101
|
Ursell TS, Trepagnier EH, Huang KC, Theriot JA. Analysis of surface protein expression reveals the growth pattern of the gram-negative outer membrane. PLoS Comput Biol 2012; 8:e1002680. [PMID: 23028278 PMCID: PMC3459847 DOI: 10.1371/journal.pcbi.1002680] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/18/2012] [Indexed: 12/25/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a complex bilayer composed of proteins, phospholipids, lipoproteins, and lipopolysaccharides. Despite recent advances revealing the molecular pathways underlying protein and lipopolysaccharide incorporation into the OM, the spatial distribution and dynamic regulation of these processes remain poorly understood. Here, we used sequence-specific fluorescent labeling to map the incorporation patterns of an OM-porin protein, LamB, by labeling proteins only after epitope exposure on the cell surface. Newly synthesized LamB appeared in discrete puncta, rather than evenly distributed over the cell surface. Further growth of bacteria after labeling resulted in divergence of labeled LamB puncta, consistent with a spatial pattern of OM growth in which new, unlabeled material was also inserted in patches. At the poles, puncta remained relatively stationary through several rounds of division, a salient characteristic of the OM protein population as a whole. We propose a biophysical model of growth in which patches of new OM material are added in discrete bursts that evolve in time according to Stokes flow and are randomly distributed over the cell surface. Simulations based on this model demonstrate that our experimental observations are consistent with a bursty insertion pattern without spatial bias across the cylindrical cell surface, with approximately one burst of ∼10−2 µm2 of OM material per two minutes per µm2. Growth by insertion of discrete patches suggests that stochasticity plays a major role in patterning and material organization in the OM. All Gram-negative bacteria share common structural features, including an inner membrane, a stiff cell wall, and an outer membrane. Balancing growth in all three of these layers is critical for bacterial proliferation and survival, and malfunctions in growth often lead to cellular deformations and/or cell death. However, relatively little is known about how the incorporation of new material into the outer membrane is regulated in space and time. This work combines time-lapse microscopy with biophysical modeling and simulations to examine potential mechanisms by which new material is added to the outer membrane of the rod-shaped Gram-negative bacterium Escherichia coli. Our results indicate that the outer membrane grows in discrete bursts randomly distributed over the cylindrical cell surface. Each insertion event adds a random amount of new material, pushing old material into new locations and thus expanding the cell membrane. Using our biophysical model, we generated simulated fluorescence images and directly compared analyses of our experimental and computational results to constrain the rate and size of bursts of growth. Together, this indicates that growth of the outer membrane does not require spatial regulation, and the stochastic nature of insertion may contribute to the establishment of cellular patterning and asymmetry.
Collapse
Affiliation(s)
- Tristan S. Ursell
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Eliane H. Trepagnier
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KCH); (JAT)
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KCH); (JAT)
| |
Collapse
|
102
|
Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:E2561-8. [PMID: 22908292 DOI: 10.1073/pnas.1209742109] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell size varies greatly among different types of cells, but the range in size that a specific cell type can reach is limited. A long-standing question in biology is how cells control their size. Escherichia coli adjusts size and growth rate according to the availability of nutrients so that it grows larger and faster in nutrient-rich media than in nutrient-poor media. Here, we describe how, using classical genetics, we have isolated a remarkably small E. coli mutant that has undergone a 70% reduction in cell volume with respect to wild type. This mutant lacks FabH, an enzyme involved in fatty acid biosynthesis that previously was thought to be essential for the viability of E. coli. We demonstrate that although FabH is not essential in wild-type E. coli, it is essential in cells that are defective in the production of the small-molecule and global regulator ppGpp. Furthermore, we have found that the loss of FabH causes a reduction in the rate of envelope growth and renders cells unable to regulate cell size properly in response to nutrient excess. Therefore we propose a model in which fatty acid biosynthesis plays a central role in regulating the size of E. coli cells in response to nutrient availability.
Collapse
|
103
|
Boughner LA, Doerrler WT. Multiple deletions reveal the essentiality of the DedA membrane protein family in Escherichia coli. Microbiology (Reading) 2012; 158:1162-1171. [DOI: 10.1099/mic.0.056325-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lisa A. Boughner
- Department of Biological Sciences, Louisiana State University (LSU), Baton Rouge, LA 70803, USA
| | - William T. Doerrler
- Department of Biological Sciences, Louisiana State University (LSU), Baton Rouge, LA 70803, USA
| |
Collapse
|
104
|
Six DA, Lambert B, Raetz CRH, Doerrler WT. Density gradient enrichment of Escherichia coli lpxL mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:989-93. [PMID: 22554681 DOI: 10.1016/j.bbalip.2012.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
We previously described enrichment of conditional Escherichia coli msbA mutants defective in lipopolysaccharide export using Ludox density gradients (Doerrler WT (2007) Appl Environ Microbiol 73; 7992-7996). Here, we use this approach to isolate and characterize temperature-sensitive lpxL mutants. LpxL is a late acyltransferase of the pathway of lipid A biosynthesis (The Raetz Pathway). Sequencing the lpxL gene from the mutants revealed the presence of both missense and nonsense mutations. The missense mutations include several in close proximity to the enzyme's active site or conserved residues (E137K, H132Y, G168D). These data demonstrate that Ludox gradients can be used to efficiently isolate conditional E. coli mutants with defects in lipopolysaccharide biosynthesis and provide insight into the enzymatic mechanism of LpxL.
Collapse
Affiliation(s)
- David A Six
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
105
|
Liechti G, Goldberg JB. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori. Front Cell Infect Microbiol 2012; 2:29. [PMID: 22919621 PMCID: PMC3417575 DOI: 10.3389/fcimb.2012.00029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/28/2012] [Indexed: 12/16/2022] Open
Abstract
The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual targeting of these pathways would have the net effect of severely limiting the delivery/transport of components to the OM and preventing the bacterium's ability to infect its human host.
Collapse
Affiliation(s)
- George Liechti
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
106
|
Kawasaki K. Complexity of lipopolysaccharide modifications in Salmonella enterica: Its effects on endotoxin activity, membrane permeability, and resistance to antimicrobial peptides. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
107
|
Page MGP. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel? Handb Exp Pharmacol 2012:67-86. [PMID: 23090596 DOI: 10.1007/978-3-642-28951-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist.
Collapse
|
108
|
Fisher LS, Ward A, Milligan RA, Unwin N, Potter CS, Carragher B. A helical processing pipeline for EM structure determination of membrane proteins. Methods 2011; 55:350-62. [PMID: 21964395 PMCID: PMC3262078 DOI: 10.1016/j.ymeth.2011.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 01/27/2023] Open
Abstract
Electron crystallography plays a key role in the structural biology of integral membrane proteins (IMPs) by offering one of the most direct means of providing insight into the functional state of these molecular machines in their lipid-associated forms, and also has the potential to facilitate examination of physiologically relevant transitional states and complexes. Helical or tubular crystals, which are the natural product of proteins crystallizing on the surface of a cylindrical vesicle, offer some unique advantages, such as three-dimensional (3D) information from a single view, compared to other crystalline forms. While a number of software packages are available for processing images of helical crystals to produce 3D electron density maps, widespread exploitation of helical image reconstruction is limited by a lack of standardized approaches and the initial effort and specialized expertise required. Our goal is to develop an integrated pipeline to enable structure determination by transmission electron microscopy (TEM) of IMPs in the form of tubular crystals. We describe here the integration of standard Fourier-Bessel helical analysis techniques into Appion, an integrated, database-driven pipeline.
Collapse
Affiliation(s)
- Lauren S. Fisher
- The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Andrew Ward
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ronald A. Milligan
- The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Nigel Unwin
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- MRC Laboratory of Molecular Biology Hills Road, Cambridge CB2 2QH, UK
| | - Clinton S. Potter
- The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
109
|
Abstract
Membrane proteins that bind and transport lipids face special challenges. Since lipids typically have low water solubility, both accessibility of the substrate to the protein and delivery to the desired destination are problematical. The amphipathic nature of membrane lipids, and their relatively large molecular size, also means that these proteins must possess substrate-binding sites of a different nature than those designed to handle small polar molecules. This review considers two integral proteins whose function is to bind and transfer membrane lipids within or across a membrane. The first protein, MsbA, is a putative lipid flippase that is a member of the ATP-binding cassette (ABC) superfamily. The protein is found in the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria such as E. coli, where it is proposed to move lipid A from the inner to the outer membrane (OM) leaflet, an important step in the lipopolysaccharide biosynthetic pathway. Cholesterol is a major component of the plasma membrane in eukaryotic cells, where it regulates bilayer fluidity. The other lipid-binding protein discussed here, mammalian NPC1 (Niemann-Pick disease, Type C1), binds cholesterol inside late endosomes/lysosomes (LE/LY) and is involved in its transfer to the cytosol as part of a key intracellular sterol-trafficking pathway. Mutations in NPC1 lead to a devastating neurodegenerative condition, Niemann-Pick Type C disease, which is characterized by massive cholesterol accumulation in LE/LY. The accelerating pace of membrane protein structure determination over the past decade has allowed us a glimpse of how lipid binding and transfer by membrane proteins such as MsbA and NPC1 might be achieved.
Collapse
Affiliation(s)
- Gavin King
- Department of Molecular and Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Guelph ON Canada
| | | |
Collapse
|
110
|
Sharom FJ. Flipping and flopping--lipids on the move. IUBMB Life 2011; 63:736-46. [PMID: 21793163 DOI: 10.1002/iub.515] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/16/2011] [Indexed: 12/24/2022]
Abstract
The rapid movement of polar lipids from one membrane leaflet to the other is facilitated by lipid flippases or translocases. Although their activity was first observed over 30 years ago, the structures, physiological roles, and molecular mechanisms of this group of proteins remain enigmatic. Lipid flippases maintain membrane lipid asymmetry, and in eukaryotes they are also intimately involved in membrane budding and vesicle trafficking. The ATP-dependent flippases are members of well-characterized protein families, whose other members transport nonlipid substrates across cell membranes. The P(4)-type ATPases carry out the inward translocation of phospholipids, and various ABC transporters are involved in outward lipid movement. The ATP-independent flippases move lipid substrates in both directions between membrane leaflets. With only a few exceptions, the molecular identity of these proteins is still unknown, despite their involvement in key biosynthetic pathways in both bacteria and eukaryotes. This review provides an overview of the different classes of flippases, and summarizes recent progress in their identification and functional characterization. The possible mechanisms of action of lipid flippases are discussed, and future directions explored.
Collapse
Affiliation(s)
- Frances J Sharom
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
111
|
Bos MP, Tommassen J. The LptD chaperone LptE is not directly involved in lipopolysaccharide transport in Neisseria meningitidis. J Biol Chem 2011; 286:28688-28696. [PMID: 21705335 DOI: 10.1074/jbc.m111.239673] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The biosynthesis of lipopolysaccharide (LPS) in gram-negative bacteria is well understood, in contrast to the transport to its destination, the outer leaflet of the outer membrane. In Escherichia coli, synthesis and transport of LPS are essential processes. Neisseria meningitidis, conversely, can survive without LPS and tolerates inactivation of genes involved in LPS synthesis and transport. Here, we analyzed whether the LptA, LptB, LptC, LptE, LptF, and LptG proteins, recently implicated in LPS transport in E. coli, function similarly in N. meningitidis. None of the analyzed proteins was essential in N. meningitidis, consistent with their expected roles in LPS transport and additionally demonstrating that they are not required for an essential process such as phospholipid transport. As expected, the absence of most of the Lpt proteins resulted in a severe defect in LPS transport. However, the absence of LptE did not disturb transport of LPS to the cell surface. LptE was found to be associated with LptD, and its absence affected total levels of LptD, suggesting a chaperone-like role for LptE in LptD biogenesis. The absence of a direct role of LptE in LPS transport was substantiated by bioinformatic analyses showing a low conservation of LptE in LPS-producing bacteria. Apparently, the role of LptE in N. meningitidis deviates from that in E. coli, suggesting that the Lpt system does not function in a completely conserved manner in all gram-negative bacteria.
Collapse
Affiliation(s)
- Martine P Bos
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
112
|
Schultz KM, Merten JA, Klug CS. Characterization of the E506Q and H537A dysfunctional mutants in the E. coli ABC transporter MsbA. Biochemistry 2011; 50:3599-608. [PMID: 21462989 PMCID: PMC3128438 DOI: 10.1021/bi101666p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MsbA is a member of the ABC transporter superfamily that is specifically found in Gram-negative bacteria and is homologous to proteins involved in both bacterial and human drug resistance. The E506Q and H537A mutations have been introduced and used for crystallization of other members of the ABC transporter protein family, including BmrA and the ATPase domains MalK, HlyB-NBD, and MJ0796, but have not been previously studied in detail or investigated in the MsbA lipid A exporter. We utilized an array of biochemical and EPR spectroscopy approaches to characterize the local and global effects of these nucleotide binding domain mutations on the E. coli MsbA homodimer. The lack of cell viability in an in vivo growth assay confirms that the presence of the E506Q or H537A mutations within MsbA creates a dysfunctional protein. To further investigate the mode of dysfunction, a fluorescent ATP binding assay was used and showed that both mutant proteins maintain their ability to bind ATP, but ATPase assays indicate hydrolysis is severely inhibited by each mutation. EPR spectroscopy data using previously identified and characterized reporter sites within the nucleotide binding domain along with ATP detection assays show that hydrolysis does occur over time in both mutants, though more readily in the H537A protein. DEER spectroscopy demonstrates that both proteins studied are purified in a closed dimer conformation, indicating that events within the cell can induce a stable, closed conformation of the MsbA homodimer that does not reopen even in the absence of nucleotide.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Jacqueline A. Merten
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
113
|
Abstract
Cells have thousands of different lipids. In the plasma membrane, and in membranes of the late secretory and endocytotic pathways, these lipids are not evenly distributed over the two leaflets of the lipid bilayer. The basis for this transmembrane lipid asymmetry lies in the fact that glycerolipids are primarily synthesized on the cytosolic and sphingolipids on the noncytosolic surface of cellular membranes, that cholesterol has a higher affinity for sphingolipids than for glycerolipids. In addition, P4-ATPases, "flippases," actively translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine to the cytosolic surface. ABC transporters translocate lipids in the opposite direction but they generally act as exporters rather than "floppases." The steady state asymmetry of the lipids can be disrupted within seconds by the activation of phospholipases and scramblases. The asymmetric lipid distribution has multiple implications for physiological events at the membrane surface. Moreover, the active translocation also contributes to the generation of curvature in the budding of transport vesicles.
Collapse
Affiliation(s)
- Gerrit van Meer
- Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
114
|
Shevchuk O, Jäger J, Steinert M. Virulence properties of the legionella pneumophila cell envelope. Front Microbiol 2011; 2:74. [PMID: 21747794 PMCID: PMC3129009 DOI: 10.3389/fmicb.2011.00074] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/30/2011] [Indexed: 01/15/2023] Open
Abstract
The bacterial envelope plays a crucial role in the pathogenesis of infectious diseases. In this review, we summarize the current knowledge of the structure and molecular composition of the Legionella pneumophila cell envelope. We describe lipopolysaccharides biosynthesis and the biological activities of membrane and periplasmic proteins and discuss their decisive functions during the pathogen–host interaction. In addition to adherence, invasion, and intracellular survival of L. pneumophila, special emphasis is laid on iron acquisition, detoxification, key elicitors of the immune response and the diverse functions of outer membrane vesicles. The critical analysis of the literature reveals that the dynamics and phenotypic plasticity of the Legionella cell surface during the different metabolic stages require more attention in the future.
Collapse
Affiliation(s)
- Olga Shevchuk
- Institut für Mikrobiologie, Technische Universität Braunschweig Braunschweig, Germany
| | | | | |
Collapse
|
115
|
Schultz KM, Merten JA, Klug CS. Effects of the L511P and D512G mutations on the Escherichia coli ABC transporter MsbA. Biochemistry 2011; 50:2594-602. [PMID: 21344946 DOI: 10.1021/bi1018418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MsbA is a member of the ABC transporter superfamily and is homologous to ABC transporters linked to multidrug resistance. The nucleotide binding domains (NBDs) of these proteins include conserved motifs that are involved in ATP binding, including conserved SALD residues (D-loop) that are diagnostic in identifying ABC transporters but whose roles have not been identified. Within the D-loop, single point mutations L511P and D512G were discovered by random mutational analysis of MsbA to disrupt protein function in the cell [Polissi, A., and Georgopoulos, C. (1996) Mol. Microbiol. 20, 1221-1233] but have not been further studied in MsbA or in detail in any other ABC transporter. In these studies, we show that both L511P and D512G mutants of MsbA are able to bind ATP at near-wild-type levels but are unable to maintain cell viability in an in vivo growth assay, verifying the theory that they are dysfunctional at some point after ATP binding. An ATPase assay further suggests that the L511P mutation prevents effective ATP hydrolysis, and an ATP detection assay reveals that only small amounts of ATP are hydrolyzed; D512G is able to hydrolyze ATP at a rate 3-fold faster than that of the wild type. EPR spectroscopy studies using reporter sites within the NBDs also indicate that at least some hydrolysis occurs in L511P or D512G MsbA but show fewer spectral changes than observed for the same reporters in the wild-type background. These studies indicate that L511 is necessary for efficient ATP hydrolysis and D512 is essential for conformational rearrangements required for flipping lipid A.
Collapse
Affiliation(s)
- Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | | | | |
Collapse
|
116
|
Lipoprotein LptE is required for the assembly of LptD by the beta-barrel assembly machine in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:2492-7. [PMID: 21257909 DOI: 10.1073/pnas.1019089108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most Gram-negative bacteria contain lipopolysaccharide (LPS), a glucosamine-based phospholipid, in the outer leaflet of the outer membrane (OM). LPS is unique to the bacterial OM and, in most cases, essential for cell viability. Transport of LPS from its site of synthesis to the cell surface requires eight essential proteins, MsbA and LptABCDEFG. Although the key players have been identified, the mechanism of LPS transport and assembly is not clear. The stable LptD/E complex is present at the OM and functions in the final stages of LPS assembly. Here, we have identified the mutant allele lptE6, which causes a two-amino-acid deletion in the lipoprotein LptE that affects its interaction with LptD. Highly specific suppressor mutations were isolated not only in lptD but also in bamA, which encodes the central component of the β-barrel assembly machine. We show that lptE6 and both suppressor mutations affect the assembly of the LptD/E complex and suggest that the lipoprotein LptE interacts with LptD while this protein is being assembled by the β-barrel assembly machine.
Collapse
|
117
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
118
|
New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA-LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. J Bacteriol 2010; 193:1042-53. [PMID: 21169485 DOI: 10.1128/jb.01037-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major glycolipid present in the outer membrane (OM) of Gram-negative bacteria. The peculiar permeability barrier of the OM is due to the presence of LPS at the outer leaflet of this membrane that prevents many toxic compounds from entering the cell. In Escherichia coli LPS synthesized inside the cell is first translocated over the inner membrane (IM) by the essential MsbA flippase; then, seven essential Lpt proteins located in the IM (LptBCDF), in the periplasm (LptA), and in the OM (LptDE) are responsible for LPS transport across the periplasmic space and its assembly at the cell surface. The Lpt proteins constitute a transenvelope complex spanning IM and OM that appears to operate as a single device. We show here that in vivo LptA and LptC physically interact, forming a stable complex and, based on the analysis of loss-of-function mutations in LptC, we suggest that the C-terminal region of LptC is implicated in LptA binding. Moreover, we show that defects in Lpt components of either IM or OM result in LptA degradation; thus, LptA abundance in the cell appears to be a marker of properly bridged IM and OM. Collectively, our data support the recently proposed transenvelope model for LPS transport.
Collapse
|
119
|
Haarmann R, Ibrahim M, Stevanovic M, Bredemeier R, Schleiff E. The properties of the outer membrane localized Lipid A transporter LptD. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454124. [PMID: 21339611 DOI: 10.1088/0953-8984/22/45/454124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.
Collapse
Affiliation(s)
- Raimund Haarmann
- JWGU Frankfurt/Main, Cluster of Excellence Macromolecular Complexes, Center of Membrane Proteomics, Department of Biosciences, Molecular Cell Biology, Max-von-Laue Straße 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
120
|
Ingram BO, Masoudi A, Raetz CRH. Escherichia coli mutants that synthesize dephosphorylated lipid A molecules. Biochemistry 2010; 49:8325-37. [PMID: 20795687 DOI: 10.1021/bi101253s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lipid A moiety of Escherichia coli lipopolysaccharide is a hexaacylated disaccharide of glucosamine that is phosphorylated at the 1 and 4' positions. Expression of the Francisella novicida lipid A 1-phosphatase FnLpxE in E. coli results in dephosphorylation of the lipid A proximal unit. Coexpression of FnLpxE and the Rhizobium leguminosarum lipid A oxidase RlLpxQ in E. coli converts much of the proximal glucosamine to 2-amino-2-deoxygluconate. Expression of the F. novicida lipid A 4'-phosphatase FnLpxF in wild-type E. coli has no effect because FnLpxF cannot dephosphorylate hexaacylated lipid A. However, expression of FnLpxF in E. coli lpxM mutants, which synthesize pentaacylated lipid A lacking the secondary 3'-myristate chain, causes extensive 4'-dephosphorylation. Coexpression of FnLpxE and FnLpxF in lpxM mutants results in massive accumulation of lipid A species lacking both phosphate groups, and introduction of RlLpxQ generates phosphate-free lipid A variants containing 2-amino-2-deoxygluconate. The proposed lipid A structures were confirmed by electrospray ionization mass spectrometry. Strains with 4'-dephosphorylated lipid A display increased polymyxin resistance. Heptose-deficient mutants of E. coli lacking both the 1- and 4'-phosphate moieties are viable on plates but sensitive to CaCl(2). Our methods for reengineering lipid A structure may be useful for generating novel vaccines and adjuvants.
Collapse
Affiliation(s)
- Brian O Ingram
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
121
|
Chiu HJ, Bakolitsa C, Skerra A, Lomize A, Carlton D, Miller MD, Krishna SS, Abdubek P, Astakhova T, Axelrod HL, Clayton T, Deller MC, Duan L, Feuerhelm J, Grant JC, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Okach L, Paulsen J, Reyes R, Rife CL, van den Bedem H, Weekes D, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Structure of the first representative of Pfam family PF09410 (DUF2006) reveals a structural signature of the calycin superfamily that suggests a role in lipid metabolism. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1153-9. [PMID: 20944205 PMCID: PMC2954199 DOI: 10.1107/s1744309109037749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/17/2009] [Indexed: 01/11/2023]
Abstract
The first structural representative of the domain of unknown function DUF2006 family, also known as Pfam family PF09410, comprises a lipocalin-like fold with domain duplication. The finding of the calycin signature in the N-terminal domain, combined with remote sequence similarity to two other protein families (PF07143 and PF08622) implicated in isoprenoid metabolism and the oxidative stress response, support an involvement in lipid metabolism. Clusters of conserved residues that interact with ligand mimetics suggest that the binding and regulation sites map to the N-terminal domain and to the interdomain interface, respectively.
Collapse
Affiliation(s)
- Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85350 Freizing-Weihenstephan, Germany
| | - Andrei Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Herbert L. Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Slawomir K. Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Kevin K. Jin
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Abhinav Kumar
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel McMullan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Jessica Paulsen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Christopher L. Rife
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Henry van den Bedem
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Qingping Xu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
122
|
Abstract
Endotoxin refers lipopolysaccharide that constitutes the outer leaflet of the outer membrane of most Gram-negative bacteria. Lipopolysaccharide is comprised of a hydrophilic polysaccharide and a hydrophobic component known as lipid A which is responsible for the major bioactivity of endotoxin. Lipopolysaccharide can be recognized by immune cells as a pathogen-associated molecule through Toll-like receptor 4. Most enzymes and genes related to the biosynthesis and export of lipopolysaccharide have been identified in Escherichia coli, and they are shared by most Gram-negative bacteria based on available genetic information. However, the detailed structure of lipopolysaccharide differs from one bacterium to another, suggesting that additional enzymes that can modify the basic structure of lipopolysaccharide exist in bacteria, especially some pathogens. These structural modifications of lipopolysaccharide are sometimes tightly regulated. They are not required for survival but closely related to the virulence of bacteria. In this chapter we will focus on the mechanism of biosynthesis and export of lipopolysaccharide in bacteria.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | | |
Collapse
|
123
|
Tran AX, Dong C, Whitfield C. Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. J Biol Chem 2010; 285:33529-33539. [PMID: 20720015 PMCID: PMC2963376 DOI: 10.1074/jbc.m110.144709] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
LptC is a conserved bitopic inner membrane protein from Escherichia coli involved in the export of lipopolysaccharide from its site of synthesis in the cytoplasmic membrane to the outer membrane. LptC forms a complex with the ATP-binding cassette transporter, LptBFG, which is thought to facilitate the extraction of lipopolysaccharide from the inner membrane and release it into a translocation pathway that includes the putative periplasmic chaperone LptA. Cysteine modification experiments established that the catalytic domain of LptC is oriented toward the periplasm. The structure of the periplasmic domain is described at a resolution of 2.2-Å from x-ray crystallographic data. The periplasmic domain of LptC consists of a twisted boat structure with two β-sheets in apposition to each other. The β-sheets contain seven and eight antiparallel β-strands, respectively. This structure bears a high degree of resemblance to the crystal structure of LptA. Like LptA, LptC binds lipopolysaccharide in vitro. In vitro, LptA can displace lipopolysaccharide from LptC (but not vice versa), consistent with their locations and their proposed placement in a unidirectional export pathway.
Collapse
Affiliation(s)
- An X Tran
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Changjiang Dong
- Biomedical Sciences Research Complex, School of Chemistry, University of St. Andrews, Fife KY16 9ST, Scotland, United Kingdom
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
124
|
Abstract
The MsbA protein is an essential ABC (ATP-binding-cassette) superfamily member in Gram-negative bacteria. This 65 kDa membrane protein is thought to function as a homodimeric ATP-dependent lipid translocase or flippase that transports lipid A from the inner to the outer leaflet of the cytoplasmic membrane. We have previously shown that purified MsbA from Escherichia coli displays high ATPase activity, and binds to lipids and lipid-like molecules, including lipid A, with affinity in the low micromolar range. Bacterial membrane vesicles isolated from E. coli overexpressing His6-tagged MsbA displayed ATP-dependent translocation of several fluorescently NBD (7-nitrobenz-2-oxa-1,3-diazole)-labelled phospholipid species. Purified MsbA was reconstituted into proteoliposomes of E. coli lipid and its ability to translocate NBD-labelled lipid derivatives was characterized. In this system, the protein displayed maximal lipid flippase activity of 7.7 nmol of lipid translocated per mg of protein over a 20 min period for an acyl chain-labelled PE (phosphatidylethanolamine) derivative. The protein showed the highest rates of flippase activity when reconstituted into an E. coli lipid mixture. Substantial flippase activity was also observed for a variety of other NBD-labelled phospholipids and glycolipids, including molecules labelled on either the headgroup or the acyl chain. Lipid flippase activity required ATP hydrolysis, and was dependent on the concentration of ATP and NBD–lipid. Translocation of NBD–PE was inhibited by the presence of the putative physiological substrate lipid A. The present paper represents the first report of a direct measurement of the lipid flippase activity of purified MsbA in a reconstituted system.
Collapse
|
125
|
Abstract
The bacteria cell envelope is a complex multilayered structure that serves to protect these organisms from their unpredictable and often hostile environment. The cell envelopes of most bacteria fall into one of two major groups. Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which itself is surrounded by an outer membrane containing lipopolysaccharide. Gram-positive bacteria lack an outer membrane but are surrounded by layers of peptidoglycan many times thicker than is found in the gram-negatives. Threading through these layers of peptidoglycan are long anionic polymers, called teichoic acids. The composition and organization of these envelope layers and recent insights into the mechanisms of cell envelope assembly are discussed.
Collapse
Affiliation(s)
- Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | |
Collapse
|
126
|
Cullen TW, Trent MS. A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc Natl Acad Sci U S A 2010; 107:5160-5. [PMID: 20194750 PMCID: PMC2841920 DOI: 10.1073/pnas.0913451107] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is the leading cause of acute bacterial diarrhea worldwide and is implicated in development of Guillain-Barré syndrome. Two major surface features, the outer membrane lipooligosaccharide and flagella, are highly variable and are often targets for modification. Presumably, these modifications provide a competitive advantage to the bacterium. In this work, we identify a gene encoding a phosphoethanolamine (pEtN) transferase (Cj0256) that serves a dual role in modifying not only the lipooligosaccharide lipid anchor lipid A with pEtN, but also the flagellar rod protein FlgG. Generation of a mutant in C. jejuni 81-176 by interruption of cj0256 resulted in the absence of pEtN modifications on lipid A as well as FlgG. The cj0256 mutant showed a 20-fold increase in sensitivity to the cationic antimicrobial peptide, polymyxin B, as well as a decrease in motility. Transmission EM of the cj0256 mutant revealed a population (approximately 95%) lacking flagella, indicating that, without pEtN modification of FlgG, flagella production is hindered. Most intriguing, this research identifies a pEtN transferase showing preference for two periplasmic substrates linking membrane biogenesis and flagellar assembly. Cj0256 is a member of a large family of mostly uncharacterized proteins that may play a larger role in the decoration of bacterial surface structures.
Collapse
Affiliation(s)
| | - M. Stephen Trent
- Section of Molecular Genetics and Microbiology and
- The Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
127
|
Terakado K, Kodan A, Nakano H, Kimura Y, Ueda K, Nakatsu T, Kato H. Deleting two C-terminal alpha-helices is effective to crystallize the bacterial ABC transporter Escherichia coli MsbA complexed with AMP-PNP. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:319-23. [PMID: 20179345 DOI: 10.1107/s0907444909055504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 12/27/2009] [Indexed: 11/10/2022]
Abstract
An MsbA deletion mutant DeltaC21 that lacks the two C-terminal alpha-helices was expressed in Escherichia coli strain C41 and purified by metal-affinity and gel-filtration chromatography. Purified DeltaC21 retained 26% of the activity of the wild-type ATPase and had a similar binding affinity to fluorescent nucleotide derivatives. Although crystals of wild-type MsbA complexed with adenosine 5'-(beta,gamma-imido)triphosphate could not be obtained, crystals of DeltaC21 that diffracted to 4.5 A resolution were obtained. The preliminary DeltaC21 structure had the outward-facing conformation, in contrast to the previously reported E. coli MsbA structure. This result suggests that deletion of the C-terminal alpha-helices may play a role in facilitating the outward-facing nucleotide-bound crystal structure of EcMsbA.
Collapse
Affiliation(s)
- Kanako Terakado
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
128
|
Weng JW, Fan KN, Wang WN. The conformational transition pathway of ATP binding cassette transporter MsbA revealed by atomistic simulations. J Biol Chem 2010; 285:3053-63. [PMID: 19996093 PMCID: PMC2823423 DOI: 10.1074/jbc.m109.056432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 12/05/2009] [Indexed: 12/14/2022] Open
Abstract
ATP binding cassette transporters are integral membrane proteins that use the energy released from ATP hydrolysis at the two nucleotide binding domains (NBDs) to translocate a wide variety of substrates through a channel at the two transmembrane domains (TMDs) across the cell membranes. MsbA from Gram-negative bacteria is a lipid and multidrug resistance ATP binding cassette exporter that can undergo large scale conformational changes between the outward-facing and the inward-facing conformations revealed by crystal structures in different states. Here, we use targeted molecular dynamics simulation methods to explore the atomic details of the conformational transition from the outward-facing to the inward-facing states of MsbA. The molecular dynamics trajectories revealed a clear spatiotemporal order of the conformational movements. The disruption of the nucleotide binding sites at the NBD dimer interface is the very first event that initiates the following conformational changes, verifying the assumption that the conformational conversion is triggered by ATP hydrolysis. The conserved x-loops of the NBDs were identified to participate in the interaction network that stabilizes the cytoplasmic tetrahelix bundle of the TMDs and play an important role in mediating the cross-talk between the NBD and TMD. The movement of the NBD dimer is transmitted through x-loops to break the tetrahelix bundle, inducing the packing rearrangements of the transmembrane helices at the cytoplasmic side and the periplasmic side sequentially. The packing rearrangement within each periplasmic wing of TMD that results in exposure of the substrate binding sites occurred at the end stage of the trajectory, preventing the wrong timing of the binding site accessibility.
Collapse
Affiliation(s)
- Jing-Wei Weng
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
| | - Kang-Nian Fan
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
| | - Wen-Ning Wang
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
- Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
129
|
Reynolds CM, Raetz CRH. Replacement of lipopolysaccharide with free lipid A molecules in Escherichia coli mutants lacking all core sugars. Biochemistry 2009; 48:9627-40. [PMID: 19754149 DOI: 10.1021/bi901391g] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Escherichia coli mutants deficient in 2-keto-3-deoxy-D-manno-octulosonic acid (Kdo) biosynthesis are conditionally lethal, but their phenotypes are bypassed by certain suppressor mutations or by overexpression of MsbA, the inner membrane flippase for core-lipid A. These strains grow on broth with the tetraacylated precursor lipid IV(A) replacing lipopolysaccharide [Meredith, T. C., et al. (2006) ACS Chem. Biol. 1, 33-42]. Deletion of kdtA, which encodes the Kdo transferase, is possible under these conditions. We now show that lipid IV(A) reaches the outer surface of the outer membrane in these strains, as judged by its accessibility to the lipase PagL. On the assumption that MsbA is optimized to transport penta- or hexaacylated lipid A, we overexpressed the lauroyl- or the myristoyltransferase of lipid A biosynthesis, encoded by lpxL and lpxM, respectively, and demonstrated that kdtA deletion mutants were also viable in this setting. Although E. coli LpxL is stimulated by the presence of the Kdo disaccharide in its acceptor substrate, LpxL does slowly acylate lipid IV(A). Overexpression of LpxL from a plasmid suppressed the lethality of kdtA deletions on nutrient broth at 30 or 37 degrees C without the need for MsbA overproduction. These strains accumulated penta- and hexaacylated free lipid A containing a secondary laurate chain or a laurate and a myristate chain, respectively. Deletion of kdtA in strains overexpressing LpxM accumulated pentaacylated lipid A with a secondary myristate moiety. None of the strains lacking kdtA grew in the presence of bile salts at any temperature or on nutrient broth at 42 degrees C. Our findings show that the main function of Kdo is to provide the right substrates for the acyltransferases LpxL and LpxM, resulting in the synthesis of penta- and hexaacylated lipid A, which is optimal for the MsbA flippase.
Collapse
Affiliation(s)
- C Michael Reynolds
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
130
|
Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res 2009; 49:97-107. [PMID: 19815028 DOI: 10.1016/j.plipres.2009.06.002] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 01/13/2023]
Abstract
Lipopolysaccharide that constitutes the outer leaflet of the outer membrane of most Gram-negative bacteria is referred to as an endotoxin. It is comprised of a hydrophilic polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is responsible for the major bioactivity of endotoxin, and is recognized by immune cells as a pathogen-associated molecule. Most enzymes and genes coding for proteins responsible for the biosynthesis and export of lipopolysaccharide in Escherichia coli have been identified, and they are shared by most Gram-negative bacteria based on genetic information. The detailed structure of lipopolysaccharide differs from one bacterium to another, consistent with the recent discovery of additional enzymes and gene products that can modify the basic structure of lipopolysaccharide in some bacteria, especially pathogens. These modifications are not required for survival, but are tightly regulated in the cell and closely related to the virulence of bacteria. In this review we discuss recent studies of the biosynthesis and export of lipopolysaccharide, and the relationship between the structure of lipopolysaccharide and the virulence of bacteria.
Collapse
|
131
|
Simsek S, Ojanen-Reuhs T, Marie C, Reuhs BL. An apigenin-induced decrease in K-antigen production by Sinorhizobium sp. NGR234 is y4gM- and nodD1-dependent. Carbohydr Res 2009; 344:1947-50. [DOI: 10.1016/j.carres.2009.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/11/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
132
|
King JD, Kocíncová D, Westman EL, Lam JS. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 2009; 15:261-312. [PMID: 19710102 DOI: 10.1177/1753425909106436] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa causes serious nosocomial infections, and an important virulence factor produced by this organism is lipopolysaccharide (LPS). This review summarizes knowledge about biosynthesis of all three structural domains of LPS - lipid A, core oligosaccharide, and O polysaccharides. In addition, based on similarities with other bacterial species, this review proposes new hypothetical pathways for unstudied steps in the biosynthesis of P. aeruginosa LPS. Lipid A biosynthesis is discussed in relation to Escherichia coli and Salmonella, and the biosyntheses of core sugar precursors and core oligosaccharide are summarised. Pseudomonas aeruginosa attaches a Common Polysaccharide Antigen and O-Specific Antigen polysaccharides to lipid A-core. Both forms of O polysaccharide are discussed with respect to their independent synthesis mechanisms. Recent advances in understanding O-polysaccharide biosynthesis since the last major review on this subject, published nearly a decade ago, are highlighted. Since P. aeruginosa O polysaccharides contain unusual sugars, sugar-nucleotide biosynthesis pathways are reviewed in detail. Knowledge derived from detailed studies in the O5, O6 and O11 serotypes is applied to predict biosynthesis pathways of sugars in poorly-studied serotypes, especially O1, O4, and O13/O14. Although further work is required, a full understanding of LPS biosynthesis in P. aeruginosa is almost within reach.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
133
|
Keenan JI, Davis KA, Beaugie CR, McGovern JJ, Moran AP. Alterations in Helicobacter pylori outer membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions. Innate Immun 2009; 14:279-90. [PMID: 18809652 DOI: 10.1177/1753425908096857] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Outer membrane vesicles (OMVs) shed from the gastroduodenal pathogen Helicobacter pylori have measurable effects on epithelial cell responses. The aim of this study was to determine the effect of iron availability, and its basis, on the extent and nature of lipopolysaccharide (LPS) produced on H. pylori OMVs and their parental bacterial cells. Electrophoretic, immunoblotting and structural analyses revealed that LPSs of bacterial cells grown under iron-limited conditions were notably shorter than those of bacteria and OMVs obtained from iron-replete conditions. Structural analysis and serological probing showed that LPSs of iron-replete cells and OMVs expressed O-chains of Lewis(x) with a terminal Lewis(y) unit, whereas Lewis(y) expression was notably reduced on bacteria and OMVs from iron-limiting conditions. Unlike the O-chain, the core oligosaccharide and lipid A moieties of iron-replete and iron-limited bacteria and their OMVs were similar. Quantitatively, shed OMVs from iron-replete bacteria were found to be LPSenriched, whereas shed OMVs from iron-limited bacteria had a significantly reduced content of LPS. These differences were linked to bacterial ATP levels. Since iron availability affects the extent and nature of LPS expressed by H. pylori, host iron status may contribute to H. pylori pathogenesis.
Collapse
|
134
|
The interactions between phosphatidylglycerol and phosphatidylethanolamines in model bacterial membranes. Colloids Surf B Biointerfaces 2009; 72:32-9. [DOI: 10.1016/j.colsurfb.2009.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/08/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
135
|
Tartakoff AM, Tao T. Comparative and evolutionary aspects of macromolecular translocation across membranes. Int J Biochem Cell Biol 2009; 42:214-29. [PMID: 19643202 DOI: 10.1016/j.biocel.2009.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 01/10/2023]
Abstract
Membrane barriers preserve the integrity of organelles of eukaryotic cells, yet the genesis and ongoing functions of the same organelles requires that their limiting membranes allow import and export of selected macromolecules. Multiple distinct mechanisms are used for this purpose, only some of which have been traced to prokaryotes. Some can accommodate both monomeric and also large heterooligomeric cargoes. The best characterized of these is nucleocytoplasmic transport. This synthesis compares the unidirectional and bidirectional mechanisms of macromolecular transport of the endoplasmic reticulum, mitochondria, peroxisomes and the nucleus, calls attention to the powerful experimental approaches which have been used for their elucidation, discusses their regulation and evolutionary origins, and highlights relatively unexplored areas.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology & Cell Biology Program, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
136
|
Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol 2009; 7:677-83. [PMID: 19633680 DOI: 10.1038/nrmicro2184] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracellular lipid transport is poorly understood. Genetic studies to identify lipid-transport factors are complicated by the essentiality of many lipids, whereas biochemical and cell biology approaches aiming to determine localization and mechanisms of lipid transport are often challenged by the lack of adequate technology. Here, we review the epic history of how different approaches, technological advances and ingenuity contributed to the recent discovery of a multi-protein pathway that transports lipopolysaccharide across the envelope of Gram-negative bacteria.
Collapse
|
137
|
Song F, Guan Z, Raetz CRH. Biosynthesis of undecaprenyl phosphate-galactosamine and undecaprenyl phosphate-glucose in Francisella novicida. Biochemistry 2009; 48:1173-82. [PMID: 19166326 DOI: 10.1021/bi802212t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid A of Francisella tularensis subsp. novicida contains a galactosamine (GalN) residue linked to its 1-phosphate group. As shown in the preceding paper, this GalN unit is transferred to lipid A from the precursor undecaprenyl phosphate-beta-D-GalN. A small portion of the free lipid A of Francisella novicida is further modified with a glucose residue at position-6'. We now demonstrate that the two F. novicida homologues of Escherichia coli ArnC, designated FlmF1 and FlmF2, are essential for lipid A modification with glucose and GalN, respectively. Recombinant FlmF1 expressed in E. coli selectively condenses undecaprenyl phosphate and UDP-glucose in vitro to form undecaprenyl phosphate-glucose. Recombinant FlmF2 selectively catalyzes the condensation of undecaprenyl phosphate and UDP-N-acetylgalactosamine to generate undecaprenyl phosphate-N-acetylgalactosamine. On the basis of an analysis of the lipid A composition of flmF1 and flmF2 mutants of F. novicida, we conclude that FlmF1 generates the donor substrate for the modification of F. novicida free lipid A with glucose, whereas FlmF2 generates the immediate precursor of the GalN donor substrate, undecaprenyl phosphate-beta-D-GalN. A novel deacetylase, present in membranes of F. novicida, removes the acetyl group from undecaprenyl phosphate-N-acetylgalactosamine to yield undecaprenyl phosphate-beta-D-GalN. This deacetylase may have an analogous function to the deformylase that generates undecaprenyl phosphate-4-amino-4-deoxy-alpha-l-arabinose from undecaprenyl phosphate-4-deoxy-4-formylamino-alpha-l-arabinose in polymyxin-resistant strains of E. coli and Salmonella typhimurium.
Collapse
Affiliation(s)
- Feng Song
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
138
|
Narita SI, Tokuda H. Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. FEBS Lett 2009; 583:2160-4. [DOI: 10.1016/j.febslet.2009.05.051] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/18/2009] [Accepted: 05/26/2009] [Indexed: 11/15/2022]
|
139
|
An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 2009; 191:4316-29. [PMID: 19395482 DOI: 10.1128/jb.00029-09] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpL(M), an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpL(M) and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of beta-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpL(M) is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impL(M) mutants with substitutions or deletions in the Walker A motif failed to complement the impL(M) deletion mutant for Hcp secretion, which provided evidence that ImpL(M) may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpL(M) and another essential T6SS component, ImpK(L). Topology and biochemical fractionation analyses suggested that ImpK(L) is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpL(M)-ImpK(L) interaction domains suggested that ImpL(M) interacts with ImpK(L) via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpL(M) interacts with ImpK(L), and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.
Collapse
|
140
|
Abstract
MsbA is an essential ABC (ATP-binding cassette) transporter involved in lipid A transport across the cytoplasmic membrane of Gram-negative bacteria. The protein has also been linked to efflux of amphipathic drugs. Purified wild-type MsbA was labelled stoichiometrically with the fluorescent probe MIANS [2-(4′-maleimidylanilino)naphthalene-6-sulfonic acid] on C315, which is located within the intracellular domain connecting transmembrane helix 6 and the nucleotide-binding domain. MsbA–MIANS displayed high ATPase activity, and its folding and stability were unchanged. The initial rate of MsbA labelling by MIANS was reduced in the presence of amphipathic drugs, suggesting that binding of these compounds alters the protein conformation. The fluorescence of MsbA–MIANS was saturably quenched by nucleotides, lipid A and various drugs, and estimates of the Kd values for binding fell in the range of 0.35–10 μM. Lipid A and daunorubicin were able to bind to MsbA–MIANS simultaneously, implying that they occupy different binding sites. The effects of nucleotide and lipid A/daunorubicin binding were additive, and binding was not ordered. The Kd of MsbA for binding lipid A was substantially decreased when the daunorubicin binding site was occupied first, and prior binding of nucleotide also modulated lipid A binding affinity. These results indicate that MsbA contains two substrate-binding sites that communicate with both the nucleotide-binding domain and with each other. One is a high affinity binding site for the physiological substrate, lipid A, and the other site interacts with drugs with comparable affinity. Thus MsbA may function as both a lipid flippase and a multidrug transporter.
Collapse
|
141
|
Klein G, Lindner B, Brabetz W, Brade H, Raina S. Escherichia coli K-12 Suppressor-free Mutants Lacking Early Glycosyltransferases and Late Acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response. J Biol Chem 2009; 284:15369-89. [PMID: 19346244 DOI: 10.1074/jbc.m900490200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To elucidate the minimal lipopolysaccharide (LPS) structure needed for the viability of Escherichia coli, suppressor-free strains lacking either the 3-deoxy-d-manno-oct-2-ulosonic acid transferase waaA gene or derivatives of the heptosyltransferase I waaC deletion with lack of one or all late acyltransferases (lpxL/M/P) and/or various outer membrane biogenesis factors were constructed. Delta(waaC lpxL lpxM lpxP) and waaA mutants exhibited highly attenuated growth, whereas simultaneous deletion of waaC and surA was lethal. Analyses of LPS of suppressor-free waaA mutants grown at 21 degrees C, besides showing accumulation of free lipid IV(A) precursor, also revealed the presence of its pentaacylated and hexaacylated derivatives, indicating in vivo late acylation can occur without Kdo. In contrast, LPS of Delta(waaC lpxL lpxM lpxP) strains showed primarily Kdo(2)-lipid IV(A), indicating that these minimal LPS structures are sufficient to support growth of E. coli under slow-growth conditions at 21/23 degrees C. These lipid IV(A) derivatives could be modified biosynthetically by phosphoethanolamine, but not by 4-amino-4-deoxy-l-arabinose, indicating export defects of such minimal LPS. DeltawaaA and Delta(waaC lpxL lpxM lpxP) exhibited cell-division defects with a decrease in the levels of FtsZ and OMP-folding factor PpiD. These mutations led to strong constitutive additive induction of envelope responsive CpxR/A and sigma(E) signal transduction pathways. Delta(lpxL lpxM lpxP) mutant, with intact waaC, synthesized tetraacylated lipid A and constitutively incorporated a third Kdo in growth medium inducing synthesis of P-EtN and l-Ara4N. Overexpression of msbA restored growth of Delta(lpxL lpxM lpxP) under fast-growing conditions, but only partially that of the Delta(waaC lpxL lpxM lpxP) mutant. This suppression could be alleviated by overexpression of certain mutant msbA alleles or the single-copy chromosomal MsbA-498V variant in the vicinity of Walker-box II.
Collapse
Affiliation(s)
- Gracjana Klein
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, D-23845 Borstel, Germany
| | | | | | | | | |
Collapse
|
142
|
Sperandeo P, Dehò G, Polissi A. The lipopolysaccharide transport system of Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:594-602. [PMID: 19416651 DOI: 10.1016/j.bbalip.2009.01.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 02/06/2023]
Abstract
The cell envelope of Gram-negative bacteria consists of two distinct membranes, the inner (IM) and the outer membrane (OM) separated by the periplasm. The OM contains in the outer leaflet the lipopolysaccharide (LPS), a complex lipid with important biological activities. In the host it elicits the innate immune response whereas in the bacterium it is responsible for the peculiar permeability barrier properties exhibited by the OM. The chemical structure of LPS and its biosynthetic pathways have been fully elucidated. By contrast only recently details of the transport and assembly of LPS into the OM have emerged. LPS is synthesized in the cytoplasm and at the inner leaflet of the IM and needs to cross two different compartments, the IM and the periplasm, to reach its final destination at the OM. This review focuses on recent studies that led to our present understanding of the protein machine implicated in LPS transport and in assembly at the cell surface.
Collapse
Affiliation(s)
- Paola Sperandeo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | |
Collapse
|
143
|
Westfahl KM, Merten JA, Buchaklian AH, Klug CS. Functionally important ATP binding and hydrolysis sites in Escherichia coli MsbA. Biochemistry 2008; 47:13878-86. [PMID: 19053284 PMCID: PMC2637178 DOI: 10.1021/bi801745u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette (ABC) transporters make up one of the largest classes of proteins found in nature, and their ability to move a variety of substrates across the membrane using energy from the binding or hydrolysis of ATP is essential to an array of human pathologies and to bacterial viability. MsbA is an essential ABC transporter that specifically transports lipid A across the inner membranes of Gram-negative organisms such as Escherichia coli. The exact mechanisms of function during the binding and hydrolysis of ATP at the molecular level remain unclear. The studies presented and summarized in this work directly address the role and local dynamics of specific residues within the conserved ABC motifs in E. coli MsbA using in vivo growth and biochemical activity assays coupled with site-directed spin labeling electron paramagnetic resonance (EPR) spectroscopy motional and accessibility analysis. This first comprehensive analysis of the specific residues in these motifs within MsbA indicates that closure of the dimer interface does not occur upon ATP binding in this transporter.
Collapse
Affiliation(s)
- Kathryn M. Westfahl
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| | - Jacqueline A. Merten
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| | - Adam H. Buchaklian
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226
| |
Collapse
|
144
|
Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA. J Struct Biol 2008; 165:169-75. [PMID: 19114108 DOI: 10.1016/j.jsb.2008.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/07/2008] [Accepted: 11/20/2008] [Indexed: 11/21/2022]
Abstract
Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme-substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme-product complex (trapped by ADP-vanadate). Approximately 20A resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound.
Collapse
|
145
|
Raetz CRH, Guan Z, Ingram BO, Six DA, Song F, Wang X, Zhao J. Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res 2008; 50 Suppl:S103-8. [PMID: 18974037 DOI: 10.1194/jlr.r800060-jlr200] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer monolayer of the outer membrane of Gram-negative bacteria consists of the lipid A component of lipopolysaccharide (LPS), a glucosamine-based saccharolipid that is assembled on the inner surface of the inner membrane. The first six enzymes of the lipid A pathway are required for bacterial growth and are excellent targets for the development of new antibiotics. Following assembly, the ABC transporter MsbA flips nascent LPS to the periplasmic side of the inner membrane, whereupon additional transport proteins direct it to the outer surface of the outer membrane. Depending on the bacterium, various covalent modifications of the lipid A moiety may occur during the transit of LPS to the outer membrane. These extra-cytoplasmic modification enzymes are therefore useful as reporters for monitoring LPS trafficking. Because of its conserved structure in diverse Gram-negative pathogens, lipid A is recognized as foreign by the TLR4/MD2 receptor of the mammalian innate immune system, resulting in rapid macrophage activation and robust cytokine production.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, P.O. Box 3711, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
146
|
Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant. Proc Natl Acad Sci U S A 2008; 105:13823-8. [PMID: 18768814 DOI: 10.1073/pnas.0807028105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42 degrees C. (32)P(i) and [(35)S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42 degrees C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42 degrees C, consistent with a role for LptA in shuttling LPS across the periplasm.
Collapse
|
147
|
Bishop RE. Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:1881-96. [PMID: 17880914 PMCID: PMC5007122 DOI: 10.1016/j.bbamem.2007.07.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/28/2007] [Accepted: 07/24/2007] [Indexed: 02/06/2023]
Abstract
The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel beta-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three beta-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipidColon, two colonslipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane beta-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two beta-barrel enzymes of unknown structure; namely, the Salmonella enterica 3'-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O(2) to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how beta-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger beta-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier.
Collapse
Affiliation(s)
- Russell E Bishop
- Department of Biochemistry and Biomedical Sciences, 1200 Main Street West, Health Sciences Centre 4H19, McMaster University, Hamilton, ON, Canada L8N 3Z5.
| |
Collapse
|
148
|
Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 938] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
|
149
|
Tran AX, Trent MS, Whitfield C. The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. J Biol Chem 2008; 283:20342-9. [PMID: 18480051 PMCID: PMC2459282 DOI: 10.1074/jbc.m802503200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/12/2008] [Indexed: 01/06/2023] Open
Abstract
The LptA protein of Escherichia coli has been implicated in the transport of lipopolysaccharide (LPS) from the inner membrane to the outer membrane. Here we provide evidence that LptA binds structurally diverse LPS substrates in vitro and demonstrate that it interacts specifically with the lipid A domain of LPS. These results are consistent with LptA playing a chaperone role in the transport of LPS across the periplasm and have implications for possible assembly models.
Collapse
Affiliation(s)
- An X Tran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
150
|
Novel Structure of the Conserved Gram-Negative Lipopolysaccharide Transport Protein A and Mutagenesis Analysis. J Mol Biol 2008; 380:476-88. [DOI: 10.1016/j.jmb.2008.04.045] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022]
|