101
|
Bheemanaik S, Chandrashekaran S, Nagaraja V, Rao DN. Kinetic and catalytic properties of dimeric KpnI DNA methyltransferase. J Biol Chem 2003; 278:7863-74. [PMID: 12506109 DOI: 10.1074/jbc.m211458200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KpnI DNA-(N(6)-adenine)-methyltransferase (KpnI MTase) is a member of a restriction-modification (R-M) system in Klebsiella pneumoniae and recognizes the sequence 5'-GGTACC-3'. It modifies the recognition sequence by transferring the methyl group from S-adenosyl-l-methionine (AdoMet) to the N(6) position of adenine residue. KpnI MTase occurs as a dimer in solution as shown by gel filtration and chemical cross-linking analysis. The nonlinear dependence of methylation activity on enzyme concentration indicates that the functionally active form of the enzyme is also a dimer. Product inhibition studies with KpnI MTase showed that S-adenosyl-l-homocysteine is a competitive inhibitor with respect to AdoMet and noncompetitive inhibitor with respect to DNA. The methylated DNA showed noncompetitive inhibition with respect to both DNA and AdoMet. A reduction in the rate of methylation was observed at high concentrations of duplex DNA. The kinetic analysis where AdoMet binds first followed by DNA, supports an ordered bi bi mechanism. After methyl transfer, methylated DNA dissociates followed by S-adenosyl-l-homocysteine. Isotope-partitioning analysis showed that KpnI MTase-AdoMet complex is catalytically active.
Collapse
|
102
|
Abstract
Recent advances in human genome research have resulted in novel approaches for the identification of epigenetic modifications associated with cancer. Modulators of DNA methylation and chromatin structure have a dramatic effect on gene expression, cellular proliferation, differentiation, and apoptosis. Molecular pathways regulating epigenetic events that occur during tumorigenesis have been exploited as new targets for therapeutic intervention. Clinical studies exploring the effectiveness of therapeutic agents targeting DNA methylation and acetylation of histones have yielded promising results. Molecular profiles of epigenetic alterations in cancer cells could allow better stratification of patients who may show responsiveness to specific treatments.
Collapse
Affiliation(s)
- Thea Kalebic
- Lung and Upper Aerodigestive Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
103
|
Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 2003; 163:1109-22. [PMID: 12663548 PMCID: PMC1462485 DOI: 10.1093/genetics/163.3.1109] [Citation(s) in RCA: 402] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the isolation and characterization of two missense mutations in the cytosine-DNA-methyltransferase gene, MET1, from the flowering plant Arabidopsis thaliana. Both missense mutations, which affect the catalytic domain of the protein, led to a global reduction of cytosine methylation throughout the genome. Surprisingly, the met1-2 allele, with the weaker DNA hypomethylation phenotype, alters a well-conserved residue in methyltransferase signature motif I. The stronger met1-1 allele caused late flowering and a heterochronic delay in the juvenile-to-adult rosette leaf transition. The distribution of late-flowering phenotypes in a mapping population segregating met1-1 indicates that the flowering-time phenotype is caused by the accumulation of inherited defects at loci unlinked to the met1 mutation. The delay in flowering time is due in part to the formation and inheritance of hypomethylated fwa epialleles, but inherited defects at other loci are likely to contribute as well. Centromeric repeat arrays hypomethylated in met1-1 mutants are partially remethylated when introduced into a wild-type background, in contrast to genomic sequences hypomethylated in ddm1 mutants. ddm1 met1 double mutants were constructed to further our understanding of the mechanism of DDM1 action and the interaction between two major genetic loci affecting global cytosine methylation levels in Arabidopsis.
Collapse
Affiliation(s)
- Mark W Kankel
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Pinarbasi H, Pinarbasi E, Hornby DP. The small subunit of M. AquI is responsible for sequence-specific DNA recognition and binding in the absence of the catalytic domain. J Bacteriol 2003; 185:1284-8. [PMID: 12562799 PMCID: PMC142865 DOI: 10.1128/jb.185.4.1284-1288.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AquI DNA methyltransferase (M. AquI) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the C5 position of the outermost deoxycytidine base in the DNA sequence 5'-CCCGGG-3'. M. AquI is a heterodimer in which the polypeptide chain is separated at the junction between the two equivalent structural domains in the related enzyme M. HhaI. Recently, we reported the subcloning, overexpression, and purification of the subunits (alpha and beta) of M. AquI separately. Here we describe the DNA binding properties of M. AquI. The results presented here indicate that the beta subunit alone contains all of the information for sequence-specific DNA recognition and binding. The first step in the sequence-specific recognition of DNA by M. AquI involves the formation of binary complex with the target recognition domain in conjunction with conserved sequence motifs IX and X, found in all known C5 DNA methyltransferases, contained in the beta subunit. The alpha subunit enhances the binding of the beta subunit to DNA specifically and nonspecifically. It is likely that the addition of the alpha subunit to the beta subunit stabilizes the conformation of the beta subunit and thereby enhances its affinity for DNA indirectly. Addition of S-adenosyl-L-methionine and its analogues S-adenosyl-L-homocysteine and sinefungin enhances binding, but only in the presence of the alpha subunit. These compounds did not have any effect on DNA binding by the beta subunit alone. Using a 30-mer oligodeoxynucleotide substrate containing 5-fluorodeoxycytidine (5-FdC), it was found that the beta subunit alone did not form a covalent complex with its specific sequence in the absence or presence of S-adenosyl-L-methionine. However, the addition of the alpha subunit to the beta subunit led to the formation of a covalent complex with specific DNA sequence containing 5-FdC.
Collapse
Affiliation(s)
- Hatice Pinarbasi
- Department of Biochemistry. Department of Medical Biology and Genetics, Medicine Faculty, Cumhuriyet University, Sivas, Turkey.
| | | | | |
Collapse
|
105
|
Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation?how does it all fit together? J Cell Biochem 2002; 87:117-25. [PMID: 12244565 DOI: 10.1002/jcb.10286] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation is important in the control of gene transcription and chromatin structure. The complexities of this process are just beginning to be elucidated in relationship to other epigenetic mechanisms. Exciting new research in the areas of histone methylation and chromatin remodeling make it clear just how important the connections between these various mechanisms and DNA methylation are for the control of chromosome structure and gene expression. Emerging evidence suggests that chromatin remodeling enzymes and histone methylation are essential for proper DNA methylation patterns. Other histone modifications, such as acetylation and phosphorylation, in turn, affect histone methylation and histone methylation also appears to be highly reliant on chromatin remodeling enzymes. This review will summarize what is likely only the beginning of a flood of new information that will ultimately link all epigenetic modifications of the mammalian genome. A model will also be put forth to account for how chromatin modifications lead to genomic DNA methylation patterns.
Collapse
Affiliation(s)
- Theresa M Geiman
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
106
|
Abstract
Methylation of cytosines within the CpG dinucleotide by DNA methyltransferases is involved in regulating transcription and chromatin structure, controlling the spread of parasitic elements, maintaining genome stability in the face of vast amounts of repetitive DNA, and X chromosome inactivation. Cellular DNA methylation is highly compartmentalized over the mammalian genome and this compartmentalization is essential for embryonic development. When the complicated mechanisms that control which DNA sequences become methylated go awry, a number of inherited genetic diseases and cancer may result. Much new information has recently come to light regarding how cellular DNA methylation patterns may be established during development and maintained in somatic cells. Emerging evidence indicates that various chromatin states such as histone modifications (acetylation and methylation) and nucleosome positioning (modulated by ATP-dependent chromatin remodeling machines) determine DNA methylation patterning. Additionally, various regulatory factors interacting with the DNA methyltransferases may direct them to specific DNA sequences, regulate their enzymatic activity, and allow their use as transcriptional repressors. Continued studies of the connections between DNA methylation and chromatin structure and the DNA methyltransferase-associated proteins, will likely reveal that many, if not all, epigenetic modifications of the genome are directly connected. Such studies should also yield new insights into treating diseases involving aberrant DNA methylation.
Collapse
Affiliation(s)
- Keith D Robertson
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA.
| |
Collapse
|
107
|
Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S. Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 2002; 21:4183-95. [PMID: 12145218 PMCID: PMC126147 DOI: 10.1093/emboj/cdf401] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2002] [Revised: 06/10/2002] [Accepted: 06/10/2002] [Indexed: 11/13/2022] Open
Abstract
Three different families of DNA (cytosine-5) methyltransferases, DNMT1, DUMT2, DNMT3a and DNMT3b, participate in establishing and maintaining genomic methylation patterns during mammalian development. These enzymes have a large N-terminal domain fused to a catalytic domain. The catalytic domain is homologous to prokaryotic (cytosine-5) methyltransferases and contains the catalytic PC dipeptide, while the N-terminus acts as a transcriptional repressor by recruiting several chromatin remodeling proteins. Here, we show that the human de novo enzymes hDNMT3a and hDNMT3b form complexes with the major maintenance enzyme hDNMT1. Antibodies against hDNMT1 pull down both the de novo enzymes. Furthermore, the N-termini of the enzymes are involved in protein-protein interactions. Immunocytochemical staining revealed mostly nuclear co-localization of the fusion proteins, with the exception of hDNMT3a, which is found either exclusively in cytoplasm or in both nucleus and cytoplasm. Pre-methylated substrate DNAs exhibited differential methylation by de novo and maintenance enzymes. In vivo co-expression of hDNMT1 and hDNMT3a or hDNMT3b leads to methylation spreading in the genome, suggesting co-operation between de novo and maintenance enzymes during DNA methylation.
Collapse
Affiliation(s)
- Gun-Do Kim
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Jingwei Ni
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Nicole Kelesoglu
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Richard J. Roberts
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Sriharsa Pradhan
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915 and Cell Signaling Technology Inc., 166B Cummings Center, Beverly, MA 01915, USA Present address: Korea Research Institute of Chemical Technology, Yusung, Taejon 305-600, South Korea Present address: Celera Genomics Inc., 45 West Gude Drive, Rockville, MD 20850, USA Corresponding author e-mail:
| |
Collapse
|
108
|
Abstract
Human monozygotic (MZ) twins estimated to occur once in 250 live births, result from an errant decision by embryonic cell(s) to develop as separate embryos. They are considered genetically identical and any phenotypic discordance between them has been used to implicate the role of environment. More recent literature, however, has questioned these assumptions but the frequency and the nature of any genetic discordance between MZ twins remains poorly understood. We will review published cases of phenotypic and genetic discordance between monozygotic twins to argue that not all discordance between such twins is due to differences in environment. The causes of reduced concordance between MZ twins remains poorly understood. They represent among the challenging aspects of the genetics of complex multi-factorial traits and diseases. A number of questions regarding the published results on MZ twins merit a re-assessment in the light of modern molecular insight of the human genome. Such an assessment is needed in directing future studies on MZ twins. In particular, we will deal with the origin, development, genetic and epigenetic factors that may have implications in discordance of the MZ twin pairs.
Collapse
Affiliation(s)
- S M Singh
- Molecular Genetics Unit, Department of Biology and Division of Medical Genetics, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|