We made transgenic mice in which the Thy-1.2 promoter drives the expression of EGFP cDNA (Thy-1-EGFP) in RGCs to monitor RGC survival and death in retinal whole mount preparations and in live animals. We show that celecoxib, a selective COX-2 inhibitor, blocks RGC death after ischemic injury. Furthermore, in COX-2 knockout (COX-2(-/-)) mice, RGCs are resistant to ischemia-reperfusion injury. Finally, we performed time-lapse monitoring of RGC death after ischemia in Thy-1-EGFP; COX-2(-/-) mice. Our data show that COX-2 plays a crucial role in ischemia-reperfusion injury-induced RGC death. Inhibition of COX-2 activity may therefore be an effective therapy for neurodegenerative diseases of the retina and optic nerve.
Collapse
|
147
|
Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Kang IJ, Won MH. Cyclooxygenase-2 immunoreactivity and protein level in the gerbil hippocampus during normal aging. Neurochem Res 2009; 35:99-106. [PMID: 19597708 DOI: 10.1007/s11064-009-0034-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/04/2009] [Indexed: 10/20/2022]
Abstract
Cyclooxygenases-2 (COX-2) is not only related to inflammation but also plays critical roles in brain development and synaptic signaling. In the present study, we investigated age-related changes in COX-2 immunoreactivity and protein levels in the gerbil hippocampus. In the hippocampal CA1 region (CA1) and dentate gyrus (DG), weak COX-2 immunoreactivity was observed at postnatal month 1 (PM 1), and COX-2 immunoreactivity was markedly increased at PM 18 and 24. In the CA2/3, COX-2 immunoreactivity was strong at PM 1. COX-2 immunoreactivities in the PM 3, 6 and 12 groups were decreased compared to that in the PM 1 group, and it was increased at PM 18 and 24. In addition, age-related changes in COX-2 levels were similar with immunohistochemical results in the CA2/3. These results suggest that COX-2 immunoreactivity and levels were high in the hippocampus of aged gerbils.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
148
|
Alterations in excitotoxicity and prostaglandin metabolism in a transgenic mouse model of Alzheimer's disease. Neurochem Int 2009; 55:689-96. [PMID: 19560505 DOI: 10.1016/j.neuint.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 11/21/2022]
Abstract
To address the potential impact of presenilin mutations on the prostaglandin metabolism in a neurodegenerative model of glutamatergic excitotoxicity, we injected kainic acid intraperitoneally (30mg/kg body weight) into mice over-expressing the human N141I mutation of presenilin-2, which is known to cause an early-onset form of Alzheimer's disease. We compared the seizure activity as well as seizure lethality in 2- and 6-month-old mice, transgenic for the above-mentioned point mutation, and their wildtype littermates and found that mice harboring the hN141I mutation showed a relative resistance to excitotoxic treatment. This was associated with a constituitively reduced expression of the cyclooxygenases COX-1 and COX-2 in the hippocampus of N141I presenilin-2 mice and a reduced induction of COX-2 expression post-kainate injection. In the past, clinical trials have suggested that both non-steroidal anti-inflammatory drugs, which impact upon a cell's prostaglandin metabolism, and glutamatergic antagonists might be of benefit to patients suffering from Alzheimer's-type dementias. Yet, the exact mechanism by which these drugs are beneficial remains unclear, although it seems possible that presenilins might be implicated in the process, at least in the case of early-onset forms. The data presented here strongly support the notion of an implication of presenilins in the alterations in the prostaglandin system, which have been observed in Alzheimer's disease and may contribute to the underlying pathogenesis of the disease.
Collapse
|
149
|
Jonakait GM, Ni L. Prostaglandins compromise basal forebrain cholinergic neuron differentiation and survival: action at EP1/3 receptors results in AIF-induced death. Brain Res 2009; 1285:30-41. [PMID: 19555672 DOI: 10.1016/j.brainres.2009.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 01/26/2023]
Abstract
Activated microglia produce a factor or cocktail of factors that promotes cholinergic neuronal differentiation of undifferentiated precursors in the embryonic basal forebrain (BF) in vitro. To determine whether microglial prostaglandins mediate this action, microglia were stimulated in the presence of the cyclooxygenase inhibitor ibuprofen, and microglial conditioned medium (CM) was used to culture rat BF precursors at embryonic day 15. Choline acetyltransferase (ChAT) activity served as a measure of cholinergic differentiation. While inhibition of prostaglandin biosynthesis did not affect the ability of microglial CM to promote ChAT activity, treatment of microglia with prostaglandin E2 (PGE2) inhibited it. Agonists of E prostanoid receptors EP2 (butaprost) and EP1/3 (sulprostone) mimicked PGE2, while misoprostol (E1-4) actually enhanced the action of CM. PGE2 added directly to BF cultures together with microglial CM also inhibited ChAT activity. While BF cultures expressed all four prostanoid receptors, direct addition of sulprostone but not butaprost mimicked PGE2, suggesting that PGE2 engaged EP1/3 receptors in the BF. Neither PKA inhibition by H89 nor cAMP induction by forskolin or dibutyrl-cAMP altered the action of sulprostone. Sulprostone severely compromised ChAT activity, dendrite number, axonal length and axonal branching, but caspase inhibition did not restore these. However, sulprostone resulted in increased staining intensity and nuclear translocation of apoptosis-inducing factor (AIF) suggesting caspase-independent cell death. We have found that PGE2 action at microglial EP2 receptors inhibits the microglial production of the cholinergic differentiating cocktail, while action at neuronal EP3 receptors has a deleterious effect on cholinergic neurons causing neurite retraction and cell death.
Collapse
Affiliation(s)
- G Miller Jonakait
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | |
Collapse
|
150
|
Prolonged opportunity for neuroprotection in experimental stroke with selective blockade of cyclooxygenase-2 activity. Brain Res 2009; 1279:168-73. [PMID: 19446533 DOI: 10.1016/j.brainres.2009.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/30/2009] [Accepted: 05/02/2009] [Indexed: 01/05/2023]
Abstract
The post-treatment effects of the selective cyclooxygenase (COX)-2 inhibitor, valdecoxib, were investigated in a rat model of temporary focal ischemia. Valdecoxib reduced basal brain prostaglandin E(2) concentrations at dosages that did not affect serum thromboxane B(2), consistent with a selective COX-2 effect. Temporary focal cerebral ischemia was produced in rats by middle cerebral artery occlusion for 90 min. There was increased expression of COX-2 protein detected by Western blot and immunocytochemistry within neurons in the ischemic cortex at 4 and 24 h after ischemia. Rats were treated with vehicle or valdecoxib 15 min before or 1.5, 3 and 6 h after cerebral ischemia. Rats were sacrificed and brain infarction volume determined 24 h after ischemia. Valdecoxib treatment was associated with a decrease in infarction volume when administered 15 min before, and 1.5 or 3 h but not 6 h after cerebral ischemia. There were no differences in physiological parameters during the procedure. Valdecoxib administered at 1.5 h after ischemia significantly reduced the concentrations of prostaglandin E(2) in ischemic penumbral cortex as compared to the vehicle-treated group and contralateral non-ischemic cortex. These results suggest that COX-2 inhibition with valdecoxib is effective when initiated both before and after middle cerebral artery occlusion.
Collapse
|