101
|
Li B, Navarro S, Kasahara N, Comai L. Identification and biochemical characterization of a Werner's syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 2004; 279:13659-67. [PMID: 14734561 DOI: 10.1074/jbc.m311606200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner's syndrome (WS) is an inherited disease characterized by genomic instability and premature aging. The WS gene encodes a protein (WRN) with helicase and exonuclease activities. We have previously reported that WRN interacts with Ku70/80 and this interaction strongly stimulates WRN exonuclease activity. To gain further insight on the function of WRN and its relationship with the Ku heterodimer, we established a cell line expressing tagged WRN(H), a WRN point mutant lacking helicase activity, and used affinity purification, immunoblot analysis and mass spectroscopy to identify WRN-associated proteins. To this end, we identified three proteins that are stably associated with WRN in nuclear extracts. Two of these proteins, Ku70 and Ku80, were identified by immunoblot analysis. The third polypeptide, which was identified by mass spectrometry analysis, is identical to poly(ADP-ribose) polymerase-1(PARP-1), a 113-kDa enzyme that functions as a sensor of DNA damage. Biochemical fractionation studies and immunoprecipitation assays and studies confirmed that endogenous WRN is associated with subpopulations of PARP-1 and Ku70/80 in the cell. Protein interaction assays with purified proteins further indicated that PARP-1 binds directly to WRN and assembles in a complex with WRN and Ku70/80. In the presence of DNA and NAD(+), PARP-1 poly(ADP-ribosyl)ates itself and Ku70/80 but not WRN, and gel-shift assays showed that poly-(ADP-ribosyl)ation of Ku70/80 decreases the DNA-binding affinity of this factor. Significantly, (ADP-ribosyl)ation of Ku70/80 reduces the ability of this factor to stimulate WRN exonuclease, suggesting that covalent modification of Ku70/80 by PARP-1 may play a role in the regulation of the exonucleolytic activity of WRN.
Collapse
Affiliation(s)
- Baomin Li
- Departments of Molecular Microbiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
102
|
Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Samara R, Espinoza LA, Hassa PO, Hottiger MO, Smulson ME. PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase. Oncogene 2003; 22:8460-71. [PMID: 14627987 DOI: 10.1038/sj.onc.1206897] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transcription factor E2F-1 is implicated in the activation of S-phase genes as well as induction of apoptosis, and is regulated by interactions with Rb and by cell cycle-dependent alterations in E2F-1 abundance. We earlier demonstrated a pivotal role for poly(ADP-ribose) polymerase-1 (PARP-1) in the regulation of E2F-1 expression and promoter activity during S-phase re-entry when quiescent cells re-enter the cell cycle. We now investigate the putative mechanism(s) by which PARP-1 may upregulate E2F-1 promoter activity during S-phase re-entry. DNase-1 footprint assays with purified PARP-1 showed that PARP-1 did not directly bind the E2F-1 promoter in a sequence-specific manner. In contrast to p53, a positive acceptor in poly(ADP-ribosyl)ation reactions, E2F-1 was not poly(ADP-ribosyl)ated by wild-type PARP-1 in vitro, indicating that PARP-1 does not exert a dual effect on E2F-1 transcriptional activation. Protein-binding reactions and coimmunoprecipitation experiments with purified PARP-1 and E2F-1, however, revealed that PARP-1 binds to E2F-1 in vitro. More significantly, physical association of PARP-1 and E2F-1 in vivo also occurred in wild-type fibroblasts 5 h after re-entry into S phase, coincident with the increase in E2F-1 promoter activity and expression of E2F-1-responsive S-phase genes cyclin A and c-Myc. Mapping of the interaction domains revealed that full-length PARP-1 as well as PARP-1 mutants lacking either the catalytic active site or the DNA-binding domain equally bind E2F-1, whereas a PARP-1 mutant lacking the automodification domain does not, suggesting that the protein interaction site is located in this central domain. Finally, gel shift analysis with end-blocked E2F-1 promoter sequence probes verified that the binding of PARP-1 to E2F-1 enhances binding to the E2F-1 promoter, indicating that PARP-1 acts as a positive cofactor of E2F-1-mediated transcription.
Collapse
Affiliation(s)
- Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH, Bohr VA. Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 2003; 23:8601-13. [PMID: 14612404 PMCID: PMC262662 DOI: 10.1128/mcb.23.23.8601-8613.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A defect in the Werner syndrome protein (WRN) leads to the premature aging disease Werner syndrome (WS). Hallmark features of cells derived from WS patients include genomic instability and hypersensitivity to certain DNA-damaging agents. WRN contains a highly conserved region, the RecQ conserved domain, that plays a central role in protein interactions. We searched for proteins that bound to this region, and the most prominent direct interaction was with poly(ADP-ribose) polymerase 1 (PARP-1), a nuclear enzyme that protects the genome by responding to DNA damage and facilitating DNA repair. In pursuit of a functional interaction between WRN and PARP-1, we found that WS cells are deficient in the poly(ADP-ribosyl)ation pathway after they are treated with the DNA-damaging agents H2O2 and methyl methanesulfonate. After cellular stress, PARP-1 itself becomes activated, but the poly(ADP-ribosyl)ation of other cellular proteins is severely impaired in WS cells. Overexpression of the PARP-1 binding domain of WRN strongly inhibits the poly(ADP-ribosyl)ation activity in H2O2-treated control cell lines. These results indicate that the WRN/PARP-1 complex plays a key role in the cellular response to oxidative stress and alkylating agents, suggesting a role for these proteins in the base excision DNA repair pathway.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G. Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 2003; 31:5377-88. [PMID: 12954774 PMCID: PMC203313 DOI: 10.1093/nar/gkg728] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3' or 5' protruding single strands with similar efficiency, but addition of Ku suppresses joining of blunt ends and homologous ends with 3' overhangs. We propose that the affinity of Ku for DNA ends, particularly when cooperating with DNA-PKcs, suppresses B-NHEJ by quickly and efficiently binding DNA ends and directing them to D-NHEJ for rapid joining. A chromatin-based model of DNA DSB rejoining accommodating biochemical and genetic results is presented and deviations between in vitro and in vivo results discussed.
Collapse
Affiliation(s)
- Huichen Wang
- Department of Radiation Oncology, Division of Experimental Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
105
|
Noël G, Giocanti N, Fernet M, Mégnin-Chanet F, Favaudon V. Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery. BMC Cell Biol 2003; 4:7. [PMID: 12866953 PMCID: PMC179890 DOI: 10.1186/1471-2121-4-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Accepted: 07/16/2003] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The cytotoxicity and the rejoining of DNA double-strand breaks induced by gamma-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose) polymerase (PARP-1) in DNA double-strand break repair. RESULTS PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by gamma-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose) synthesis following gamma-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as gamma-rays and H2O2. CONCLUSIONS The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to gamma-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose) synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.
Collapse
Affiliation(s)
- Georges Noël
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
- Centre de Protonthérapie d'Orsay, Bât. 101, Centre Universitaire, BP 65, 91402 Orsay Cedex, France
| | - Nicole Giocanti
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
| | - Marie Fernet
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
- Present address: DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Frédérique Mégnin-Chanet
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
| | - Vincent Favaudon
- Unité 350 INSERM, Institut Curie-Recherche, Bâts. 110-112, Centre Universitaire, 91405 Orsay Cedex, France
| |
Collapse
|
106
|
Sumer H, Craig JM, Sibson M, Choo KHA. A rapid method of genomic array analysis of scaffold/matrix attachment regions (S/MARs) identifies a 2.5-Mb region of enhanced scaffold/matrix attachment at a human neocentromere. Genome Res 2003; 13:1737-43. [PMID: 12840048 PMCID: PMC403747 DOI: 10.1101/gr.1095903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 04/18/2003] [Indexed: 11/24/2022]
Abstract
Human neocentromeres are fully functional centromeres that arise at previously noncentromeric regions of the genome. We have tested a rapid procedure of genomic array analysis of chromosome scaffold/matrix attachment regions (S/MARs), involving the isolation of S/MAR DNA and hybridization of this DNA to a genomic BAC/PAC array. Using this procedure, we have defined a 2.5-Mb domain of S/MAR-enriched chromatin that fully encompasses a previously mapped centromere protein-A (CENP-A)-associated domain at a human neocentromere. We have independently verified this procedure using a previously established fluorescence in situ hybridization method on salt-treated metaphase chromosomes. In silico sequence analysis of the S/MAR-enriched and surrounding regions has revealed no outstanding sequence-related predisposition. This study defines the S/MAR-enriched domain of a higher eukaryotic centromere and provides a method that has broad application for the mapping of S/MAR attachment sites over large genomic regions or throughout a genome.
Collapse
MESH Headings
- Cell Line, Transformed
- Centromere/genetics
- Chromosome Aberrations
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Artificial, P1 Bacteriophage/genetics
- Chromosomes, Human, Pair 20/genetics
- Contig Mapping/methods
- DNA/genetics
- Fibroblasts/virology
- Gene Expression Profiling/methods
- Herpesvirus 4, Human
- Humans
- In Situ Hybridization, Fluorescence/methods
- Matrix Attachment Region Binding Proteins/genetics
- Metaphase/genetics
- Oligonucleotide Array Sequence Analysis/methods
- Sequence Analysis, DNA/methods
Collapse
Affiliation(s)
- Huseyin Sumer
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | | | | | | |
Collapse
|
107
|
Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 2003; 34:42-51. [PMID: 12692553 DOI: 10.1038/ng1146] [Citation(s) in RCA: 326] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 03/28/2003] [Indexed: 11/08/2022]
Abstract
Eukaryotic chromosomes are packaged in nuclei by many orders of folding. Little is known about how higher-order chromatin packaging might affect gene expression. SATB1 is a cell-type specific nuclear protein that recruits chromatin-remodeling factors and regulates numerous genes during thymocyte differentiation. Here we show that in thymocyte nuclei, SATB1 has a cage-like 'network' distribution circumscribing heterochromatin and selectively tethers specialized DNA sequences onto its network. This was shown by fluorescence in situ hybridization on wild-type and Satb1-null thymocytes using in vivo SATB1-bound sequences as probes. Many gene loci, including that of Myc and a brain-specific gene, are anchored by the SATB1 network at specific genomic sites, and this phenomenon is precisely correlated with proper regulation of distant genes. Histone-modification analyses across a gene-enriched genomic region of 70 kb showed that acetylation of histone H3 at Lys9 and Lys14 peaks at the SATB1-binding site and extends over a region of roughly 10 kb covering genes regulated by SATB1. By contrast, in Satb1-null thymocytes, this site is marked by methylation at H3 Lys9. We propose SATB1 as a new type of gene regulator with a novel nuclear architecture, providing sites for tissue-specific organization of DNA sequences and regulating region-specific histone modification.
Collapse
Affiliation(s)
- Shutao Cai
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road (84-171), University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
108
|
Ko L, Chin WW. Nuclear receptor coactivator thyroid hormone receptor-binding protein (TRBP) interacts with and stimulates its associated DNA-dependent protein kinase. J Biol Chem 2003; 278:11471-9. [PMID: 12519782 DOI: 10.1074/jbc.m209723200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors mediate gene activation through ligand-dependent interaction with coactivators. We previously cloned and characterized thyroid hormone receptor-binding protein, TRBP (NcoA6: AIB3/ASC-2/RAP250/PRIP/TRBP/NRC), as an LXXLL-containing coactivator that associates with coactivator complexes through its C terminus. To search for protein factors involved in TRBP action, we identified a distinct set of proteins from HeLa nuclear extract that interacts with the C terminus of TRBP. Analysis by mass spectrometric protein sequencing revealed a DNA-dependent protein kinase (DNA-PK) complex including its catalytic subunit and regulatory subunits, Ku70 and Ku86. DNA-PK is a heterotrimeric nuclear phosphatidylinositol 3-kinase that functions in DNA repair, recombination, and transcriptional regulation. DNA-PK phosphorylates TRBP at its C-terminal region, which directly interacts with Ku70 but not Ku86 in vitro. In addition, in the absence of DNA, TRBP itself activates DNA-PK, and the TRBP-stimulated DNA-PK activity has an altered phosphorylation pattern from DNA-stimulated activity. An anti-TRBP antibody inhibits TRBP-induced kinase activity, suggesting that protein content of TRBP is responsible for the stimulation of DNA-independent kinase activity. Furthermore, in DNA-PK-deficient scid cells, TRBP-mediated transactivation is significantly impaired, and nuclear localization of TRBP is altered. The activation of DNA-PK in the absence of DNA ends by the coactivator TRBP suggests a novel mechanism of coactivator-stimulated DNA-PK phosphorylation in transcriptional regulation.
Collapse
Affiliation(s)
- Lan Ko
- Department of Gene Regulation, Bone and Inflammation Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | |
Collapse
|
109
|
Liu QY, Ribecco-Lutkiewicz M, Carson C, Testolin L, Bergeron D, Kohwi-Shigematsu T, Walker PR, Sikorska M. Mapping the initial DNA breaks in apoptotic Jurkat cells using ligation-mediated PCR. Cell Death Differ 2003; 10:278-89. [PMID: 12700628 DOI: 10.1038/sj.cdd.4401146] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Apoptotic DNA degradation could be initiated by the accumulation of single-strand (ss) breaks in vulnerable chromatin regions, such as base unpairing regions (BURs), which might be preferentially targeted for degradation by both proteases and nucleases. We tested this hypothesis in anti-Fas-treated apoptotic Jurkat cells. Several nuclear proteins known for their association with both MARs and the nuclear matrix, that is, PARP, NuMA, lamin B and SATB1, were degraded, but the morphological rearrangement of the BUR-binding SATB1 protein was one of the earliest detected changes. Subsequently, we have identified several genes containing sequences homologous to the 25 bp BUR element of the IgH gene, a known SATB1-binding site, and examined the integrity of genomic DNA in their vicinity. Multiple ss breaks were found in close proximity to these sites relative to adjacent regions of DNA. Consistent with our prediction, the results indicated that the initiation of DNA cleavage in anti-Fas-treated Jurkat cells occurred within the BUR sites, which likely became accessible to endonucleases due to the degradation of BUR-binding proteins.
Collapse
Affiliation(s)
- Q Y Liu
- Apoptosis Research Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Henrie MS, Kurimasa A, Burma S, Ménissier-de Murcia J, de Murcia G, Li GC, Chen DJ. Lethality in PARP-1/Ku80 double mutant mice reveals physiological synergy during early embryogenesis. DNA Repair (Amst) 2003; 2:151-8. [PMID: 12531386 DOI: 10.1016/s1568-7864(02)00199-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ku is an abundant heterodimeric nuclear protein, consisting of 70- and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP-ribose) polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-/Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.
Collapse
Affiliation(s)
- Melinda S Henrie
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Matheos D, Novac O, Price GB, Zannis-Hadjopoulos M. Analysis of the DNA replication competence of the xrs-5 mutant cells defective in Ku86. J Cell Sci 2003; 116:111-24. [PMID: 12456721 DOI: 10.1242/jcs.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The radiosensitive mutant xrs-5, a derivative of the Chinese hamster ovary (CHO) K1 cell line, is defective in DNA double-strand break repair and V(D)J recombination. The defective phenotypes of xrs-5 cells are complemented by the 86 kDa subunit of Ku antigen. OBA is a protein, previously purified from HeLa cells, that binds in a sequence-specific manner to mammalian origins of DNA replication. The DNA-binding subunit of OBA has been identified as Ku86. We tested the xrs-5 cell line for its ability to replicate a mammalian origin-containing plasmid, p186, in vivo and in vitro. In vivo, the p186 episomal DNA replication in transfected xrs-5 cells was reduced by 45% when compared with the CHO K1 cells transfected with p186. In vitro, although total and cytoplasmic cell extracts from xrs-5 cells replicated the p186 with the same efficiency as the parental CHO K1 cell extracts, xrs-5 nuclear extracts did not possess any detectable replication activity. Addition of affinity-purified OBA/Ku restored replication in the xrs-5 nuclear extract reaction. Western blot analyses showed that the levels of other replication proteins (Orc2, PCNA, DNA polymerase epsilon and delta, Primase and Topoisomerase IIalpha) were comparable in both the xrs-5 mutant and CHO K1 wild-type cell lines. In addition, the in vivo association of Ku with the DHFR origin-containing sequence (oribeta) was examined in both the CHO K1 and xrs-5 cell lines by a chromatin immunoprecipitation (ChIP) assay. Anti-Ku antibodies did not immunoprecipitate a detectable amount of Ku from the xrs-5 cells in the origin-containing sequence, in contrast to the CHO K1 cells, wherein Ku was found to be associated with the oribeta origin. The data implicate Ku antigen in in vivo and in vitro DNA replication and suggest the existence of another protein with Ku-like functions in the xrs-5 cells.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | | | | | | |
Collapse
|
112
|
Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:59-72. [PMID: 12393188 DOI: 10.1016/s0167-4781(02)00497-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ors binding activity (OBA) represents a HeLa cell protein activity that binds in a sequence-specific manner to A3/4, a 36-bp mammalian replication origin sequence. OBA's DNA binding domain is identical to the 80-kDa subunit of Ku antigen. Ku antigen associates with mammalian origins of DNA replication in vivo, with maximum binding at the G1/S phase. Addition of an A3/4 double-stranded oligonucleotide inhibited in vitro DNA replication of p186, pors12, and pX24, plasmids containing the monkey replication origins of ors8, ors12, and the Chinese hamster DHFR oribeta, respectively. In contrast, in vitro SV40 DNA replication remained unaffected. The inhibitory effect of A3/4 oligonucleotide was fully reversed upon addition of affinity-purified Ku. Furthermore, depletion of Ku by inclusion of an antibody recognizing the Ku heterodimer, Ku70/Ku80, decreased mammalian replication to basal levels. By co-immunoprecipitation analyses, Ku was found to interact with DNA polymerases alpha, delta and epsilon, PCNA, topoisomerase II, RF-C, RP-A, DNA-PKcs, ORC-2, and Oct-1. These interactions were not inhibited by the presence of ethidium bromide in the immunoprecipitation reaction, suggesting DNA-independent protein associations. The data suggest an involvement of Ku in mammalian DNA replication as an origin-specific-binding protein with DNA helicase activity. Ku acts at the initiation step of replication and requires an A3/4-homologous sequence for origin binding. The physical association of Ku with replication proteins reveals a possible mechanism by which Ku is recruited to mammalian origins.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, 3655 Drummond Street, Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
113
|
Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 2002; 419:641-5. [PMID: 12374985 DOI: 10.1038/nature01084] [Citation(s) in RCA: 386] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Accepted: 08/13/2002] [Indexed: 01/29/2023]
Abstract
Eukaryotic chromosomes are organized inside the nucleus in such a way that only a subset of the genome is expressed in any given cell type, but the details of this organization are largely unknown. SATB1 ('special AT-rich sequence binding 1'), a protein found predominantly in thymocytes, regulates genes by folding chromatin into loop domains, tethering specialized DNA elements to an SATB1 network structure. Ablation of SATB1 by gene targeting results in temporal and spatial mis-expression of numerous genes and arrested T-cell development, suggesting that SATB1 is a cell-type specific global gene regulator. Here we show that SATB1 targets chromatin remodelling to the IL-2Ralpha ('interleukin-2 receptor alpha') gene, which is ectopically transcribed in SATB1 null thymocytes. SATB1 recruits the histone deacetylase contained in the NURD chromatin remodelling complex to a SATB1-bound site in the IL-2Ralpha locus, and mediates the specific deacetylation of histones in a large domain within the locus. SATB1 also targets ACF1 and ISWI, subunits of CHRAC and ACF nucleosome mobilizing complexes, to this specific site and regulates nucleosome positioning over seven kilobases. SATB1 defines a class of transcriptional regulators that function as a 'landing platform' for several chromatin remodelling enzymes and hence regulate large chromatin domains.
Collapse
Affiliation(s)
- Dag Yasui
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
114
|
Mauldin SK, Getts RC, Liu W, Stamato TD. DNA-PK-dependent binding of DNA ends to plasmids containing nuclear matrix attachment region DNA sequences: evidence for assembly of a repair complex. Nucleic Acids Res 2002; 30:4075-87. [PMID: 12235392 PMCID: PMC137113 DOI: 10.1093/nar/gkf529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Purified Ku/DNA-PKcs alone did not produce association of DNA ends with plasmid DNA suggesting that additional factors in the nuclear extract are necessary for this activity. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end binding was observed. Calculation of relative binding activities indicates that DNA end-binding activities to MAR sequences was 7-21-fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV and scaffold attachment factor A preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends suggesting that binding of these proteins to DNA ends is necessary for their association with MAR DNA. The ability of DNA-PKcs/Ku to direct DNA ends to MAR and pUC18 plasmid DNA is a new activity for DNA-PK and may be important for its function in double-strand break repair. A model for DNA repair based on these observations is presented.
Collapse
Affiliation(s)
- Stanley K Mauldin
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA and Genisphere, Incorporated, 4170 City Avenue, Philadelphia, PA 19131-1694, USA
| | | | | | | |
Collapse
|
115
|
Jeanson L, Subra F, Vaganay S, Hervy M, Marangoni E, Bourhis J, Mouscadet JF. Effect of Ku80 depletion on the preintegrative steps of HIV-1 replication in human cells. Virology 2002; 300:100-8. [PMID: 12202210 DOI: 10.1006/viro.2002.1515] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To gain new insights regarding the role of Ku, the DNA-PK DNA-binding component, during lentiviral DNA integration, we have investigated the HIV-1 replication in Ku80-depleted human cells. CEM4fx cells underexpressing the Ku80 factor were selected after transduction by a retroviral vector expressing the Ku80 full-length antisense sequence. De novo infection experiment with NL4.3 HIV-1 strain led to the observation that the viral replication was delayed in the Ku80-depleted cells. Early events of the replicative cycle, including nuclear import of the viral DNA, were not affected. In contrast, the formation of the 2-LTR circles was impaired, thus demonstrating the implication of Ku in HIV-1 DNA circularization, for the first time in human cells. Furthermore, the detection of integrated proviruses by an Alu-LTR-nested PCR amplification method was affected in cells underexpressing Ku80. These results suggest that this factor may also be involved in the mechanisms leading to the stable establishment of HIV-1 provirus.
Collapse
Affiliation(s)
- Laurence Jeanson
- UMR8532 CNRS, Institut Gustave Roussy, PR2, 39 rue Camille Desmoulins, 94805, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
116
|
Mulder LCF, Chakrabarti LA, Muesing MA. Interaction of HIV-1 integrase with DNA repair protein hRad18. J Biol Chem 2002; 277:27489-93. [PMID: 12016221 DOI: 10.1074/jbc.m203061200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously shown that human immunodeficiency virus-1 (HIV-1) integrase is an unstable protein and a substrate for the N-end rule degradation pathway. This degradation pathway shares its ubiquitin-conjugating enzyme, Rad6, with the post-replication/translesion DNA repair pathway. Because DNA repair is thought to play an essential role in HIV-1 integration, we investigated whether other molecules of this DNA repair pathway could interact with integrase. We observed that co-expression of human Rad18 induced the accumulation of an otherwise unstable form of HIV-1 integrase. This accumulation occurred even though hRAD18 possesses a RING finger domain, a structure that is generally associated with E3 ubiquitin ligase function and protein degradation. Evidence for an interaction between integrase and hRad18 was obtained through reciprocal co-immunoprecipitation. Moreover we found that a 162-residue region of hRad18 (amino acids 65-226) was sufficient for both integrase stabilization and interaction. Finally, we observed that HIV-1 integrase co-localized with hRad18 in nuclear structures in a subpopulation of co-transfected cells. Taken together, these findings identify hRad18 as a novel interacting partner of HIV-1 integrase and suggest a role for post-replication/translesion DNA repair in the retroviral integration process.
Collapse
Affiliation(s)
- Lubbertus C F Mulder
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | | | | |
Collapse
|
117
|
Finnon R, Moody J, Meijne E, Haines J, Clark D, Edwards A, Cox R, Silver A. A major breakpoint cluster domain in murine radiation-induced acute myeloid leukemia. Mol Carcinog 2002; 34:64-71. [PMID: 12112312 DOI: 10.1002/mc.10054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytogenetic and molecular studies have provided evidence of the clustering of chromosome 2 deletion breakpoints in radiation-induced murine acute myeloid leukemia (AML). Moreover, clustering occurs in at least two fragile domains rich in telomere-like arrays. Here we describe a physical map of the distal breakpoint cluster and confirm the presence of inverted head-to-head telomeric sequence arrays. These potentially recombinogenic sequences were not, however, the direct focus for post-irradiation chromosome breakage in AML. Instead, the two arrays bordered a 2.5-kb sequence with properties expected of a nuclear matrix attachment region (MAR). The putative MAR co-localized in the fragile domain with genes important to the hemopoietic system (leukocyte tyrosine kinase, zinc finger protein 106, erythrocyte protein band 4.2, and beta(2)-microglobulin (beta2m)); the beta2m subdomain was a particular focus of breakage. On the basis of these and other data, we suggest that AML-associated chromosome 2 fragility in the mouse is a consequence of domain-specific fragility in genomic domains containing numerous genes critical to the hemopoietic system. Recorded with the permission of the controller of Her Majesty's Stationery Office. Published by Wiley-Liss, Inc.
Collapse
MESH Headings
- Acute Disease
- Animals
- Base Sequence
- Chromosomes, Artificial, Bacterial
- Chromosomes, Artificial, Yeast
- Cloning, Molecular
- DNA, Neoplasm
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Mice
- Molecular Sequence Data
- Neoplasms, Radiation-Induced/genetics
- Repetitive Sequences, Nucleic Acid
Collapse
Affiliation(s)
- Rosemary Finnon
- Radiation Effects Department, National Radiological Protection Board, Chilton, England
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Zhang Z, Hildebrandt EF, Simbulan-Rosenthal CM, Anderson MG. Sequence-specific binding of poly(ADP-ribose) polymerase-1 to the human T cell leukemia virus type-I tax responsive element. Virology 2002; 296:107-16. [PMID: 12036322 DOI: 10.1006/viro.2002.1385] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously identified poly(ADP-ribose) polymerase-1 (PARP-1) as a coactivator for the human T cell leukemia virus type I (HTLV-I) transcription activator Tax. While PARP-1 is believed to contribute to DNA repair, PARP-1 has been described as a coactivator for other transcription factors. Recent evidence suggests that PARP-1 forms complexes on cellular promoters, so we investigated PARP-1 complexes on the HTLV-I Tax responsive elements (TxREs) using an end-blocked DNA binding assay. We observed sequence-specific binding of PARP-1 to the TxREs. The DNA binding domain of PARP-1 was fused to the transcriptional activation domain of VP16, and this fusion protein activated the HTLV-I promoter in a TxRE-dependent manner. Internal, sequence-specific binding of PARP-1 to DNA provides a mechanism for transcriptional regulation of the HTLV-I promoter. The mechanism of PARP-1 function in the HTLV-I system may have common mechanistic steps with other cellular promoters, including the formation of active complexes on the promoter.
Collapse
Affiliation(s)
- Zhan Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
119
|
Deng Z, Lezina L, Chen CJ, Shtivelband S, So W, Lieberman PM. Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 2002; 9:493-503. [PMID: 11931758 DOI: 10.1016/s1097-2765(02)00476-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Episomal maintenance and DNA replication of EBV origin of plasmid replication (OriP) plasmid maintenance is mediated by the viral encoded origin binding protein, EBNA1, and unknown cellular factors. We found that telomeric repeat binding factor 2 (TRF2), TRF2-interacting protein hRap1, and the telomere-associated poly(ADP-ribose) polymerase (Tankyrase) bound to the dyad symmetry (DS) element of OriP in an EBNA1-dependent manner. TRF2 bound cooperatively with EBNA1 to the three nonamer sites (TTAGGGTTA), which resemble telomeric repeats. Mutagenesis of the nonamers reduced plasmid maintenance function and increased plasmid sensitivity to genotoxic stress. DS affinity-purified proteins possessed poly(ADP-ribose) polymerase (PARP) activity, and EBNA1 was subject to NAD-dependent posttranslational modification in vitro. OriP plasmid maintenance was sensitive to changes in cellular PARP/Tankyrase activity. These findings imply that telomere-associated proteins regulate OriP plasmid maintenance by PAR-dependent modifications.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
120
|
Jeanson L, Mouscadet JF. Ku represses the HIV-1 transcription: identification of a putative Ku binding site homologous to the mouse mammary tumor virus NRE1 sequence in the HIV-1 long terminal repeat. J Biol Chem 2002; 277:4918-24. [PMID: 11733502 DOI: 10.1074/jbc.m110830200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ku has been implicated in nuclear processes, including DNA break repair, transcription, V(D)J recombination, and telomere maintenance. Its mode of action involves two distinct mechanisms: one in which a nonspecific binding occurs to DNA ends and a second that involves a specific binding to negative regulatory elements involved in transcription repression. Such elements were identified in mouse mammary tumor virus and human T cell leukemia virus retroviruses. The purpose of this study was to investigate a role for Ku in the regulation of human immunodeficiency virus (HIV)-1 transcription. First, HIV-1 LTR activity was studied in CHO-K1 cells and in CH0-derived xrs-6 cells, which are devoid of Ku80. LTR-driven expression of a reporter gene was significantly increased in xrs-6 cells. This enhancement was suppressed after re-expression of Ku80. Second, transcription of HIV-1 was followed in U1 human cells that were depleted in Ku by using a Ku80 antisense RNA. Ku depletion led to a increase of both HIV-1 mRNA synthesis and viral production compared with the parent cells. These results demonstrate that Ku acts as a transcriptional repressor of HIV-1 expression. Finally, a putative Ku-specific binding site was identified within the negative regulatory region of the HIV-1 long terminal repeat, which may account for this repression of transcription.
Collapse
Affiliation(s)
- Laurence Jeanson
- CNRS UMR8532, Institut Gustave-Roussy, PR2, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | |
Collapse
|
121
|
Soldatenkov VA, Chasovskikh S, Potaman VN, Trofimova I, Smulson ME, Dritschilo A. Transcriptional repression by binding of poly(ADP-ribose) polymerase to promoter sequences. J Biol Chem 2002; 277:665-70. [PMID: 11684688 DOI: 10.1074/jbc.m108551200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is a DNA-binding enzyme that plays roles in response to DNA damage, apoptosis, and genetic stability. Recent evidence has implicated PARP in transcription of eukaryotic genes. However, the existing paradigm tying PARP function to the presence of DNA strand breaks does not provide a mechanism by which it may be recruited to gene-regulating domains in the absence of DNA damage. Here we report that PARP can bind to the DNA secondary structures (hairpins) in heteroduplex DNA in a DNA end-independent fashion and that automodification of PARP in the presence of NAD+ inhibited its hairpin binding activity. Atomic force microscopic images show that in vitro PARP protein has a preference for the promoter region of the PARP gene in superhelical DNA where the dyad symmetry elements likely form hairpins according to DNase probing. Using a chromatin cross-linking and immunoprecipitation assay we show that PARP protein binds to the chromosomal PARP promoter in vivo. Reporter gene assays have revealed that the transcriptional activity of the PARP promoter is 4-5-fold greater in PARP knockout cells than in wild type fibroblasts. Reintroduction of vectors expressing full-length PARP protein or its truncated mutant (DNA-binding domain retained but lacking catalytic activity) into PARP(-/-) cells has conferred transcriptional down-regulation of the PARP gene promoter. These data provide support for PARP protein as a potent regulator of transcription including down-regulation of its own promoter.
Collapse
|
122
|
Babiychuk E, Van Montagu M, Kushnir S. N-terminal domains of plant poly(ADP-ribose) polymerases define their association with mitotic chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:245-255. [PMID: 11722768 DOI: 10.1046/j.1365-313x.2001.01143.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Poly(ADP-ribos)ylation is a reversible protein modification that in higher plants is catalyzed by two structurally different poly(ADP-ribose) polymerases, App and Zap. In vivo imaging of green-fluorescent protein (GPF) fusions showed that both Zap and App were associated with chromatin through the cell cycle progression. The in vivo behaviour of the App-GFP protein fusions can be attributed to the activity of two NASA motifs that mediate protein-protein interactions and nucleic acid binding. Expression of Zap deletion variants revealed that both Zn fingers and helix-turn-helix domains contributed to the association with chromosomes, whereas the localization in the nucleoplasm was mostly determined by the Zn fingers. The results highlight novel properties of protein sequences found in plant poly(ADP-ribose) polymerases and suggest important functions for this class of nuclear enzymes in chromosome dynamics.
Collapse
Affiliation(s)
- E Babiychuk
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
123
|
Kaminker PG, Kim SH, Taylor RD, Zebarjadian Y, Funk WD, Morin GB, Yaswen P, Campisi J. TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J Biol Chem 2001; 276:35891-9. [PMID: 11454873 DOI: 10.1074/jbc.m105968200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tankyrase (TANK1) is a human telomere-associated poly(ADP-ribose) polymerase (PARP) that binds the telomere-binding protein TRF1 and increases telomere length when overexpressed. Here we report characterization of a second human tankyrase, tankyrase 2 (TANK2), which can also interact with TRF1 but has properties distinct from those of TANK1. TANK2 is encoded by a 66-kilobase pair gene (TNKS2) containing 28 exons, which express a 6.7-kilobase pair mRNA and a 1166-amino acid protein. The protein shares 85% amino acid identity with TANK1 in the ankyrin repeat, sterile alpha-motif, and PARP catalytic domains but has a unique N-terminal domain, which is conserved in the murine TNKS2 gene. TANK2 interacted with TRF1 in yeast and in vitro and localized predominantly to a perinuclear region, similar to the properties of TANK1. In contrast to TANK1, however, TANK2 caused rapid cell death when highly overexpressed. TANK2-induced death featured loss of mitochondrial membrane potential, but not PARP1 cleavage, suggesting that TANK2 kills cells by necrosis. The cell death was prevented by the PARP inhibitor 3-aminobenzamide. In vivo, TANK2 may differ from TANK1 in its intrinsic or regulated PARP activity or its substrate specificity.
Collapse
Affiliation(s)
- P G Kaminker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T. SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 2001; 21:5591-604. [PMID: 11463840 PMCID: PMC87280 DOI: 10.1128/mcb.21.16.5591-5604.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SATB1 is expressed primarily in thymocytes and orchestrates temporal and spatial expression of a large number of genes in the T-cell lineage. SATB1 binds to the bases of chromatin loop domains in vivo, recognizing a special DNA context with strong base-unpairing propensity. The majority of thymocytes are eliminated by apoptosis due to selection processes in the thymus. We investigated the fate of SATB1 during thymocyte and T-cell apoptosis. Here we show that SATB1 is specifically cleaved by a caspase 6-like protease at amino acid position 254 to produce a 65-kDa major fragment containing both a base-unpairing region (BUR)-binding domain and a homeodomain. We found that this cleavage separates the DNA-binding domains from amino acids 90 to 204, a region which we show to be a dimerization domain. The resulting SATB1 monomer loses its BUR-binding activity, despite containing both its DNA-binding domains, and rapidly dissociates from chromatin in vivo. We found this dimerization region to have sequence similarity to PDZ domains, which have been previously shown to be involved in signaling by conferring protein-protein interactions. SATB1 cleavage during Jurkat T-cell apoptosis induced by an anti-Fas antibody occurs concomitantly with the high-molecular-weight fragmentation of chromatin of ~50-kb fragments. Our results suggest that mechanisms of nuclear degradation early in apoptotic T cells involve efficient removal of SATB1 by disrupting its dimerization and cleavage of genomic DNA into loop domains to ensure rapid and efficient disassembly of higher-order chromatin structure.
Collapse
Affiliation(s)
- S Galande
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
125
|
Aravind L, Koonin EV. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 2001; 11:1365-74. [PMID: 11483577 PMCID: PMC311082 DOI: 10.1101/gr.181001] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Homologs of the eukaryotic DNA-end-binding protein Ku were identified in several bacterial and one archeal genome using iterative database searches with sequence profiles. Identification of prokaryotic Ku homologs allowed the dissection of the Ku protein sequences into three distinct domains, the Ku core that is conserved in eukaryotes and prokaryotes, a derived von Willebrand A domain that is fused to the amino terminus of the core in eukaryotic Ku proteins, and the newly recognized helix-extension-helix (HEH) domain that is fused to the carboxyl terminus of the core in eukaryotes and in one of the Ku homologs from the Actinomycete Streptomyces coelicolor. The version of the HEH domain present in eukaryotic Ku proteins represents the previously described DNA-binding domain called SAP. The Ku homolog from S. coelicolor contains a distinct version of the HEH domain that belongs to a previously unnoticed family of nucleic-acid-binding domains, which also includes HEH domains from the bacterial transcription termination factor Rho, bacterial and eukaryotic lysyl-tRNA synthetases, bacteriophage T4 endonuclease VII, and several uncharacterized proteins. The distribution of the Ku homologs in bacteria coincides with that of the archeal-eukaryotic-type DNA primase and genes for prokaryotic Ku homologs form predicted operons with genes coding for an ATP-dependent DNA ligase and/or archeal-eukaryotic-type DNA primase. Some of these operons additionally encode an uncharacterized protein that may function as nuclease or an Slx1p-like predicted nuclease containing a URI domain. A hypothesis is proposed that the Ku homolog, together with the associated gene products, comprise a previously unrecognized prokaryotic system for repair of double-strand breaks in DNA.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | |
Collapse
|
126
|
Samper E, Goytisolo FA, Ménissier-de Murcia J, González-Suárez E, Cigudosa JC, de Murcia G, Blasco MA. Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability. J Cell Biol 2001; 154:49-60. [PMID: 11448989 PMCID: PMC2196874 DOI: 10.1083/jcb.200103049] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP)-1, a detector of single-strand breaks, plays a key role in the cellular response to DNA damage. PARP-1-deficient mice are hypersensitive to genotoxic agents and display genomic instability due to a DNA repair defect in the base excision repair pathway. A previous report suggested that PARP-1-deficient mice also had a severe telomeric dysfunction consisting of telomere shortening and increased end-to-end fusions (d'Adda di Fagagna, F., M.P. Hande, W.-M. Tong, P.M. Lansdorp, Z.-Q. Wang, and S.P. Jackson. 1999. NAT: Genet. 23:76-80). In contrast to that, and using a panoply of techniques, including quantitative telomeric (Q)-FISH, we did not find significant differences in telomere length between wild-type and PARP-1(-/)- littermate mice or PARP-1(-/)- primary cells. Similarly, there were no differences in the length of the G-strand overhang. Q-FISH and spectral karyotyping analyses of primary PARP-1(-/)- cells showed a frequency of 2 end-to-end fusions per 100 metaphases, much lower than that described previously (d'Adda di Fagagna et al., 1999). This low frequency of end-to-end fusions in PARP-1(-/)- primary cells is accordant with the absence of severe proliferative defects in PARP-1(-/)- mice. The results presented here indicate that PARP-1 does not play a major role in regulating telomere length or in telomeric end capping, and the chromosomal instability of PARP-1(-/)- primary cells can be explained by the repair defect associated to PARP-1 deficiency. Finally, no interaction between PARP-1 and the telomerase reverse transcriptase subunit, Tert, was found using the two-hybrid assay.
Collapse
Affiliation(s)
- E Samper
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-CSIC, Campus Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
127
|
|
128
|
Ronen A, Glickman BW. Human DNA repair genes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 37:241-283. [PMID: 11317342 DOI: 10.1002/em.1033] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA repair systems are essential for the maintenance of genome integrity. Consequently, the disregulation of repair genes can be expected to be associated with significant, detrimental health effects, which can include an increased prevalence of birth defects, an enhancement of cancer risk, and an accelerated rate of aging. Although original insights into DNA repair and the genes responsible were largely derived from studies in bacteria and yeast, well over 125 genes directly involved in DNA repair have now been identified in humans, and their cDNA sequence established. These genes function in a diverse set of pathways that involve the recognition and removal of DNA lesions, tolerance to DNA damage, and protection from errors of incorporation made during DNA replication or DNA repair. Additional genes indirectly affect DNA repair, by regulating the cell cycle, ostensibly to provide an opportunity for repair or to direct the cell to apoptosis. For about 70 of the DNA repair genes listed in Table I, both the genomic DNA sequence and the cDNA sequence and chromosomal location have been elucidated. In 45 cases single-nucleotide polymorphisms have been identified and, in some cases, genetic variants have been associated with specific disorders. With the accelerating rate of gene discovery, the number of identified DNA repair genes and sequence variants is quickly rising. This report tabulates the current status of what is known about these genes. The report is limited to genes whose function is directly related to DNA repair.
Collapse
Affiliation(s)
- A Ronen
- Centre for Environmental Health, University of Victoria, Victoria, British Columbia, Canada.
| | | |
Collapse
|
129
|
Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 2000; 275:40974-80. [PMID: 11016934 DOI: 10.1074/jbc.m006520200] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) is formed in possibly all multicellular organisms by a familiy of poly(ADP-ribose) polymerases (PARPs). PARP-1, the best understood and until recently the only known member of this family, is a DNA damage signal protein catalyzing its automodification with multiple, variably sized ADP-ribose polymers that may contain up to 200 residues and several branching points. Through these polymers, PARP-1 can interact noncovalently with other proteins and alter their functions. Here we report the discovery of a poly(ADP-ribose)-binding sequence motif in several important DNA damage checkpoint proteins. The 20-amino acid motif contains two conserved regions: (i) a cluster rich in basic amino acids and (ii) a pattern of hydrophobic amino acids interspersed with basic residues. Using a combination of alanine scanning, polymer blot analysis, and photoaffinity labeling, we have identified poly(ADP-ribose)-binding sites in the following proteins: p53, p21(CIP1/WAF1), xeroderma pigmentosum group A complementing protein, MSH6, DNA ligase III, XRCC1, DNA polymerase epsilon, DNA-PK(CS), Ku70, NF-kappaB, inducible nitric-oxide synthase, caspase-activated DNase, and telomerase. The poly(ADP-ribose)-binding motif was found to overlap with five important functional domains responsible for (i) protein-protein interactions, (ii) DNA binding, (iii) nuclear localization, (iv) nuclear export, and (v) protein degradation. Thus, PARPs may target specific signal network proteins via poly(ADP-ribose) and regulate their domain functions.
Collapse
Affiliation(s)
- J M Pleschke
- Institute of Pharmacology and Toxicology, University of Zurich, Tierspital, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
130
|
Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH, Li GC, Campisi J, Kohwi-Shigematsu T, Chen DJ. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 2000; 14:2807-12. [PMID: 11090128 PMCID: PMC317061 DOI: 10.1101/gad.844000] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomeres are specialized DNA/protein structures that act as protective caps to prevent end fusion events and to distinguish the chromosome ends from double-strand breaks. We report that TRF1 and Ku form a complex at the telomere. The Ku and TRF1 complex is a specific high-affinity interaction, as demonstrated by several in vitro methods, and exists in human cells as determined by coimmunoprecipitation experiments. Ku does not bind telomeric DNA directly but localizes to telomeric repeats via its interaction with TRF1. Primary mouse embryonic fibroblasts that are deficient for Ku80 accumulated a large percentage of telomere fusions, establishing that Ku plays a critical role in telomere capping in mammalian cells. We propose that Ku localizes to internal regions of the telomere via a high-affinity interaction with TRF1. Therefore, Ku acts in a unique way at the telomere to prevent end joining.
Collapse
Affiliation(s)
- H L Hsu
- Department of Cell and Molecular Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Vodenicharov MD, Sallmann FR, Satoh MS, Poirier GG. Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Res 2000; 28:3887-96. [PMID: 11024167 PMCID: PMC110786 DOI: 10.1093/nar/28.20.3887] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2000] [Revised: 08/22/2000] [Accepted: 08/22/2000] [Indexed: 11/14/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is activated by binding to DNA breaks induced by ionizing radiation or through repair of altered bases in DNA by base excision repair. Mice lacking PARP-1 and, in certain cases, the cells derived from these mice exhibit hypersensitivity to ionizing radiation and alkylating agents. In this study we investigated base excision repair in cells lacking PARP-1 in order to elucidate whether their augmented sensitivity to DNA damaging agents is due to an impairment of the base excision repair pathway. Extracts prepared from wild-type cells or cells lacking PARP-1 were similar in their ability to repair plasmid DNA damaged by either X-rays (single-strand DNA breaks) or by N:-methyl-N:'-nitro-N:-nitrosoguanidine (methylated bases). In addition, we demonstrated in vivo that PARP-1-deficient cells treated with N:-methyl-N:'-nitro-N:-nitrosoguanidine repaired their genomic DNA as efficiently as wild-type cells. Therefore, we conclude that cells lacking PARP-1 have a normal capacity to repair single-strand DNA breaks inflicted by X-irradiation or breaks formed during the repair of modified bases. We propose that the hypersensitivity of PARP-1 null mutant cells to gamma-irradiation and alkylating agents is not directly due to a defect in DNA repair itself, but rather results from greatly reduced poly(ADP-ribose) formation during base excision repair in these cells.
Collapse
Affiliation(s)
- M D Vodenicharov
- Poly(ADP-ribose) Metabolism Group and DNA Repair Group, Health and Environment Unit, Laval University Medical Research Center, CHUQ and Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, Quebec G1V 4G2, Canada
| | | | | | | |
Collapse
|
132
|
Abstract
Ku is a heterodimeric protein composed of approximately 70- and approximately 80-kDa subunits (Ku70 and Ku80) originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. Ku has high binding affinity for DNA ends and that is why originally it was known as a DNA end binding protein, but now it is known to also bind the DNA structure at nicks, gaps, hairpins, as well as the ends of telomeres. It has been reported also to bind with sequence specificity to DNA and with weak affinity to RNA. Ku is an abundant nuclear protein and is present in vertebrates, insects, yeast, and worms. Ku contains ssDNA-dependent ATPase and ATP-dependent DNA helicase activities. It is the regulatory subunit of the DNA-dependent protein kinase that phosphorylates many proteins, including SV-40 large T antigen, p53, RNA-polymerase II, RP-A, topoisomerases, hsp90, and many transcription factors such as c-Jun, c-Fos, oct-1, sp-1, c-Myc, TFIID, and many more. It seems to be a multifunctional protein that has been implicated to be involved directly or indirectly in many important cellular metabolic processes such as DNA double-strand break repair, V(D)J recombination of immunoglobulins and T-cell receptor genes, immunoglobulin isotype switching, DNA replication, transcription regulation, regulation of heat shock-induced responses, regulation of the precise structure of telomeric termini, and it also plays a novel role in G2 and M phases of the cell cycle. The mechanism underlying the regulation of all the diverse functions of Ku is still obscure.
Collapse
Affiliation(s)
- R Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi.
| | | |
Collapse
|
133
|
Ko L, Cardona GR, Chin WW. Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc Natl Acad Sci U S A 2000; 97:6212-7. [PMID: 10823961 PMCID: PMC18584 DOI: 10.1073/pnas.97.11.6212] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear hormone receptors activate gene transcription through ligand-dependent association with coactivators. Specific LXXLL sequence motifs present in these cofactors are sufficient to mediate these ligand-induced interactions. A thyroid hormone receptor (TR)-binding protein (TRBP) was cloned by a Sos-Ras yeast two-hybrid system using TRbeta1-ligand binding domain as bait. TRBP contains 2063 amino acid residues, associates with TR through a LXXLL motif, and is ubiquitously expressed in a variety of tissues and cells. TRBP strongly transactivates through TRbeta1 and estrogen receptor in a dose-related and ligand-dependent manner, and also exhibits coactivation through AP-1, CRE, and NFkappaB-response elements, similar to the general coactivator CBP/p300. The C terminus of TRBP binds to CBP/p300 and DRIP130, a component of the DRIP/TRAP/ARC complex, which suggests that TRBP may activate transcription by means of such interactions. Further, the association of TRBP with the DNA-dependent protein kinase (DNA-PK) complex and DNA-independent phosphorylation of TRBP C terminus by DNA-PK point to a potential connection between transcriptional control and chromatin architecture regulation.
Collapse
Affiliation(s)
- L Ko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
134
|
Yang CR, Leskov K, Hosley-Eberlein K, Criswell T, Pink JJ, Kinsella TJ, Boothman DA. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci U S A 2000; 97:5907-12. [PMID: 10823943 PMCID: PMC18532 DOI: 10.1073/pnas.97.11.5907] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clusterin [CLU, a.k.a. TRPM-2, SGP-2, or ionizing radiation (IR)-induced protein-8 (XIP8)] was implicated in apoptosis, tissue injury, and aging. Its function remains elusive. We reisolated CLU/XIP8 by yeast two-hybrid analyses using as bait the DNA double-strand break repair protein Ku70. We show that a delayed (2-3 days), low-dose (0.02-10 Gy) IR-inducible nuclear CLU/XIP8 protein coimmunoprecipitated and colocalized (by confocal microscopy) in vivo with Ku70/Ku80, a DNA damage sensor and key double-strand break repair protein, in human MCF-7:WS8 breast cancer cells. Overexpression of nuclear CLU/XIP8 or its minimal Ku70 binding domain (120 aa of CLU/XIP8 C terminus) in nonirradiated MCF-7:WS8 cells dramatically reduced cell growth and colony-forming ability concomitant with increased G(1) cell cycle checkpoint arrest and increased cell death. Enhanced expression and accumulation of nuclear CLU/XIP8-Ku70/Ku80 complexes appears to be an important cell death signal after IR exposure.
Collapse
Affiliation(s)
- C R Yang
- Laboratory of Molecular Stress Responses, Departments of Radiation Oncology, Pharmacology and Pathology, Ireland Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue (BRB-326 East), Cleveland, OH 44106-4942, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 2000. [PMID: 10716941 DOI: 10.1101/gad.14.5.521] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in the T-cell lineage. SATB1-null mice are small in size, have disproportionately small thymi and spleens, and die at 3 weeks of age. At the cellular level, multiple defects in T-cell development were observed. Immature CD3(-)CD4(-)CD8(-) triple negative (TN) thymocytes were greatly reduced in number, and thymocyte development was blocked mainly at the DP stage. The few peripheral CD4(+) single positive (SP) cells underwent apoptosis and failed to proliferate in response to activating stimuli. At the molecular level, among 589 genes examined, at least 2% of genes including a proto-oncogene, cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of T-cell development in SATB1-null mice. For example, IL-2Ralpha and IL-7Ralpha genes were ectopically transcribed in CD4(+)CD8(+) double positive (DP) thymocytes. SATB1 appears to orchestrate the temporal and spatial expression of genes during T-cell development, thereby ensuring the proper development of this lineage. Our data provide the first evidence that MAR-binding proteins can act as global regulators of cell function in specific cell lineages.
Collapse
Affiliation(s)
- J D Alvarez
- Nippon Roche Research Center, Kamakura 247, Japan
| | | | | | | | | | | |
Collapse
|
136
|
Ramakrishnan M, Liu WM, DiCroce PA, Posner A, Zheng J, Kohwi-Shigematsu T, Krontiris TG. Modulated binding of SATB1, a matrix attachment region protein, to the AT-rich sequence flanking the major breakpoint region of BCL2. Mol Cell Biol 2000; 20:868-77. [PMID: 10629043 PMCID: PMC85203 DOI: 10.1128/mcb.20.3.868-877.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/1999] [Accepted: 10/22/1999] [Indexed: 11/20/2022] Open
Abstract
The t(14,18) chromosomal translocation that occurs in human follicular lymphoma constitutively activates the BCL2 gene and disrupts control of apoptosis. Interestingly, 70% of the t(14,18) translocations are confined to three 15-bp clusters positioned within a 150-bp region (major breakpoint region or [MBR]) in the untranslated portion of terminal exon 3. We analyzed DNA-protein interactions in the MBR, as these may play some role in targeting the translocation to this region. An 87-bp segment (87MBR) immediately 3' to breakpoint cluster 3 was essential for DNA-protein interaction monitored with mobility shift assays. We further delineated a core binding region within 87MBR: a 33-bp, very AT-rich sequence highly conserved between the human and mouse BCL2 gene (37MBR). We have purified and identified one of the core factors as the matrix attachment region (MAR) binding protein, SATB1, which is known to bind to AT-rich sequences with a high propensity to unwind. Additional factors in nuclear extracts, which we have not yet characterized further, increased SATB1 affinity for the 37MBR target four- to fivefold. Specific binding activity within 37MBR displayed cell cycle regulation in Jurkat T cells, while levels of SATB1 remained constant throughout the cell cycle. Finally, we demonstrated in vivo binding of SATB1 to the MBR, strongly suggesting the BCL2 major breakpoint region is a MAR. We discuss the potential consequences of our observations for both MBR fragility and regulatory function.
Collapse
Affiliation(s)
- M Ramakrishnan
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|