101
|
Glowczewski L, Waterborg JH, Berman JG. Yeast chromatin assembly complex 1 protein excludes nonacetylatable forms of histone H4 from chromatin and the nucleus. Mol Cell Biol 2005; 24:10180-92. [PMID: 15542829 PMCID: PMC529027 DOI: 10.1128/mcb.24.23.10180-10192.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast, the establishment and maintenance of a transcriptionally silent chromatin state are dependent upon the acetylation state of the N terminus of histone proteins. Histone H4 proteins that contain mutations in N-terminal lysines disrupt heterochromatin and result in yeast that cannot mate. Introduction of a wild-type copy of histone H4 restores mating, despite the presence of the mutant protein, suggesting that mutant H4 protein is either excluded from, or tolerated in, chromatin. To understand how the cell differentiates wild-type histone and mutant histone in which the four N-terminal lysines were replaced with alanine (H4-4A), we analyzed silencing, growth phenotypes, and the histone composition of chromatin in yeast strains coexpressing equal amounts of wild-type and mutant H4 proteins (histone H4 heterozygote). We found that histone H4 heterozygotes have defects in heterochromatin silencing and growth, implying that mutations in H4 are not completely recessive. Nuclear preparations from histone H4 heterozygotes contained less mutant H4 than wild-type H4, consistent with the idea that cells exclude some of the mutant histone. Surprisingly, the N-terminal nuclear localization signal of H4-4A fused to green fluorescent protein was defective in nuclear localization, while a mutant in which the four lysines were replaced with arginine (H4-4R) appeared to have normal nuclear import, implying a role for the charged state of the acetylatable lysines in the nuclear import of histones. The biased partial exclusion of H4-4A was dependent upon Cac1p, the largest subunit of yeast chromatin assembly factor 1 (CAF-1), as well as upon the karyopherin Kap123p, but was independent of Cac2p, another CAF-1 component, and other chromatin assembly proteins (Hir3p, Nap1p, and Asf1p). We conclude that N-terminal lysines of histone H4 are important for efficient histone nuclear import. In addition, our data support a model whereby Cac1p and Kap123 cooperate to ensure that only appropriately acetylated histone H4 proteins are imported into the nucleus.
Collapse
Affiliation(s)
- Lynn Glowczewski
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-170 MCB Building, 420 Washington Ave. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
102
|
Leslie DM, Zhang W, Timney BL, Chait BT, Rout MP, Wozniak RW, Aitchison JD. Characterization of karyopherin cargoes reveals unique mechanisms of Kap121p-mediated nuclear import. Mol Cell Biol 2004; 24:8487-503. [PMID: 15367670 PMCID: PMC516728 DOI: 10.1128/mcb.24.19.8487-8503.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast there are at least 14 members of the beta-karyopherin protein family that govern the movement of a diverse set of cargoes between the nucleus and cytoplasm. Knowledge of the cargoes carried by each karyopherin and insight into the mechanisms of transport are fundamental to understanding constitutive and regulated transport and elucidating how they impact normal cellular functions. Here, we have focused on the identification of nuclear import cargoes for the essential yeast beta-karyopherin, Kap121p. Using an overlay blot assay and coimmunopurification studies, we have identified 30 putative Kap121p cargoes. Among these were Nop1p and Sof1p, two essential trans-acting protein factors required at the early stages of ribosome biogenesis. Characterization of the Kap121p-Nop1p and Kap121p-Sof1p interactions demonstrated that, in addition to lysine-rich nuclear localization signals (NLSs), Kap121p recognizes a unique class of signals distinguished by the abundance of arginine and glycine residues and consequently termed rg-NLSs. Kap104p is also known to recognize rg-NLSs, and here we show that it compensates for the loss of Kap121p function. Sof1p is also transported by Kap121p; however, its import can be mediated by a piggyback mechanism with Nop1p bridging the interaction between Sof1p and Kap121p. Together, our data elucidate additional levels of complexity in these nuclear transport pathways.
Collapse
Affiliation(s)
- Deena M Leslie
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Mosammaparast N, Pemberton LF. Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 2004; 14:547-56. [PMID: 15450977 DOI: 10.1016/j.tcb.2004.09.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The karyopherin beta (or importin beta) family comprises soluble transport factors that mediate the movement of proteins and RNAs between the nucleus and cytoplasm. Recent studies have extended the role of karyopherins to regulating assembly of the nuclear pore complex (NPC), assembly of the nuclear envelope, mitosis and replication. New data also address how karyopherins specifically recognize and transport many distinct cargoes and traverse the NPC. These data raise the possibility that, although there might be a universal mechanism for nuclear transport, specific interactions between karyopherins and components of the NPC might function to regulate differentially the ability of the different karyopherins to cross the NPC.
Collapse
Affiliation(s)
- Nima Mosammaparast
- Center for Cell Signaling and Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
104
|
Loch CM, Mosammaparast N, Miyake T, Pemberton LF, Li R. Functional and Physical Interactions between Autonomously Replicating Sequence-Binding Factor 1 and the Nuclear Transport Machinery. Traffic 2004; 5:925-35. [PMID: 15522095 DOI: 10.1111/j.1600-0854.2004.00233.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autonomously replicating sequence-binding factor 1 (Abf1p) is a site-specific DNA binding protein in Saccharomyces cerevisiae that functions to regulate multiple nuclear events including DNA replication, transcriptional activation, and gene silencing. Previous work indicates that the multiple functions of Abf1p are conferred by the carboxy-terminus of the protein, which can be further dissected into two important clusters of amino acid residues (CS1 and CS2). Here we present genetic and cell biological evidence for a critical role of CS1 in proper nuclear localization of Abf1p. Mutations in CS1 cause severe defects in cell growth, nuclear translocation, and Abf1p-mediated gene regulation, which can be rescued by a heterologous nuclear localization sequence (NLS). In addition, the CS1-domain can mediate the import of a CS1-GFP fusion protein. Importantly, the CS1-mediated nuclear import depends on the Ran guanine nucleotide exchange factor Prp20p. Interestingly, a single amino acid change in CS1 (K625I) also causes the protein to be exported out of the nucleus via the Crm1p-dependent pathway. The temperature-sensitive growth phenotype of this particular mutant can be overcome by overexpression of Kap121p/Pse1p, a well-established nuclear transport receptor. Biochemical studies indicate that Pse1p binds to a region of Abf1p upstream of CS1 in a RanGTP-sensitive manner, suggesting that Abf1p has a second distinct NLS and can be imported into the nucleus by several overlapping pathways. We propose that the link between Abf1p and the nuclear transport machinery may also be important for partitioning multiple Abf1p-mediated nuclear processes.
Collapse
Affiliation(s)
- Christian M Loch
- Department of Biochemistry and Molecular Genetics, School of Medicine, PO Box 800733, University of Virginia, Charlottesville, VA 22908-0733, USA
| | | | | | | | | |
Collapse
|
105
|
Steidl S, Tüncher A, Goda H, Guder C, Papadopoulou N, Kobayashi T, Tsukagoshi N, Kato M, Brakhage AA. A Single Subunit of a Heterotrimeric CCAAT-binding Complex Carries a Nuclear Localization Signal: Piggy Back Transport of the Pre-assembled Complex to the Nucleus. J Mol Biol 2004; 342:515-24. [PMID: 15327951 DOI: 10.1016/j.jmb.2004.07.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/07/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
An unresolved question concerns the nuclear localization of the heterotrimeric CCAAT-binding complex, which is evolutionarily conserved in eukaryotic organisms including fungi, plants and mammals. All three subunits are necessary for DNA binding. In the filamentous fungus Aspergillus nidulans the corresponding complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF consists of the HapB, HapC and HapE subunits. Here, by using various green fluorescent protein constructs, a nuclear localization signal sequence (NLS) of the HapB protein was identified, outside of the evolutionarily conserved domain. HapB-EGFP was transported into the nucleus in both DeltahapC and DeltahapE strains, indicating that its NLS interacts with the import machinery independently of the other Hap subunits. In contrast, HapC-EGFP did not enter the nucleus in the absence of HapE or HapB. A similar finding was made for HapE-EGFP, which did not localize to the nucleus in the absence of HapC or HapB. Addition of the HapB-NLS to either HapC or HapE led to nuclear localization of the respective protein fusions, indicating that both HapC and HapE lack a functional NLS. Furthermore, these data strongly suggest that HapC and HapE have first to form a heterodimer and can be transported only as a heterodimer via the HapB protein into the nucleus. Therefore, the HapB subunit is the primary cargo for the import machinery, while HapC and HapE are transported to the nucleus only as a heterodimer and in complex with HapB via a piggy back mechanism. This enables the cell to provide equimolar concentrations of all subunits to the nucleus.
Collapse
Affiliation(s)
- Stefan Steidl
- Institut für Mikrobiologie, Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Sklenar AR, Parthun MR. Characterization of yeast histone H3-specific type B histone acetyltransferases identifies an ADA2-independent Gcn5p activity. BMC BIOCHEMISTRY 2004; 5:11. [PMID: 15274751 PMCID: PMC509278 DOI: 10.1186/1471-2091-5-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 07/26/2004] [Indexed: 12/03/2022]
Abstract
Background The acetylation of the core histone NH2-terminal tails is catalyzed by histone acetyltransferases. Histone acetyltransferases can be classified into two distinct groups (type A and B) on the basis of cellular localization and substrate specificity. Type B histone acetyltransferases, originally defined as cytoplasmic enzymes that acetylate free histones, have been proposed to play a role in the assembly of chromatin through the acetylation of newly synthesized histones H3 and H4. To date, the only type B histone acetyltransferase activities identified are specific for histone H4. Results To better understand the role of histone acetylation in the assembly of chromatin structure, we have identified additional type B histone acetyltransferase activities specific for histone H3. One such activity, termed HatB3.1, acetylated histone H3 with a strong preference for free histones relative to chromatin substrates. Deletion of the GCN5 and ADA3 genes resulted in the loss of HatB3.1 activity while deletion of ADA2 had no effect. In addition, Gcn5p and Ada3p co-fractionated with partially purified HatB3.1 activity while Ada2p did not. Conclusions Yeast extracts contain several histone acetyltransferase activities that show a strong preference for free histone H3. One such activity, termed HatB3.1, appears to be a novel Gcn5p-containing complex which does not depend on the presence of Ada2p.
Collapse
Affiliation(s)
- Amy R Sklenar
- Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
107
|
Ai X, Parthun MR. The nuclear Hat1p/Hat2p complex: a molecular link between type B histone acetyltransferases and chromatin assembly. Mol Cell 2004; 14:195-205. [PMID: 15099519 DOI: 10.1016/s1097-2765(04)00184-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/27/2004] [Accepted: 03/02/2004] [Indexed: 11/21/2022]
Abstract
The yeast Hat1p/Hat2p type B histone acetyltransferase complex is localized to both the cytoplasm and nucleus. We isolate the nuclear form of the Hat1p/Hat2p complex and find that it copurifies with the product of the uncharacterized open reading frame YLL022C (named Hif1p). The functional significance of the association of Hif1p with the Hat1p/Hat2p complex is confirmed by the observation that hif1Delta and hat1Delta strains display similar defects in telomeric silencing and DNA double-strand break repair. Hif1p is a histone chaperone that selectively interacts with histones H3 and H4. Hif1p is also a chromatin assembly factor, promoting the deposition of histones in the presence of a yeast cytosolic extract. In vivo, the nuclear Hat1p/Hat2p/Hif1p complex is bound to acetylated histone H4, as well as histone H3. The association of Hif1p with acetylated H4 requires Hat1p and Hat2p providing a link between type B histone acetyltransferases and chromatin assembly.
Collapse
Affiliation(s)
- Xi Ai
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
108
|
Poveda A, Pamblanco M, Tafrov S, Tordera V, Sternglanz R, Sendra R. Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J Biol Chem 2004; 279:16033-43. [PMID: 14761951 DOI: 10.1074/jbc.m314228200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hat1 is the catalytic subunit of the only type B histone acetyltransferase known (HAT-B). The enzyme specifically acetylates lysine 12, and to a lesser extent lysine 5, of free, non-chromatin-bound histone H4. The complex is usually isolated with cytosolic fractions and is thought to be involved in chromatin assembly. The Saccharomyces cerevisiae HAT-B complex also contains Hat2, a protein stimulating Hat1 catalytic activity. We have now identified by two-hybrid experiments Hif1 as both a Hat1- and a histone H4-interacting protein. These interactions were dependent on HAT2, indicating a mediating role for Hat2. Biochemical fractionation and co-immunoprecipitation assays demonstrated that Hif1 is a component of a yeast heterotrimeric HAT-B complex, in which Hat2 bridges Hat1 and Hif1 proteins. In contrast to Hat2, this novel subunit does not appear to regulate Hat1 enzymatic activity. Nevertheless, similarly to Hat1, Hif1 influences telomeric silencing. In a localization analysis by immunofluorescence microscopy on yeast strains expressing tagged versions of Hat1, Hat2, and Hif1, we have found that all three HAT-B proteins are mainly localized in the nucleus. Thus, we propose that the distinction between A- and B-type enzymes should henceforth be based on their capacity to acetylate histones bound to nucleosomes and not on their location within the cell. Finally, by Western blotting assays, we have not detected differences in the in vivo acetylation of H4 lysine 12 (acK12H4) between wild-type and hat1Delta, hat2Delta, or hif1Delta mutant strains, suggesting that the level of HAT-B-dependent acK12H4 may be very low under normal growth conditions.
Collapse
Affiliation(s)
- Ana Poveda
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50. 46100-Burjassot (València) Spain
| | | | | | | | | | | |
Collapse
|
109
|
Greiner M, Caesar S, Schlenstedt G. The histones H2A/H2B and H3/H4 are imported into the yeast nucleus by different mechanisms. Eur J Cell Biol 2004; 83:511-20. [PMID: 15679097 DOI: 10.1078/0171-9335-00418] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins are imported from the cytoplasm into the nucleus by importin beta-related transport receptors. The yeast Saccharomyces cerevisiae contains ten of these importins, but only two of them are essential. After transfer through the nuclear pore, importins release their cargo upon binding to the Ran GTPase, the key regulator of nuclear transport. We investigated the import of the core histones in yeast and found that four importins are involved. The essential Pse1p and the nonessential importins Kap114p, Kap104p, and Yrb4p/Kap123p specifically bind to histones H2A and H2B. Release of H2 histones from importins requires Ran-GTP and DNA simultaneously suggesting a function of the importins in intranuclear targeting. H3 and H4 associate mainly with Pse1p and the dissociation requires Ran but not DNA, which points to a different import mechanism. Import of green fluorescent protein fusions to H2A and H2B requires primarily Pse1p and Kap114p, whereas Yrb4p plays an auxiliary role. Pse1p is predominantly necessary for nuclear uptake of H3 and H4, while Kap104p and Yrb4p also support import. We conclude from our in vivo and in vitro experiments that import of the essential histones is mediated mainly by the essential importin Pse1p, while the non-essential Kap114p functions in a parallel import pathway for H2A and H2B.
Collapse
Affiliation(s)
- Markus Greiner
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Homburg, Germany
| | | | | |
Collapse
|
110
|
Nikolaev I, Cochet MF, Felenbok B. Nuclear import of zinc binuclear cluster proteins proceeds through multiple, overlapping transport pathways. EUKARYOTIC CELL 2003; 2:209-21. [PMID: 12684370 PMCID: PMC154843 DOI: 10.1128/ec.2.2.209-221.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In Aspergillus nidulans, the high transcriptional level of the ethanol utilization pathway genes (alc) is regulated by the specific activator AlcR. Here we have analyzed the mechanism of the nuclear import of AlcR, as well as that of other proteins belonging to the Zn(2)Cys(6) binuclear cluster family. The nuclear localization signal of AlcR maps within the N-terminal 75 amino acid residues and overlaps with its DNA-binding domain. It consists of five clusters rich in basic residues. Four of them are necessary and sufficient for nuclear targeting. The first two basic regions are crucial for both nuclear localization and recognition of AlcR-specific DNA targets. This nuclear localization signal (NLS) motif is recognized by the nuclear transport machinery of Saccharomyces cerevisiae and requires both Ran/Gsp1p activity and specific transport receptors. AlcR can be imported into nuclei via multiple transport pathways mediated by a distinct set of karyopherins composed of Kap104p, Sxm1p, and Nmd5p transport receptors. The two former karyopherins interact with the NLS of AlcR directly. Other Zn binuclear cluster proteins from S. cerevisiae, such as Gal4p and Pdr3p, also appear to be transported to the nuclei in a nonclassical, importin-alpha-independent manner and can share common importin beta receptors.
Collapse
Affiliation(s)
- Igor Nikolaev
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR 8621 CNRS, Centre d'Orsay, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
111
|
Marfatia KA, Crafton EB, Green DM, Corbett AH. Domain analysis of the Saccharomyces cerevisiae heterogeneous nuclear ribonucleoprotein, Nab2p. Dissecting the requirements for Nab2p-facilitated poly(A) RNA export. J Biol Chem 2003; 278:6731-40. [PMID: 12496292 DOI: 10.1074/jbc.m207571200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mature poly(A) RNA transcripts are exported from the nucleus in complex with heterogeneous nuclear ribonucleoproteins (hnRNPs). Nab2p is an essential Saccharomyces cerevisiae hnRNP protein that interacts with poly(A) RNA and shuttles between the nucleus and cytoplasm. Functional Nab2p is required for export of poly(A) RNA from the nucleus. The Nab2 protein consists of the following four domains: a unique N-terminal domain, a glutamine-rich domain, an arginine-glycine (RGG) domain, and a zinc finger domain. We generated Nab2p deletion mutants to analyze the contribution of each domain to the in vivo function of Nab2p. We first tested whether the deletion mutants could replace the essential NAB2 gene. We then examined the impact of these mutations on Nab2p localization, poly(A) RNA localization, and association of Nab2p with poly(A) RNA. Our analyses revealed that the N-terminal domain is required for nuclear export of both poly(A) RNA and Nab2p. We confirm that the RGG domain is important for Nab2p import in vivo. Finally, the zinc finger domain is critical for the interaction between Nab2p and poly(A) RNA in vivo. Our data support a model where Nab2p associates with poly(A) RNA in the nucleus through the zinc finger domain and facilitates the export of the poly(A) RNA through protein interactions mediated by the N-terminal domain.
Collapse
Affiliation(s)
- Kavita A Marfatia
- Department of Biochemistry, Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
112
|
Mosammaparast N, Ewart CS, Pemberton LF. A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B. EMBO J 2002; 21:6527-38. [PMID: 12456659 PMCID: PMC136951 DOI: 10.1093/emboj/cdf647] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Import of core histones into the nucleus is a prerequisite for their deposition onto DNA and the assembly of chromatin. Here we demonstrate that nucleosome assembly protein 1 (Nap1p), a protein previously implicated in the deposition of histones H2A and H2B, is also involved in the transport of these two histones. We demonstrate that Nap1p can bind directly to Kap114p, the primary karyopherin/importin responsible for the nuclear import of H2A and H2B. Nap1p also serves as a bridge between Kap114p and the histone nuclear localization sequence (NLS). Nap1p acts cooperatively to increase the affinity of Kap114p for these NLSs. Nuclear accumulation of histone NLS-green fluorescent protein (GFP) reporters was decreased in deltanap1 cells. Furthermore, we demonstrate that Nap1p promotes the association of the H2A and H2B NLSs specifically with the karyopherin Kap114p. Localization studies demonstrate that Nap1p is a nucleocytoplasmic shuttling protein, and genetic experiments suggest that its shuttling is important for maintaining chromatin structure in vivo. We propose a model in which Nap1p links the nuclear transport of H2A and H2B to chromatin assembly.
Collapse
Affiliation(s)
| | | | - Lucy F. Pemberton
- Center for Cell Signaling and Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
Corresponding author e-mail:
| |
Collapse
|
113
|
Chua G, Lingner C, Frazer C, Young PG. The sal3(+) gene encodes an importin-beta implicated in the nuclear import of Cdc25 in Schizosaccharomyces pombe. Genetics 2002; 162:689-703. [PMID: 12399381 PMCID: PMC1462273 DOI: 10.1093/genetics/162.2.689] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Schizosaccharomyces pombe, the nuclear accumulation of Cdc25 peaks in G2 and is necessary for the proper timing of mitotic entry. Here, we identify the sal3(+) gene product as an importin-beta homolog that participates in the nuclear import of Cdc25. Loss of sal3(+) results in a cell cycle delay, failure to undergo G1 arrest under nitrogen-starvation conditions, and mislocalization of Cdc25 to the cytosol. Fusion of an exogenous classical nuclear localization sequence (cNLS) to Cdc25 restores its nuclear accumulation in a sal3 disruptant and suppresses the sal3 mutant phenotypes. In addition, we show that enhanced nuclear localization of Cdc25 at endogenous levels of expression advances the onset of mitosis. These results demonstrate that the nuclear translocation of Cdc25 is important for the timing of mitotic entry and that Sal3 plays an important role in this process.
Collapse
Affiliation(s)
- Gordon Chua
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
114
|
Bäuerle M, Doenecke D, Albig W. The requirement of H1 histones for a heterodimeric nuclear import receptor. J Biol Chem 2002; 277:32480-9. [PMID: 12080050 DOI: 10.1074/jbc.m202765200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
After synthesis in the cytoplasm, H1 histones are imported into the nucleus through an energy-dependent process that can be mediated by an importin beta-importin 7 (Impbeta-Imp7) heterodimer. H1 histones contain two structurally different types of nuclear localization signals (NLS). The first type of NLS resides within the unstructured C-terminal domain and is rich in basic amino acids. In contrast, the highly conserved central domain of the H1 histone contains comparatively few basic amino acids but also represents a functional NLS. The competence for the nuclear import of this globular domain seems to be based on its secondary structure. Here, we show that the Impbeta-Imp7 heterodimer is the only receptor for H1 import. Furthermore, we identified the import receptors mediating the in vitro transport of different NLS of the H1 histone. Using the digitonin-permeabilized cell import assay we show that Impbeta is the most efficient import receptor for the globular domain of H1 histones, whereas the heterodimer of Impbeta and Imp7 is the functional receptor for the entire C-terminal domain. However, short fragments of the C-terminal domain are imported in vitro by at least four different importins, which resembles the import pathway of ribosomal proteins and core histones. In addition, we show that heterodimerization of Impbeta with Imp7 is absolutely necessary for their proper function as an import receptor for H1 histones. These findings point to a chaperone-like function of the heterodimeric complex in addition to its function as an import receptor. It appears that the Impbeta-Imp7 heterodimer is specialized for NLS consisting of extended basic domains.
Collapse
Affiliation(s)
- Marc Bäuerle
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung für Molekularbiologie, Universität Göttingen, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
115
|
Abstract
In this issue of Molecular Cell, Ahmad and Henikoff show that the replication-independent pathway of chromatin assembly in vivo can discriminate between different histone variants on the basis of their primary amino acid sequences. These results have important implications for chromatin remodeling and epigenetic imprinting.
Collapse
Affiliation(s)
- M Mitchell Smith
- Department of Microbiology and University of Virginia Cancer Center, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, VA 22901, USA
| |
Collapse
|
116
|
Abstract
Transport of macromolecules between the cytoplasm and the nucleus is mediated by at least three different classes of soluble transport receptors, members of the importin-beta protein family, the Mex67/Tap family and the small nuclear transport factor 2 (NFT2). All nuclear transport factors can bidirectionally traverse the nuclear pore complex through specific interactions with phenylalanine/glycine-rich nuclear pore complex components. Recent kinetic and structural analyses revealed novel insight into the details of these interactions. In addition, new biochemical and genetic studies have dramatically improved our understanding of ribosomal and messenger RNA export, unveiling a tight coupling between RNA processing and transport.
Collapse
Affiliation(s)
- Karsten Weis
- Department of Molecular Biology, Division of Cell and Developmental Biology, University of California, Berkeley, CA 94720-3200, USA.
| |
Collapse
|