101
|
Arama DP, Soualmia F, Lisowski V, Longevial JF, Bosc E, Maillard LT, Martinez J, Masurier N, El Amri C. Pyrido-imidazodiazepinones as a new class of reversible inhibitors of human kallikrein 7. Eur J Med Chem 2015; 93:202-13. [PMID: 25682203 DOI: 10.1016/j.ejmech.2015.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
The human tissue kallikrein-7 (KLK7) is a chymotryptic serine protease member of tissue kallikrein family. KLK7 is involved in skin homeostasis and inflammation. Excess of KLK7 activity is also associated with tumor metastasis processes, especially in ovarian carcinomas, prostatic and pancreatic cancers. Development of Kallikrein 7 inhibitors is thus of great interest in oncology but also for treating skin diseases. Most of the developed synthetic inhibitors present several drawbacks such as poor selectivity and unsuitable physico-chemical properties for in vivo use. Recently, we described a practical sequence for the synthesis of imidazopyridine-fused [1,3]-diazepines. Here, we report the identification of pyrido-imidazodiazepinone core as a new potential scaffold to develop selective and competitive inhibitors of kallikrein-related peptidase 7. Structure-activity relationships (SAR), inhibition mechanisms and selectivity as well as cytotoxicity against selected cancer cell lines were investigated.
Collapse
Affiliation(s)
- Dominique P Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Feryel Soualmia
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean-François Longevial
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Elodie Bosc
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France.
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France.
| |
Collapse
|
102
|
Ibrahim ZA, El Ashmawy AA, Abd El-Naby NM, Ghoraba HM. Immunohistochemical expression of cathepsin L in atopic dermatitis and lichen planus. Indian J Dermatol 2015; 60:13-20. [PMID: 25657391 PMCID: PMC4318056 DOI: 10.4103/0019-5154.147779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Cathepsin L is a member of papain superfamily. It seems to promote T-cell survival, selection maturation in the thymus and enhance the antigen presentation. Cathepsin L plays an important role in tumor necrosis factors (TNF-α) induced cell death. Also it degrades the tight junction between cornedesomses in the epidermis. Elevated expression of cathepsin L has been found in many inflammatory and neoplastic diseases. Objective: The aim of this study was to determine immunohistochemical expression of cathepsin L in atopic dermatitis (AD) and lichen planus (LP) patients in order to evaluate its role in the pathogenesis of both diseases. Materials and Methods: This study included 15 patients with AD (Group I), 15 patients with LP (Group II), in addition to 10 healthy skin specimens served as controls (Group III). Punch biopsies were taken from lesional skin of the patients and controls for immunohistochemical detection of cathepsin L expression. Results: Highly significant increase was found in cathepsin L expression in AD and LP patients compared to controls [P = 0.001]. Conclusion: Cathepsin L could be implicated as an important protease in the pathogenesis of AD and LP. It could be a useful marker for assessing AD severity.
Collapse
Affiliation(s)
- Zeinab A Ibrahim
- Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Amal A El Ashmawy
- Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Naeim M Abd El-Naby
- Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Hussein M Ghoraba
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| |
Collapse
|
103
|
Tan X, Soualmia F, Furio L, Renard JF, Kempen I, Qin L, Pagano M, Pirotte B, El Amri C, Hovnanian A, Reboud-Ravaux M. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Med Chem 2014; 58:598-612. [PMID: 25489658 DOI: 10.1021/jm500988d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inhibition of kallikreins 5 and 7, and possibly kallikrein 14 and matriptase, (that initiates the kallikrein proteolytic cascade) constitutes an innovative way to treat some skin diseases such as Netherton syndrome. We present here the inhibitory properties of coumarin-3-carboxylate derivatives against these enzymes. Our small collection of these versatile organic compounds was enriched by newly synthesized derivatives in order to obtain molecules selective against one, two, three enzymes or acting on the four ones. We evidenced a series of compounds with IC50 values in the nanomolar range. A suicide mechanism was observed against kallikrein 7 whereas the inactivation was either definitive (suicide type) or transient for kallikreins 5 and 14, and matriptase. Most of these potent inhibitors were devoid of cytotoxicity toward healthy human keratinocytes. In situ zymography investigations on skin sections from human kallikrein 5 transgenic mouse revealed significant reduction of the global proteolytic activity by several compounds.
Collapse
Affiliation(s)
- Xiao Tan
- Sorbonne Universités, UPMC University Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Institut de Biologie Paris Seine , 7 Quai St Bernard, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Ishida-Yamamoto A, Igawa S. The biology and regulation of corneodesmosomes. Cell Tissue Res 2014; 360:477-82. [DOI: 10.1007/s00441-014-2037-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022]
|
105
|
Oliveira JR, Bertolin TC, Andrade D, Oliveira LCG, Kondo MY, Santos JAN, Blaber M, Juliano L, Severino B, Caliendo G, Santagada V, Juliano MA. Specificity studies on Kallikrein-related peptidase 7 (KLK7) and effects of osmolytes and glycosaminoglycans on its peptidase activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:73-83. [PMID: 25448018 DOI: 10.1016/j.bbapap.2014.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
KLK7 substrate specificity was evaluated by families of fluorescence resonance energy transfer (FRET) peptides derived from Abz-KLFSSK-Q-EDDnp (Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-[2,4-dinitrophenyl] ethylenediamine), by one bead-one peptide FRET peptide library in PEGA resin, and by the FRET peptide libraries Abz-GXX-Z-XX-Q-EDDnp (Z and X are fixed and random natural amino acids, respectively). KLK7 hydrolyzed preferentially F, Y or M, and its S1' and S2' subsites showed selectivity for hydrophilic amino acids, particularly R and K. This set of specificities was confirmed by the efficient kininogenase activity of KLK7 on Abz-MISLM(↓)KRPPGFSPF(↓)RSSRI-NH2 ((↓)indicates cleavage), hydrolysis of somatostatin and substance P and inhibition by kallistatin. The peptide Abz-NLY(↓)RVE-Q-EDDnp is the best synthetic substrate so far described for KLK7 [kcat/Km=455 (mMs)(-1)] that was designed from the KLK7 substrate specificity analysis. It is noteworthy that the NLYRVE sequence is present in human semaphorin 6B. KLK7 is activated by GAGs, inhibited by neutral salts, and activated by high concentration of kosmotropic salt. Pyroglutamic acid inhibited KLK7 (Ki=33mM) and is present in skin moisturizing factor (124mM). The KLK7 specificity described here and elsewhere reflects its participation in patho-physiological events in skin, the gastrointestinal tract and central nervous system, where KLK7 is significantly expressed.
Collapse
Affiliation(s)
- Juliana R Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Thiago C Bertolin
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Douglas Andrade
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Lilian C G Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Marcia Y Kondo
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Jorge A N Santos
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Câmpus Inconfidentes, Brazil
| | - Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Beatrice Severino
- Dipartimento di Farmacia, Università degli Studi di Napoli ‟Federico II", Via D. Montesano, 49, 80131, Napoli, Italy
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università degli Studi di Napoli ‟Federico II", Via D. Montesano, 49, 80131, Napoli, Italy
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università degli Studi di Napoli ‟Federico II", Via D. Montesano, 49, 80131, Napoli, Italy
| | - Maria A Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
106
|
Singh B, Haftek M, Harding CR. Retention of corneodesmosomes and increased expression of protease inhibitors in dandruff. Br J Dermatol 2014; 171:760-70. [PMID: 24815089 DOI: 10.1111/bjd.13111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dandruff is a common, relapsing and uncomfortable scalp condition affecting a large proportion of the global population. The appearance of flakes on the scalp and in the hair line, and associated itch are thought to be consequences of a damaged skin barrier, altered corneocyte cohesion and abnormal desquamation in dandruff. The balance between skin proteases and protease inhibitors is essential for driving the key events, including corneodesmosome degradation, in the desquamation process and to maintain stratum corneum (SC) barrier integrity. OBJECTIVES To investigate the distribution of corneodesmosomes, the key component of the SC cohesivity and barrier function, and the protease inhibitors lympho-epithelial Kazal-type-related inhibitor (LEKTI-1) and squamous cell carcinoma antigen (SCCA1) in the scalp of dandruff-affected participants. METHODS The methods utilized were immunohistochemistry, scanning immunoelectron microscopy, phase-contrast microscopy, Western blotting and serine protease activity assay on tape-stripped SC or scalp skin biopsies. RESULTS In SC samples from healthy subjects, corneodesmosomes were peripherally located in the corneocytes. In samples of dandruff lesions, corneodesmosomes were located both peripherally and on the entire surface area of the corneocytes. LEKTI-1 and SCCA1 protein levels and parakeratosis were found to be highly elevated in the lesional samples. CONCLUSIONS The persistence of nonperipheral corneodesmosomes is a characteristic feature of the perturbed desquamation seen in dandruff. The increased expression levels of LEKTI-1 and SCCA1 are consistent with the view that the dandruff condition is characterized by an imbalance in protease-protease inhibitor interaction in the SC.
Collapse
Affiliation(s)
- B Singh
- Unilever Research & Development, Port Sunlight, Bebington, U.K
| | | | | |
Collapse
|
107
|
Markowicz S, Matalinska J, Kurzepa K, Bochynska M, Biernacka M, Samluk A, Dudek D, Skurzak H, Yoshikawa M, Lipkowski AW. Anticancer properties of peptide fragments of hair proteins. PLoS One 2014; 9:e98073. [PMID: 24915193 PMCID: PMC4051607 DOI: 10.1371/journal.pone.0098073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 04/25/2014] [Indexed: 11/22/2022] Open
Abstract
The primary function of hair and fur covering mammalian skin is to provide mechanical and thermal protection for the body. The proteins that constitute hair are extremely resistant to degradation by environmental factors. However, even durable materials can be slowly broken down by mechanical stresses, biodegradation mediated by endogenous enzymes in the skin or host microbes. We hypothesised that the biodegradation products of hair may possess bioprotective properties, which supplement their physical protective properties. Although evolutionary processes have led to a reduction in the amount of hair on the human body, it is possible that the bioprotective properties of hair biodegradation products have persisted. The human skin is exposed to various environmental carcinogenic factors. Therefore, we hypothesised that the potential bioprotective mechanisms of hair degradation products affect melanoma growth. We used pepsin to partially digest hair enzymatically, and this process produced a water-soluble lysate containing a mixture of peptides, including fragments of keratin and keratin-associated proteins. We found out that the mixtures of soluble peptides obtained from human hair inhibited the proliferation of human melanoma cells in vitro. Moreover, the hair-derived peptide mixtures also inhibited the proliferation of B lymphoma cells and urinary bladder cancer cells. Normal human cells varied in their susceptibility to the effects of the lysate; the hair-derived peptide mixtures modulated the proliferation of normal human fibroblasts but did not inhibit the proliferation of human mesenchymal cells derived from umbilical cord stromal cells. These results suggest that hair-derived peptides may represent a new class of anti-proliferative factors derived from basically structural proteins. Identification of active regulatory compounds and recognition of the mechanism of their action might pave the way to elaboration of new anticancer drugs.
Collapse
Affiliation(s)
- Sergiusz Markowicz
- Maria Sklodowska-Curie Memorial Institute and Oncology Centre, Warsaw, Poland
| | - Joanna Matalinska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marta Bochynska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marzena Biernacka
- Maria Sklodowska-Curie Memorial Institute and Oncology Centre, Warsaw, Poland
| | - Anna Samluk
- Maria Sklodowska-Curie Memorial Institute and Oncology Centre, Warsaw, Poland
| | - Dorota Dudek
- Maria Sklodowska-Curie Memorial Institute and Oncology Centre, Warsaw, Poland
| | - Henryk Skurzak
- Maria Sklodowska-Curie Memorial Institute and Oncology Centre, Warsaw, Poland
| | - Masaaki Yoshikawa
- Research Institute for Production Development, Sakyo-ku, Kyoto, Japan
| | - Andrzej W. Lipkowski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
108
|
Eissa A, Cretu D, Soosaipillai A, Thavaneswaran A, Pellett F, Diamandis A, Cevikbas F, Steinhoff M, Diamandis EP, Gladman D, Chandran V. Serum kallikrein-8 correlates with skin activity, but not psoriatic arthritis, in patients with psoriatic disease. Clin Chem Lab Med 2014; 51:317-25. [PMID: 23096109 DOI: 10.1515/cclm-2012-0251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/15/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND About 30% of cutaneous psoriasis (PsC) patients develop psoriatic arthritis (PsA) in the joint, which is under-recognized by dermatologists. Biomarkers for PsA are needed so that early referral to a rheumatologist is made. Kallikreins (KLKs) are secreted serine proteases implicated in skin desquamation and inflammation. This study examined KLK potential as serum biomarkers of PsA in cutaneous psoriasis patients. METHODS KLKs were measured by ELISAs in synovial fluids of three PsA patients and three control early osteoarthritis (OA) patients, as well as in a cohort of 152 serum samples collected from age- and sex-matched PsC patients, with (n=76) or without PsA (n=76). KLK expression in psoriatic plaques was examined by immunohistochemistry. Univariate and multivariate logistic regression analyses were conducted to analyze the association between serum KLK levels and disease class (PsC, PsA). Serum KLKs that associated with PsA were correlated with clinical parameters of skin and joint activity. RESULTS Among the seven KLKs tested, KLK6 and KLK8 were elevated in both PsA synovial fluids and psoriatic plaques, but only serum KLK8 levels were associated with psoriatic disease (odds ratio=2.56, p=0.03). Although significantly elevated in PsC and PsA sera compared to healthy controls, KLK8 did not discriminate PsA from PsC patients. KLK8 correlated positively with the psoriasis area and severity index (PASI) (r=0.43, p=0.001) independent of age, sex and psoriasis duration ( β=1.153, p=0.0003) and exhibited no correlations with tender or swollen joint counts. CONCLUSIONS Increased KLK8 serum level in PsA patients reflects disease activity in the skin but not in the joints. Serum KLK levels are not useful for screening psoriasis patients for PsA.
Collapse
Affiliation(s)
- Azza Eissa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Heiker JT. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J Pept Sci 2014; 20:299-306. [PMID: 24596079 DOI: 10.1002/psc.2621] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/08/2022]
Abstract
While genome-wide association studies as well as candidate gene studies have revealed a great deal of insight into the contribution of genetics to obesity development and susceptibility, advances in adipose tissue research have substantially changed the understanding of adipose tissue function. Its perception has changed from passive lipid storage tissue to active endocrine organ regulating and modulating whole-body energy homeostasis and metabolism and inflammatory and immune responses by secreting a multitude of bioactive molecules, termed adipokines. The expression of human vaspin (serpinA12) is positively correlated to body mass index and insulin sensitivity and increases glucose tolerance in vivo, suggesting a compensatory role in response to diminished insulin signaling in obesity. Recently, considerable insight has been gained into vaspin structure, function, and specific target tissue-dependent effects, and several lines of evidence suggest vaspin as a promising candidate for drug development for the treatment of obesity-related insulin resistance and inflammation. These will be summarized in this review with a focus on molecular mechanisms and pathways.
Collapse
Affiliation(s)
- John T Heiker
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
110
|
de Veer SJ, Furio L, Harris JM, Hovnanian A. Proteases: common culprits in human skin disorders. Trends Mol Med 2014; 20:166-78. [DOI: 10.1016/j.molmed.2013.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022]
|
111
|
Swamidass SJ, Schillebeeckx CN, Matlock M, Hurle MR, Agarwal P. Combined Analysis of Phenotypic and Target-Based Screening in Assay Networks. ACTA ACUST UNITED AC 2014; 19:782-90. [DOI: 10.1177/1087057114523068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/17/2014] [Indexed: 01/09/2023]
Abstract
Small-molecule screens are an integral part of drug discovery. Public domain data in PubChem alone represent more than 158 million measurements, 1.2 million molecules, and 4300 assays. We conducted a global analysis of these data, building a network of assays and connecting the assays if they shared nonpromiscuous active molecules. This network spans both phenotypic and target-based screens, recapitulates known biology, and identifies new polypharmacology. Phenotypic screens are extremely important for drug discovery, contributing to the discovery of a large proportion of new drugs. Connections between phenotypic and biochemical, target-based screens can suggest strategies for repurposing both small-molecule and biologic drugs. For example, a screen for molecules that prevent cell death from a mutated version of superoxide-dismutase is linked with ALOX15. This connection suggests a therapeutic role for ALOX15 inhibitors in amyotrophic lateral sclerosis. An interactive version of the network is available online ( http://swami.wustl.edu/flow/assay_network.html ).
Collapse
Affiliation(s)
- S. Joshua Swamidass
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Constantino N. Schillebeeckx
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Matlock
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark R. Hurle
- Computational Biology, GlaxoSmithKline R&D, King of Prussia, PA, USA
| | - Pankaj Agarwal
- Computational Biology, GlaxoSmithKline R&D, King of Prussia, PA, USA
| |
Collapse
|
112
|
Oliveira JPC, Freitas RF, Melo LSD, Barros TG, Santos JAN, Juliano MA, Pinheiro S, Blaber M, Juliano L, Muri EMF, Puzer L. Isomannide-based peptidomimetics as inhibitors for human tissue kallikreins 5 and 7. ACS Med Chem Lett 2014; 5:128-32. [PMID: 24900785 DOI: 10.1021/ml4003698] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/06/2013] [Indexed: 02/05/2023] Open
Abstract
Human kallikrein 5 (KLK5) and 7 (KLK7) are potential targets for the treatment of skin inflammation and cancer. Previously, we identified isomannide derivatives as potent and competitive KLK7 inhibitors. The introduction of N-protected amino acids into the isomannide-based scaffold was studied. Some KLK5 inhibitors with submicromolar affinity (K i values of 0.3-0.7 μM) were identified, and they were 6- to 13-fold more potent than our previous hits. Enzyme kinetics studies and the determination of the mechanism of inhibition confirmed that the new isomannide-based derivatives are competitive inhibitors of both KLK5 and KLK7. Molecular docking and MD simulations of selected inhibitors into the KLK5 binding site provide insight into the molecular mechanism by which these compounds interact with the enzyme. The promising results obtained in this study open new prospects on the design and synthesis of highly specific KLK5 and KLK7 inhibitors.
Collapse
Affiliation(s)
- Jocelia P. C. Oliveira
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa
Adélia 166, Bairro Bangu, Santo André
SP, 09210-170, Brazil
| | - Renato F. Freitas
- Department
of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Leandro Silva de Melo
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa
Adélia 166, Bairro Bangu, Santo André
SP, 09210-170, Brazil
| | - Thalita G. Barros
- Faculdade
de Farmácia, Universidade Federal Fluminense, R. Miguel de Frias, 9 - Icaraı́, Niterói, RJ, 24220-008, Brazil
| | - Jorge A. N. Santos
- Instituto
Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Inconfidentes, MG, 37576-000, Brazil
| | - Maria A. Juliano
- Departamento
de Biofísica, Universidade Federal de São Paulo, Rua Três
de Maio 100, São Paulo, SP, 04107-001, Brasil
| | - Sérgio Pinheiro
- Instituto
de Química, Universidade Federal Fluminense, R. Miguel de Frias, 9 - Icaraı́, Niterói, RJ 24220-008, Brazil
| | - Michael Blaber
- Department
of Biomedical Sciences, Florida State University, 600 West College Avenue, Tallahassee, Florida 32306, United States
| | - Luiz Juliano
- Departamento
de Biofísica, Universidade Federal de São Paulo, Rua Três
de Maio 100, São Paulo, SP, 04107-001, Brasil
| | - Estela M. F. Muri
- Faculdade
de Farmácia, Universidade Federal Fluminense, R. Miguel de Frias, 9 - Icaraı́, Niterói, RJ, 24220-008, Brazil
| | - Luciano Puzer
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa
Adélia 166, Bairro Bangu, Santo André
SP, 09210-170, Brazil
| |
Collapse
|
113
|
|
114
|
Miyai M, Matsumoto Y, Yamanishi H, Yamamoto-Tanaka M, Tsuboi R, Hibino T. Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J Invest Dermatol 2014; 134:1665-1674. [PMID: 24390132 DOI: 10.1038/jid.2014.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/09/2022]
Abstract
Kallikrein-related peptidases (KLKs) have critical roles in corneocyte desquamation and are regulated by lymphoepithelial Kazal-type inhibitor (LEKTI). However, it is unclear how these proteases are activated and how activated KLKs are released from LEKTI in the upper cornified layer. Recently, we reported cloning of a PRSS3 gene product, keratinocyte-specific mesotrypsin, from a cDNA library. We hypothesized that mesotrypsin is involved in the desquamation process, and the aim of the present study was to test this idea by examining the effects of mesotrypsin on representative desquamation-related enzymes pro-KLK5 and pro-KLK7. Incubation of mesotrypsin and these zymogens resulted in generation of the active forms. KLK activities were effectively inhibited by recombinant LEKTI domains D2, D2-5, D2-6, D2-7, D5, D6, D6-9, D7, D7-9, and D10-15, whereas mesotrypsin activity was not susceptible to these domains, and in fact degraded them. Immunoelectron microscopy demonstrated that mesotrypsin was localized in the cytoplasm of granular cells and intercellular spaces of the cornified layer. Proximity ligation assay showed close association between mesotrypsin and KLKs in the granular to cornified layers. Age-dependency analysis revealed that mesotrypsin was markedly downregulated in corneocyte extract from donors in their sixties, compared with younger donors. Collectively, our findings suggest that mesotrypsin contributes to the desquamation process by activating KLKs and degrading the intrinsic KLKs' inhibitor LEKTI.
Collapse
Affiliation(s)
- Masashi Miyai
- Shiseido Research Center, Kanazawa-ku, Yokohama, Japan
| | | | | | - Mami Yamamoto-Tanaka
- Shiseido Research Center, Kanazawa-ku, Yokohama, Japan; Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ryoji Tsuboi
- Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | |
Collapse
|
115
|
Chung BY, Noh TK, Yang SH, Kim IH, Lee MW, Yoon TJ, Chang SE. Gene Expression Profiling in Melasma in Korean Women. Dermatology 2014; 229:333-42. [DOI: 10.1159/000365080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
|
116
|
Mohammed D, Hirata K, Hadgraft J, Lane ME. Influence of skin penetration enhancers on skin barrier function and skin protease activity. Eur J Pharm Sci 2014; 51:118-22. [DOI: 10.1016/j.ejps.2013.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/08/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
|
117
|
Tan X, Bertonati C, Qin L, Furio L, El Amri C, Hovnanian A, Reboud-Ravaux M, Villoutreix BO. Identification by in silico and in vitro screenings of small organic molecules acting as reversible inhibitors of kallikreins. Eur J Med Chem 2013; 70:661-8. [DOI: 10.1016/j.ejmech.2013.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
|
118
|
Characterization of Spink6 in mouse skin: the conserved inhibitor of kallikrein-related peptidases is reduced by barrier injury. J Invest Dermatol 2013; 134:1305-1312. [PMID: 24352040 DOI: 10.1038/jid.2013.502] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/14/2013] [Accepted: 10/25/2013] [Indexed: 11/08/2022]
Abstract
The proteolytic regulation of the desquamation process by kallikrein-related peptidases (KLKs) is crucial for epidermal barrier function, and elevated KLK levels have been reported in atopic dermatitis. KLKs are controlled by specific inhibitors of the serine protease inhibitor of Kazal-type (Spink) family. Recently, SPINK6 was shown to be present in human stratum corneum. In order to investigate its role in epidermal barrier function, we studied mouse Spink6. Sequence alignment revealed that the Kazal domain of Spink6 is highly conserved in animals. Recombinant Spink6 efficiently inhibited mouse Klk5 and human KLK2, KLK4, KLK5, KLK6, KLK7, KLK12, KLK13, and KLK14, whereas human KLK1 and KLK8 were not inhibited. Spink6 was expressed in mouse epidermis mainly in the stratum granulosum, and the inner root sheath of hair follicles. Stimulation with flagellin, EGF, and IL-1β did not alter Spink6 expression, whereas stimulation with tumor necrosis factor-α (TNFα)/IFNγ and all-trans retinoic acid resulted in a significant downregulation of Spink6 expression in cultured primary mouse keratinocytes. Mechanically and metabolically induced skin barrier dysfunction resulted both in a downregulation of Spink6 expression. Our study indicates that Spink6 is a potent inhibitor of KLKs and involved in skin barrier function.
Collapse
|
119
|
Bachelor M, Binder RL, Cambron RT, Kaczvinsky JR, Spruell R, Wehmeyer KR, Reilman R, Adams R, Tiesman JP, Wang Y, Bascom CC, Isfort RJ, DiColandrea T. Transcriptional profiling of epidermal barrier formation in vitro. J Dermatol Sci 2013; 73:187-97. [PMID: 24314759 DOI: 10.1016/j.jdermsci.2013.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Barrier function is integral to the health of epithelial tissues. Currently, there is a broad need to develop and improve our knowledge with regard to barrier function for reversal of mild skin irritation and dryness. However, there are few in vitro models that incorporate modulations of both lipids and epidermal differentiation programs for pre-clinical testing to aid in the understanding of barrier health. OBJECTIVE We have generated a reconstituted epidermis on a decellularized dermis (DED) and characterized its barrier properties relative to human epidermis in order to determine its utility for modeling barrier formation and repair. METHODS We followed the process of epidermal differentiation and barrier formation through immunocytochemistry and transcriptional profiling. We examined barrier functionality through measurements of surface pH, lipid composition, stratum corneum water content, and the ability to demonstrate topical dose-dependent exclusion of surfactant. RESULTS Transcriptional profiling of the epidermal model during its formation reveals temporal patterns of gene expression associated with processes regulating barrier function. The profiling is supported by gradual formation and maturation of a stratum corneum and expression of appropriate markers of epidermis development. The model displays a functional barrier and a water gradient between the stratum corneum and viable layers, as determined by confocal Raman spectroscopy. The stratum corneum layer displays a normal acidic pH and an appropriate composition of barrier lipids. CONCLUSION The epidermal model demonstrates its utility as an investigative tool for barrier health and provides a window into the transcriptional regulation of multiple aspects of barrier formation.
Collapse
Affiliation(s)
| | - Robert L Binder
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - R Thomas Cambron
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Joseph R Kaczvinsky
- The Procter & Gamble Company, Sharon Woods Technical Center, Cincinnati, OH 45241, USA
| | - Russell Spruell
- The Procter & Gamble Company, Sharon Woods Technical Center, Cincinnati, OH 45241, USA
| | - Kenneth R Wehmeyer
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Raymond Reilman
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Rachel Adams
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Jay P Tiesman
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Yu Wang
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Charles C Bascom
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Robert J Isfort
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA
| | - Teresa DiColandrea
- The Procter & Gamble Company, Mason Business Center, Cincinnati, OH 45040, USA.
| |
Collapse
|
120
|
Abstract
BACKGROUND The stratum corneum (SC) is the outermost region of the epidermis and plays key roles in cutaneous barrier function in mammals. The SC is composed of 'bricks', represented by flattened, protein-enriched corneocytes, and 'mortar', represented by intercellular lipid-enriched layers. As a result of this 'bricks and mortar' structure, the SC can be considered as a 'rampart' that encloses water and solutes essential for physiological homeostasis and that protects mammals from physical, chemical and biological assaults. STRUCTURES AND FUNCTIONS The corneocyte cytoskeleton contains tight bundles of keratin intermediate filaments aggregated with filaggrin monomers, which are subsequently degraded into natural moisturizing compounds by various proteases, including caspase 14. A cornified cell envelope is formed on the inner surface of the corneocyte plasma membrane by transglutaminase-catalysed cross-linking of involucrin and loricrin. Ceramides form a lipid envelope by covalently binding to the cornified cell envelope, and extracellular lamellar lipids play an important role in permeability barrier function. Corneodesmosomes are the main adhesive structures in the SC and are degraded by certain serine proteases, such as kallikreins, during desquamation. CLINICAL RELEVANCE The roles of the different SC components, including the structural proteins in corneocytes, extracellular lipids and some proteins associated with lipid metabolism, have been investigated in genetically engineered mice and in naturally occurring hereditary skin diseases, such as ichthyosis, ichthyosis syndrome and atopic dermatitis in humans, cattle and dogs.
Collapse
Affiliation(s)
- Koji Nishifuji
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | |
Collapse
|
121
|
Tan X, Furio L, Reboud-Ravaux M, Villoutreix BO, Hovnanian A, El Amri C. 1,2,4-Triazole derivatives as transient inactivators of kallikreins involved in skin diseases. Bioorg Med Chem Lett 2013; 23:4547-51. [PMID: 23849879 DOI: 10.1016/j.bmcl.2013.06.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/27/2022]
Abstract
We describe here 1,2,4-triazoles derivatives identified as transient inactivators acting at the nanomolar level on human kallikreins (hK5, hK7 and hK14) and matriptase. Both the nature of the targeted enzymes and structural variations of the inhibitors influence the life-times of acyl-enzymes. These nonpeptidic, transient and low-molecular-weight inhibitors were found to be noncytotoxic against healthy human keratinocytes. These molecules may be useful to counteract dysregulated proteolytic cascades observed in dermatological disorders such as Netherton syndrome.
Collapse
Affiliation(s)
- Xiao Tan
- Enzymologie Moléculaire et Fonctionnelle, UR4, Université Pierre et Marie Curie-Sorbonne Universités (UPMC), Case Courrier 256, 7, Quai St Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
122
|
Sakabe JI, Yamamoto M, Hirakawa S, Motoyama A, Ohta I, Tatsuno K, Ito T, Kabashima K, Hibino T, Tokura Y. Kallikrein-related peptidase 5 functions in proteolytic processing of profilaggrin in cultured human keratinocytes. J Biol Chem 2013; 288:17179-89. [PMID: 23629652 DOI: 10.1074/jbc.m113.476820] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Filaggrin protein is synthesized in the stratum granulosum of the skin and contributes to the formation of the human skin barrier. Profilaggrin is cleaved by proteolytic enzymes and converted to functional filaggrin, but its processing mechanism remains not fully elucidated. Kallikrein-related peptidase 5 (KLK5) is a major serine protease found in the skin, which is secreted from lamellar granules following its expression in the stratum granulosum and activated in the extracellular space of the stratum corneum. Here, we searched for profilaggrin-processing protease(s) by partial purification of epidermal extracts and found KLK5 as a possible candidate. We used high performance liquid chromatography coupled with electrospray tandem mass spectrometry to show that KLK5 cleaves profilaggrin. Furthermore, based on a proximity ligation assay, immunohistochemistry, and immunoelectron microscopy analysis, we reveal that KLK5 and profilaggrin co-localize in the stratum granulosum in human epidermis. KLK5 knockdown in normal cultured human epidermal keratinocytes resulted in higher levels of profilaggrin, indicating that KLK5 potentially functions in profilaggrin cleavage.
Collapse
Affiliation(s)
- Jun-ichi Sakabe
- Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Heiker JT, Klöting N, Kovacs P, Kuettner EB, Sträter N, Schultz S, Kern M, Stumvoll M, Blüher M, Beck-Sickinger AG. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci 2013; 70:2569-83. [PMID: 23370777 PMCID: PMC3689916 DOI: 10.1007/s00018-013-1258-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/09/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
Abstract
The molecular target of the adipokine vaspin (visceral adipose tissue-derived serpin; serpinA12) and its mode of action are unknown. Here, we provide the vaspin crystal structure and identify human kallikrein 7 (hK7) as a first protease target of vaspin inhibited by classical serpin mechanism with high specificity in vitro. We detect vaspin-hK7 complexes in human plasma and find co-expression of both proteins in murine pancreatic β-cells. We further demonstrate that hK7 cleaves human insulin in the A- and B-chain. Vaspin treatment of isolated pancreatic islets leads to increased insulin concentration in the media upon glucose stimulation without influencing insulin secretion. By application of vaspin and generated inactive mutants, we find the significantly improved glucose tolerance in C57BL/6NTac and db/db mice treated with recombinant vaspin fully dependent on the vaspin serpin activity and not related to vaspin-mediated changes in insulin sensitivity as determined by euglycemic-hyperinsulinemic clamp studies. Improved glucose metabolism could be mediated by increased insulin plasma concentrations 150 min after a glucose challenge in db/db mice, supporting the hypothesis that vaspin may inhibit insulin degradation by hK7 in the circulation. In conclusion, we demonstrate the inhibitory serpin nature and the first protease target of the adipose tissue-derived serpin vaspin, and our findings suggest hK7 inhibition by vaspin as an underlying physiological mechanism for its compensatory actions on obesity-induced insulin resistance.
Collapse
Affiliation(s)
- John T Heiker
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res 2013; 351:289-300. [DOI: 10.1007/s00441-013-1558-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 01/31/2023]
|
125
|
Cross-linking of SPINK6 by transglutaminases protects from epidermal proteases. J Invest Dermatol 2013; 133:1170-7. [PMID: 23303447 DOI: 10.1038/jid.2012.482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular kallikrein-related peptidases (KLKs) are involved in the desquamation process and the initiation of epidermal inflammation by different mechanisms. Their action is tightly controlled by specific protease inhibitors. Recently, we have identified the serine protease inhibitor of Kazal-type (SPINK) 6 as a selective inhibitor of KLKs in human stratum corneum extracts. As SPINK6 is expressed in the same localization as transglutaminases (TGM) and contains TGM substrate motifs, SPINK6 was tested to be cross-linked in the epidermis. Recombinant SPINK6 was shown to be cross-linked to fibronectin (FN) by TGM1 by western blot analyses. Moreover, SPINK6 was cross-linked in epidermal extracts and cultured keratinocytes by immunoblotting analyses. The use of TGM1 and TGM3 resulted in different immunoreactivities in western blot analyses of SPINK6 and epidermal extracts, suggesting substrate specifities of different TGMs for SPINK6 cross-linking in the epidermis. Conjugated SPINK6 exhibited protease inhibitory activity in keratinocytes and stratum corneum extracts; cross-linked SPINK6 protected FN from KLK5-mediated cleavage, whereas a lower KLK-inhibiting SPINK6-GM mutation did not. In conclusion, we demonstrated that SPINK6 is cross-linked in keratinocytes and human epidermis and remains inhibitory active. Thus, cross-linked SPINK6 might protect specific substrates such as FN from KLK cleavage and contributes to the regulation of proteases in the epidermis.
Collapse
|
126
|
Kallikrein-related peptidase 10 expression in salivary gland tissues and tumours. Int J Biol Markers 2012; 27:e381-8. [PMID: 23250777 DOI: 10.5301/jbm.2012.10373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Kallikrein-related peptidase 10 (KLK10) has been implicated in the development of several types of cancer. The purpose of this study was to analyze the expression of KLK10 in 3 types of salivary gland tumour and normal salivary glands. MATERIALS AND METHODS A standard immunoperoxidase staining technique was used to assess the immunoexpression profile of KLK10 in normal salivary glands and 3 types of salivary gland tumour: pleomorphic adenoma, adenoid cystic carcinoma and mucoepidermoid carcinoma. RESULTS Pleomorphic adenomas showed significantly lower KLK10 levels than control tissues. Neither of the malignant tumours (adenoid cystic carcinoma and mucoepidermoid carcinoma) showed a significant alteration in the immunoreactive scores of KLK10 in comparison with the normal salivary gland tissues. KLK10 immunoreactive scores were comparable in adenoid cystic carcinoma and mucoepidermoid carcinoma. Pleomorphic adenoma had significantly lower levels of KLK10 than mucoepidermoid carcinoma. CONCLUSIONS The finding of lower KLK10 levels in pleomorphic adenoma suggests aberrant expression in a tumour that develops primarily from myoepithelial cells. A kallikrein cascade may play a role in the development and/or outcome of some salivary gland tumours.
Collapse
|
127
|
Stratum corneum proteases and dry skin conditions. Cell Tissue Res 2012; 351:217-35. [DOI: 10.1007/s00441-012-1501-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
|
128
|
Yamamoto M, Miyai M, Matsumoto Y, Tsuboi R, Hibino T. Kallikrein-related peptidase-7 regulates caspase-14 maturation during keratinocyte terminal differentiation by generating an intermediate form. J Biol Chem 2012; 287:32825-34. [PMID: 22825846 DOI: 10.1074/jbc.m112.357467] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maturation and activation mechanisms of caspases are generally well understood, except for those of caspase-14, which is activated at the onset of keratinocyte terminal differentiation. We investigated the possible involvement of epidermal proteases expressed in the late stage of differentiation, and found that the chymotrypsin-like serine protease kallikrein-related peptidase-7 (KLK7) cleaved procaspase-14 at Tyr(178), generating an intermediate form that consists of a large (20 kDa) and a small subunit (8 kDa). We prepared an antibody directed to this cleavage site (h14Y178 Ab), and confirmed that it recognized a 20-kDa band formed when procaspase-14 was incubated with chymotrypsin or KLK7. We then constructed a constitutively active form of the intermediate, revC14-Y178. The substrate specificity of revC14-Y178 was completely different from that of caspase-14, showing broad specificity for various caspase substrates except WEHD-7-amino-4-trifluoromethylcoumarin (AFC), the preferred substrate of active, mature caspase-14. K(m) values for VEID-AFC, DEVD-AFC, LEVD-AFC, and LEHD-AFC were 0.172, 0.261, 0.504, and 0.847 μM, respectively. We confirmed that the mature form of caspase-14 was generated when procaspase-14 was incubated with KLK7 or revC14-Y178. Expression of constitutively active KLK7 in cultured keratinocytes resulted in generation of both the intermediate form and the mature form of caspase-14. Immunohistochemical analysis demonstrated that the intermediate form was localized at the granular layer. Our results indicate that regulation of procaspase-14 maturation during terminal differentiation is a unique two-step process involving KLK7 and an activation intermediate of caspase-14.
Collapse
Affiliation(s)
- Mami Yamamoto
- Shiseido Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan
| | | | | | | | | |
Collapse
|
129
|
Bennett K, Heywood W, Di WL, Harper J, Clayman GL, Jayakumar A, Callard R, Mills K. The identification of a new role for LEKTI in the skin: The use of protein ‘bait’ arrays to detect defective trafficking of dermcidin in the skin of patients with Netherton syndrome. J Proteomics 2012; 75:3925-37. [DOI: 10.1016/j.jprot.2012.04.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 11/30/2022]
|
130
|
Fortugno P, Furio L, Teson M, Berretti M, El Hachem M, Zambruno G, Hovnanian A, D'Alessio M. The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Hum Mol Genet 2012; 21:4187-200. [DOI: 10.1093/hmg/dds243] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
131
|
Kallikrein-Related Peptidase 8–Dependent Skin Wound Healing Is Associated with Upregulation of Kallikrein-Related Peptidase 6 and PAR2. J Invest Dermatol 2012; 132:1717-24. [DOI: 10.1038/jid.2012.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
132
|
Williams RL, Sroussi HY, Abercrombie JJ, Leung K, Marucha PT. Synthetic decapeptide reduces bacterial load and accelerates healing in the wounds of restraint-stressed mice. Brain Behav Immun 2012; 26:588-96. [PMID: 22329957 DOI: 10.1016/j.bbi.2012.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/09/2012] [Accepted: 01/16/2012] [Indexed: 01/08/2023] Open
Abstract
Wound healing is a complex process involving four transitional yet concurrent stages: coagulation, inflammation, cell proliferation/epithelialization and remodeling. These overlapping stages occur uneventfully in normal physiology. However, during psychological stress, the inflammatory response can become dysregulated and result in increased susceptibility to bacterial infection and delayed wound closure. In our restraint stress model, cutaneous wounds of stressed SKH-1 mice demonstrate significantly higher levels of bacterial load, and healing progresses at a rate 30% slower, than in non-stressed mice. The purpose of this study was to test the hypothesis that a synthetic antimicrobial decapeptide (KSLW) enhances bacterial clearance during stress-impaired healing in mice. Here, using a Pluronic block copolymer nanocarrier, we endeavored to identify an efficient drug delivery system for KSLW, which would enhance the stability, substantivity and function of the cationic peptide in delayed-healing wounds. In this study, intradermal treatment of excisional wounds of stressed mice with 2mg/ml KSLW loaded in Pluronic F68, resulted in a sustained antimicrobial effect through post-operative day 5, with a 2-log (p<0.01) reduction in bacterial load compared with other stressed mice. The demonstrated bacterial reduction in KSLW-treated stressed mice did not approach the levels observed among control mice. Furthermore, treatment of stressed mice with KSLW improved healing, resulting in significantly faster (p<0.05) wound closure from days 2 to 5 post-wounding, relative to untreated stressed mice and stressed mice treated with Pluronic alone. These findings suggest that Pluronic F68 is an efficient carrier for KSLW, which improves its stability and activity in impaired dermal wounds.
Collapse
Affiliation(s)
- Richard L Williams
- Dental and Trauma Research Detachment, US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA.
| | | | | | | | | |
Collapse
|
133
|
Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp Dermatol 2012; 21:643-9. [PMID: 22507538 DOI: 10.1111/j.1600-0625.2012.01472.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The skin is essential for survival and protects our body against biological attacks, physical stress, chemical injury, water loss, ultraviolet radiation and immunological impairment. The epidermal barrier constitutes the primordial frontline of this defense established during terminal differentiation. During this complex process proliferating basal keratinocytes become suprabasally mitotically inactive and move through four epidermal layers (basal, spinous, granular and layer, stratum corneum) constantly adapting to the needs of the respective cell layer. As a result, squamous keratinocytes contain polymerized keratin intermediate filament bundles and a water-retaining matrix surrounded by the cross-linked cornified cell envelope (CE) with ceramide lipids attached on the outer surface. These cells are concomitantly insulated by intercellular lipid lamellae and hold together by corneodesmosmes. Many proteins essential for epidermal differentiation are encoded by genes clustered on chromosomal human region 1q21. These genes constitute the 'epidermal differentiation complex' (EDC), which is divided on the basis of common gene and protein structures, in three gene families: (i) CE precursors, (ii) S100A and (iii) S100 fused genes. EDC protein expression is regulated in a gene and tissue-specific manner by a pool of transcription factors. Among them, Klf4, Grhl3 and Arnt are essential, and their deletion in mice is lethal. The importance of the EDC is further reflected by human diseases: FLG mutations are the strongest risk factor for atopic dermatitis (AD) and for AD-associated asthma, and faulty CE formation caused by TG1 deficiency causes life-threatening lamellar ichthyosis. Here, we review the EDC genes and the progress in this field.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | | | | |
Collapse
|
134
|
Williams RL, Lim SB, Onyuksel H, Marucha PT. Sterically Stabilized Phospholipid Micelles Reduce Activity of a Candidate Antimicrobial Wound Healing Adjunct. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9292-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
135
|
Schäfer M, Farwanah H, Willrodt AH, Huebner AJ, Sandhoff K, Roop D, Hohl D, Bloch W, Werner S. Nrf2 links epidermal barrier function with antioxidant defense. EMBO Mol Med 2012; 4:364-79. [PMID: 22383093 PMCID: PMC3403295 DOI: 10.1002/emmm.201200219] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 12/18/2022] Open
Abstract
The skin provides an efficient permeability barrier and protects from microbial invasion and oxidative stress. Here, we show that these essential functions are linked through the Nrf2 transcription factor. To test the hypothesis that activation of Nrf2 provides skin protection under stress conditions, we determined the consequences of pharmacological or genetic activation of Nrf2 in keratinocytes. Surprisingly, mice with enhanced Nrf2 activity in keratinocytes developed epidermal thickening, hyperkeratosis and inflammation resembling lamellar ichthyosis. This resulted from upregulation of the cornified envelope proteins small proline-rich proteins (Sprr) 2d and 2h and of secretory leukocyte peptidase inhibitor (Slpi), which we identified as novel Nrf2 targets in keratinocytes. Since Sprrs are potent scavengers of reactive oxygen species and since Slpi has antimicrobial activities, their upregulation contributes to Nrf2's protective function. However, it also caused corneocyte fragility and impaired desquamation, followed by alterations in the epidermal lipid barrier, inflammation and overexpression of mitogens that induced keratinocyte hyperproliferation. These results identify an unexpected role of Nrf2 in epidermal barrier function, which needs to be considered for pharmacological use of Nrf2 activators.
Collapse
Affiliation(s)
- Matthias Schäfer
- Department of Biology, Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Human kallikrein-related peptidase 12 (KLK12) splice variants expression in breast cancer and their clinical impact. Tumour Biol 2012; 33:1075-84. [DOI: 10.1007/s13277-012-0347-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/03/2012] [Indexed: 12/11/2022] Open
|
137
|
When activity requires breaking up: LEKTI proteolytic activation cascade for specific proteinase inhibition. J Invest Dermatol 2012; 131:2169-73. [PMID: 21997416 DOI: 10.1038/jid.2011.295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lymphoepithelial Kazal-type related inhibitor (LEKTI) is a multidomain proteinase inhibitor whose defective expression causes Netherton syndrome (NS). LEKTI is encoded by SPINK5, which is also a susceptibility gene for atopic disease. In this issue, Fortugno et al. report an elegant and thorough study of the LEKTI proteolytic activation process in which they identify the precise nature of the cleavage sites used and the bioactive fragments generated. They propose a proteolytic activation model in human skin and confirm differential inhibition of kallikrein (KLK) 5, 7, and 14 by the major physiological LEKTI fragments. They show that these bioactive fragments inhibit KLK-mediated proteolysis of desmoglein 1 (DSG1) and suggest a fine-tuned inhibition process controlling target serine proteinase (SP) activity.
Collapse
|
138
|
Clinical expression and new SPINK5 splicing defects in Netherton syndrome: unmasking a frequent founder synonymous mutation and unconventional intronic mutations. J Invest Dermatol 2011; 132:575-82. [PMID: 22089833 DOI: 10.1038/jid.2011.366] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Netherton syndrome (NS) is a severe skin disease caused by loss-of-function mutations in SPINK5 (serine protease inhibitor Kazal-type 5) encoding the serine protease inhibitor LEKTI (lympho-epithelial Kazal type-related inhibitor). Here, we disclose new SPINK5 defects in 12 patients, who presented a clinical triad suggestive of NS with variations in inter- and intra-familial disease expression. We identified a new and frequent synonymous mutation c.891C>T (p.Cys297Cys) in exon 11 of the 12 NS patients. This mutation disrupts an exonic splicing enhancer sequence and causes out-of-frame skipping of exon 11. Haplotype analysis indicates that this mutation is a founder mutation in Greece. Two other new deep intronic mutations, c.283-12T>A in intron 4 and c.1820+53G>A in intron 19, induced partial intronic sequence retention. A new nonsense c.2557C>T (p.Arg853X) mutation was also identified. All mutations led to a premature termination codon resulting in no detectable LEKTI on skin sections. Two patients with deep intronic mutations showed residual LEKTI fragments in cultured keratinocytes. These fragments retained some functional activity, and could therefore, together with other determinants, contribute to modulate the disease phenotype. This new founder mutation, the most frequent mutation described in European populations so far, and these unusual intronic mutations, widen the clinical and molecular spectrum of NS and offer new diagnostic perspectives for NS patients.
Collapse
|
139
|
Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin Chem Lab Med 2011; 50:211-33. [PMID: 22047144 DOI: 10.1515/cclm.2011.750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022]
Abstract
The human kallikrein-related peptidase 6 (KLK6) gene belongs to the 15-member kallikrein (KLK) gene family mapping to chromosome 19q13.3-13.4. Encoding for an enzyme with trypsin-like properties, KLK6 can degrade components of the extracellular matrix. The successful utilisation of another KLK member (KLK3/PSA) for prostate cancer diagnosis has led many to evaluate KLK6 as a potential biomarker for other cancer and diseased states. The observed dysregulated expression in cancers, neurodegenerative diseases and skin conditions has led to the discovery that KLK6 participates in other cellular pathways including inflammation, receptor activation and regulation of apoptosis. Moreover, the improvements in high-throughput genomics have not only enabled the identification of sequence polymorphisms, but of transcript variants, whose functional significances have yet to be realised. This comprehensive review will summarise the current findings of KLK6 pathophysiology and discuss its potential as a viable biomarker.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
140
|
Shibata M, Ishimatsu-Tsuji Y, Yokoo M, Nakai Y, Abe K, Muta K. Effect of oral intake of winged bean extract on a skin lichenification model: evaluation by microarray analysis. Biofactors 2011; 37:421-8. [PMID: 22038710 DOI: 10.1002/biof.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/11/2011] [Indexed: 11/06/2022]
Abstract
Winged bean (WB), Psophocarpus tetragonolobus, is a tropical legume, the potential of which is not fully understood. We found that 5-week oral administration of a WB seed extract inhibited wrinkle formation induced by repeated tape stripping (TS) as a model of lichenification in human chronic eczematous dermatitis. To elucidate the mechanism of the effect of WB on this model, we applied microarray analysis. Hierarchical clustering revealed that each experimental group formed a distinct cluster, suggesting the presence of a distinct gene expression profile among the three groups of non-TS, TS, and TS with oral administration of WB extract (TS/WB). Gene ontology analysis showed that several gene groups with keratinization and mitosis were significantly upregulated by TS, while other groups with ATP synthesis and glycolysis were significantly downregulated by TS/WB. Moreover, WB extract influenced a number of genes related to epidermal differentiation and inflammation. This suggests that these changes inhibited wrinkle formation by TS.
Collapse
Affiliation(s)
- Michio Shibata
- Shiseido Innovative Science Research & Development Center, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
141
|
Martins WK, Esteves GH, Almeida OM, Rezze GG, Landman G, Marques SM, Carvalho AF, L Reis LF, Duprat JP, Stolf BS. Gene network analyses point to the importance of human tissue kallikreins in melanoma progression. BMC Med Genomics 2011; 4:76. [PMID: 22032772 PMCID: PMC3212933 DOI: 10.1186/1755-8794-4-76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/27/2011] [Indexed: 12/15/2022] Open
Abstract
Background A wide variety of high-throughput microarray platforms have been used to identify molecular targets associated with biological and clinical tumor phenotypes by comparing samples representing distinct pathological states. Methods The gene expression profiles of human cutaneous melanomas were determined by cDNA microarray analysis. Next, a robust analysis to determine functional classifications and make predictions based on data-oriented hypotheses was performed. Relevant networks that may be implicated in melanoma progression were also considered. Results In this study we aimed to analyze coordinated gene expression changes to find molecular pathways involved in melanoma progression. To achieve this goal, ontologically-linked modules with coordinated expression changes in melanoma samples were identified. With this approach, we detected several gene networks related to different modules that were induced or repressed during melanoma progression. Among them we observed high coordinated expression levels of genes involved in a) cell communication (KRT4, VWF and COMP); b) epidermal development (KLK7, LAMA3 and EVPL); and c) functionally related to kallikreins (EVPL, KLK6, KLK7, KLK8, SERPINB13, SERPING1 and SLPI). Our data also indicated that hKLK7 protein expression was significantly associated with good prognosis and survival. Conclusions Our findings, derived from a different type of analysis of microarray data, highlight the importance of analyzing coordinated gene expression to find molecular pathways involved in melanoma progression.
Collapse
|
142
|
Biological evaluation and docking studies of natural isocoumarins as inhibitors for human kallikrein 5 and 7. Bioorg Med Chem Lett 2011; 21:6112-5. [DOI: 10.1016/j.bmcl.2011.08.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022]
|
143
|
Reiss K, Meyer-Hoffert U, Fischer J, Sperrhacke M, Wu Z, Dimitrieva O, Krenek P, Suchanova S, Buryova H, Brauer R, Sedlacek R. Expression and regulation of murine SPINK12, a potential orthologue of human LEKTI2. Exp Dermatol 2011; 20:905-10. [DOI: 10.1111/j.1600-0625.2011.01355.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
144
|
Bin L, Kim BE, Hall CF, Leach SM, Leung DYM. Inhibition of transcription factor specificity protein 1 alters the gene expression profile of keratinocytes leading to upregulation of kallikrein-related peptidases and thymic stromal lymphopoietin. J Invest Dermatol 2011; 131:2213-22. [PMID: 21753780 PMCID: PMC3193562 DOI: 10.1038/jid.2011.202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription factor specificity protein 1 (Sp1) is involved in diverse cellular functions. We recently found that Sp1 was significantly decreased in skin biopsy samples obtained from patients with atopic dermatitis (AD) and had an even greater reduction in AD patients with a history of eczema herpeticum. In the current study, we sought to better understand the role of Sp1 in skin biological processes by using a small-interfering RNA (siRNA) technique to knock down Sp1 gene expression in normal human keratinocytes (NHKs) and investigated the genome-wide gene expression profiling of Sp1-silenced NHKs. The gene arrays revealed that 53 genes had greater than 3-fold changes in the expression in Sp1-silenced NHKs as compared with scrambled siRNA-silenced cells. Strikingly, six kallikrein (KLK)-related peptidase genes, namely KLK5, KLK6, KLK7, KLK8, KLK10, and KLK12, were upregulated in NHKs following Sp1 silencing. Functionally, protease activity was significantly enhanced in Sp1-silenced keratinocytes as compared with scrambled siRNA-silenced keratinocytes. Moreover, thymic stromal lymphopoietin (TSLP), an epithelial-derived T(H)2-promoting cytokine, was induced in Sp1-silenced keratinocytes because of elevated KLK activity. These results indicate that Sp1 expression deficiency leads to abnormally increased KLK protease activity in keratinocytes and may contribute to T(H)2 immune responses in the skin by inducing TSLP.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
145
|
Kolegraff K, Nava P, Laur O, Parkos CA, Nusrat A. Characterization of full-length and proteolytic cleavage fragments of desmoglein-2 in native human colon and colonic epithelial cell lines. Cell Adh Migr 2011; 5:306-14. [PMID: 21715983 DOI: 10.4161/cam.5.4.16911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The desmosomal cadherin desmoglein-2 (Dsg2) is a transmembrane cell adhesion protein that is widely expressed in epithelial and non-epithelial tissues, such as the intestine, epidermis, testis, and heart. Dsg2 has been shown to regulate numerous cellular processes, including proliferation and apoptosis, and we have previously reported that intracellular fragments of Dsg2 promote apoptosis in colonic epithelial cells. While several studies have shown that both the extracellular and intracellular domains of Dsg2 can be targeted by proteases, identification of these putative Dsg2 fragments in colonic epithelial cells has not been performed. Here, we report that the mouse monoclonal antibody (mAb) AH12.2 binds to the first extracellular domain of Dsg2. Using this antibody along with previously described mAb against the extracellular (6D8) and intracellular (DG3.10) domains of Dsg2, we characterize the expression and identify the cleavage fragments of Dsg2 in colonic epithelial cells. This study provides a detailed description of the extracellular and intracellular Dsg2 cleavage fragments that are generated in the simple epithelium of the colon and will guide future studies examining the relationship of these fragments to cellular fate and disease states.
Collapse
Affiliation(s)
- Keli Kolegraff
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
146
|
Epidermal ablation of Dlx3 is linked to IL-17-associated skin inflammation. Proc Natl Acad Sci U S A 2011; 108:11566-71. [PMID: 21709238 DOI: 10.1073/pnas.1019658108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In an effort to understand the role of Distal-less 3 (Dlx3) in cutaneous biology and pathophysiology, we generated and characterized a mouse model with epidermal ablation of Dlx3. K14cre;Dlx3(Kin/f) mice exhibited epidermal hyperproliferation and abnormal differentiation of keratinocytes. Results from subsequent analyses revealed cutaneous inflammation that featured accumulation of IL-17-producing CD4(+) T, CD8(+) T, and γδ T cells in the skin and lymph nodes of K14cre;Dlx3(Kin/f) mice. The gene expression signature of K14cre;Dlx3(Kin/f) skin shared features with lesional psoriatic skin, and Dlx3 expression was markedly and selectively decreased in psoriatic skin. Interestingly, cultured Dlx3 null keratinocytes triggered cytokine production that is potentially linked to inflammatory responses in K14cre;Dlx3(Kin/f) mice. Thus, Dlx3 ablation in epidermis is linked to altered epidermal differentiation, barrier development, and IL-17-associated skin inflammation. This model provides a platform that will allow the systematic exploration of the contributions of keratinocytes to cutaneous inflammation.
Collapse
|
147
|
Fortugno P, Bresciani A, Paolini C, Pazzagli C, El Hachem M, D'Alessio M, Zambruno G. Proteolytic activation cascade of the Netherton syndrome-defective protein, LEKTI, in the epidermis: implications for skin homeostasis. J Invest Dermatol 2011; 131:2223-32. [PMID: 21697885 DOI: 10.1038/jid.2011.174] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lympho-epithelial Kazal-type-related inhibitor (LEKTI) is the defective protein of the ichthyosiform condition Netherton syndrome (NS). Strongly expressed in the most differentiated epidermal layers, LEKTI is a serine protease inhibitor synthesized as three different high-molecular-weight precursors, which are rapidly processed into shorter fragments and secreted extracellularly. LEKTI polypeptides interact with several proteases to regulate skin barrier homeostasis as well as inflammatory and/or immunoallergic responses. Here, by combining antibody mapping, N-terminal sequencing, and site-specific mutagenesis, we defined the amino-acid sequence of most of the LEKTI polypeptides physiologically generated in human epidermis. We also identified three processing intermediates not described so far. Hence, a proteolytic cascade model for LEKTI activation is proposed. We then pinpointed the most effective fragments against the desquamation-related kallikreins (KLKs) and we proved that LEKTI is involved in stratum corneum shedding as some of its polypeptides inhibit the KLK-mediated proteolysis of desmoglein-1. Finally, we quantified the individual LEKTI fragments in the uppermost epidermis, showing that the ratios between LEKTI polypeptides and active KLK5 are compatible with a fine-tuned inhibition. These findings are relevant both to the understanding of skin homeostasis regulation and to the design of novel therapeutic strategies for NS.
Collapse
Affiliation(s)
- Paola Fortugno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
148
|
Kantyka T, Fischer J, Wu Z, Declercq W, Reiss K, Schröder JM, Meyer-Hoffert U. Inhibition of kallikrein-related peptidases by the serine protease inhibitor of Kazal-type 6. Peptides 2011; 32:1187-92. [PMID: 21439340 DOI: 10.1016/j.peptides.2011.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 11/16/2022]
Abstract
Kallikrein-related peptidases (KLKs) are a group of serine proteases, expressed in several tissues. Their activity is regulated by inhibitors including members of the serine protease of Kazal-type (SPINK) family. Recently, we discovered that SPINK6 is expressed in human skin and inhibits KLK5, KLK7, KLK14 but not KLK8. In this study we tested whether SPINK6 inhibits other members of the KLK family and caspase-14. Using chromogenic substrates, SPINK6 exhibited inhibitory activity against KLK12 and KLK13 with K(i) around 1nM, KLK4 with K(i)=27.3nM, KLK6 with K(i)=140nM, caspase-14 with a K(i) approximating 1μM and no activity against KLK1, KLK3 and KLK11. Taken together, SPINK6 is a potent inhibitor of distinct KLKs members.
Collapse
Affiliation(s)
- Tomasz Kantyka
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstr. 7, D-24105 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
149
|
Tanaka RJ, Ono M, Harrington HA. Skin barrier homeostasis in atopic dermatitis: feedback regulation of kallikrein activity. PLoS One 2011; 6:e19895. [PMID: 21647431 PMCID: PMC3102059 DOI: 10.1371/journal.pone.0019895] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 04/14/2011] [Indexed: 01/09/2023] Open
Abstract
Atopic dermatitis (AD) is a widely spread cutaneous chronic disease characterised by sensitive reactions (eg. eczema) to normally innocuous elements. Although relatively little is understood about its underlying mechanisms due to its complexity, skin barrier dysfunction has been recognised as a key factor in the development of AD. Skin barrier homeostasis requires tight control of the activity of proteases, called kallikreins (KLKs), whose activity is regulated by a complex network of protein interactions that remains poorly understood despite its pathological importance. Characteristic symptoms of AD include the outbreak of inflammation triggered by external (eg. mechanical and chemical) stimulus and the persistence and aggravation of inflammation even if the initial stimulus disappears. These characteristic symptoms, together with some experimental data, suggest the presence of positive feedback regulation for KLK activity by inflammatory signals. We developed simple mathematical models for the KLK activation system to study the effects of feedback loops and carried out bifurcation analysis to investigate the model behaviours corresponding to inflammation caused by external stimulus. The model analysis confirmed that the hypothesised core model mechanisms capture the essence of inflammation outbreak by a defective skin barrier. Our models predicted the outbreaks of inflammation at weaker stimulus and its longer persistence in AD patients compared to healthy control. We also proposed a novel quantitative indicator for inflammation level by applying principal component analysis to microarray data. The model analysis reproduced qualitative AD characteristics revealed by this indicator. Our results strongly implicate the presence and importance of feedback mechanisms in KLK activity regulation. We further proposed future experiments that may provide informative data to enhance the system-level understanding on the regulatory mechanisms of skin barrier in AD and healthy individuals.
Collapse
Affiliation(s)
- Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
150
|
Zhao LP, Di Z, Zhang L, Wang L, Ma L, Lv Y, Hong Y, Wei H, Chen HD, Gao XH. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol 2011; 26:572-7. [PMID: 21585560 DOI: 10.1111/j.1468-3083.2011.04120.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Defect in the SPINK5 gene is known to be implicated in Netherton syndrome (NS), and has been suggested to be a locus predisposing to atopy in general. Coding polymorphisms in SPINK5 exons 13, 14 and 26 have been reported to be associated with atopic dermatitis (AD), asthma and high level of IgE. OBJECTIVES To examine whether the SPINK5 gene polymorphisms are associated with AD in Northeast China, and to assess how variants influence selected phenotypic traits. METHODS A case-control study was conducted on four non-synonymous polymorphisms in the coding region of SPINK5 in AD and controls. The SPINK5 gene polymorphisms were analyzed using the PCR and RFLP methods. RESULTS For the four non-synonymous SNPs, A1103G(Asn368Ser), G1156A(Asp386Asn), G1258A(Glu420Lys), G2475T(Glu825Asp) in SPINK5, the allelic frequencies in the AD cohort were 0.55 for 1103G, 0.57 for 1156A, 0.54for 1258A, 0.62 for 2475T, consistent with those already published in the original British and Japanese cohorts. The T allele of SNP 2475G > T was found to be significantly associated with AD. There were significant differences in genotype frequencies for G1258A(Glu420Lys) and G2475T(Glu825Asp) but not for A1103G(Asn368Ser) and G1156A(Asp386Asn). Genotypes GA(420Glu/Lys), TT (2475Asp/Asp) and GT(2475Glu/Asp) were significantly more frequent in AD. However, the SPINK5 gene polymorphisms was found not to be associated with AD in regard to either serum IgE levels, concurrent allergic asthma or early onset of AD. CONCLUSIONS Our study confirms the association between SPINK5 and AD.
Collapse
Affiliation(s)
- L P Zhao
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|