101
|
Sutter M, Wilson SC, Deutsch S, Kerfeld CA. Two new high-resolution crystal structures of carboxysome pentamer proteins reveal high structural conservation of CcmL orthologs among distantly related cyanobacterial species. PHOTOSYNTHESIS RESEARCH 2013; 118:9-16. [PMID: 23949415 DOI: 10.1007/s11120-013-9909-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/01/2013] [Indexed: 06/02/2023]
Abstract
Cyanobacteria have evolved a unique carbon fixation organelle known as the carboxysome that compartmentalizes the enzymes RuBisCO and carbonic anhydrase. This effectively increases the local CO2 concentration at the active site of RuBisCO and decreases its relatively unproductive side reaction with oxygen. Carboxysomes consist of a protein shell composed of hexameric and pentameric proteins arranged in icosahedral symmetry. Facets composed of hexameric proteins are connected at the vertices by pentameric proteins. Structurally homologous pentamers and hexamers are also found in heterotrophic bacteria where they form architecturally related microcompartments such as the Eut and Pdu organelles for the metabolism of ethanolamine and propanediol, respectively. Here we describe two new high-resolution structures of the pentameric shell protein CcmL from the cyanobacteria Thermosynechococcus elongatus and Gloeobacter violaceus and provide detailed analysis of their characteristics and comparison with related shell proteins.
Collapse
Affiliation(s)
- Markus Sutter
- United States Department of Energy - Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | | | | |
Collapse
|
102
|
Ferrer-Miralles N, Rodríguez-Carmona E, Corchero JL, García-Fruitós E, Vázquez E, Villaverde A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit Rev Biotechnol 2013; 35:209-21. [DOI: 10.3109/07388551.2013.833163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
103
|
Rae BD, Long BM, Badger MR, Price GD. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 2013; 77:357-79. [PMID: 24006469 PMCID: PMC3811607 DOI: 10.1128/mmbr.00061-12] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are the globally dominant photoautotrophic lineage. Their success is dependent on a set of adaptations collectively termed the CO2-concentrating mechanism (CCM). The purpose of the CCM is to support effective CO2 fixation by enhancing the chemical conditions in the vicinity of the primary CO2-fixing enzyme, D-ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to promote the carboxylase reaction and suppress the oxygenase reaction. In cyanobacteria and some proteobacteria, this is achieved by encapsulation of RubisCO within carboxysomes, which are examples of a group of proteinaceous bodies called bacterial microcompartments. Carboxysomes encapsulate the CO2-fixing enzyme within the selectively permeable protein shell and simultaneously encapsulate a carbonic anhydrase enzyme for CO2 supply from a cytoplasmic bicarbonate pool. These bodies appear to have arisen twice and undergone a process of convergent evolution. While the gross structures of all known carboxysomes are ostensibly very similar, with shared gross features such as a selectively permeable shell layer, each type of carboxysome encapsulates a phyletically distinct form of RubisCO enzyme. Furthermore, the specific proteins forming structures such as the protein shell or the inner RubisCO matrix are not identical between carboxysome types. Each type has evolutionarily distinct forms of the same proteins, as well as proteins that are entirely unrelated to one another. In light of recent developments in the study of carboxysome structure and function, we present this review to summarize the knowledge of the structure and function of both types of carboxysome. We also endeavor to cast light on differing evolutionary trajectories which may have led to the differences observed in extant carboxysomes.
Collapse
Affiliation(s)
- Benjamin D Rae
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
104
|
Yeates TO, Jorda J, Bobik TA. The shells of BMC-type microcompartment organelles in bacteria. J Mol Microbiol Biotechnol 2013; 23:290-9. [PMID: 23920492 DOI: 10.1159/000351347] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacterial microcompartments are large proteinaceous structures that act as metabolic organelles in many bacterial cells. A shell or capsid, which is composed of a few thousand protein subunits, surrounds a series of sequentially acting enzymes and controls the diffusion of substrates and products into and out of the lumen. The carboxysome and the propanediol utilization microcompartment represent two well-studied systems among seven or more distinct types that can be delineated presently. Recent structural studies have highlighted a number of sophisticated mechanisms that underlie the function of bacterial microcompartment shell proteins. This review updates our understanding of bacterial microcompartment shells, how they are assembled, and how they carry out their functions in molecular transport and enzyme organization.
Collapse
Affiliation(s)
- Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Calif. 90095-1569, USA.
| | | | | |
Collapse
|
105
|
Rae BD, Long BM, Whitehead LF, Förster B, Badger MR, Price GD. Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation. J Mol Microbiol Biotechnol 2013; 23:300-7. [PMID: 23920493 DOI: 10.1159/000351342] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carboxysomes are extraordinarily efficient proteinaceous microcompartments that encapsulate the primary CO2-fixing enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) in cyanobacteria and some proteobacteria. These microbodies form part of a CO2-concentrating mechanism (CCM), operating together with active CO2 and HCO3(-) uptake transporters which accumulate HCO3(-) in the cytoplasm of the cell. Cyanobacteria (also known as blue-green algae) are highly productive on a global scale, especially those species from open-ocean niches, which collectively contribute nearly 30% of global net primary fixation. This productivity would not be possible without a CCM which is dependent on carboxysomes. Two evolutionarily distinct forms of carboxysome are evident that encapsulate proteobacterial RuBisCO form-1A or higher-plant RuBisCO form- 1B, respectively. Based partly on RuBisCO phylogeny, the two carboxysome types are known either as α-carboxysomes, found in predominantly oceanic cyanobacteria (α-cyanobacteria) and some proteobacteria, or as β-carboxysomes, found mainly in freshwater/estuarine cyanobacteria (β-cyanobacteria). Both carboxysome types are believed to have evolved in parallel as a consequence of fluctuating atmospheric CO2 levels and evolutionary pressure acting via the poor enzymatic kinetics of RuBisCO. The three-dimensional structures and protein components of each carboxysome type reflect distinct evolutionarily strategies to the same major functions: subcellular compartmentalization and RuBisCO encapsulation, oxygen exclusion, and CO2 concentration and fixation.
Collapse
Affiliation(s)
- Benjamin D Rae
- Division of Plant Science, The Australian National University, Canberra, A.C.T., Australia
| | | | | | | | | | | |
Collapse
|
106
|
Held M, Quin MB, Schmidt-Dannert C. Eut bacterial microcompartments: insights into their function, structure, and bioengineering applications. J Mol Microbiol Biotechnol 2013; 23:308-20. [PMID: 23920494 DOI: 10.1159/000351343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacterial microcompartments (BMCs) are protein-based polyhedral organelles which serve to encapsulate and organize enzymes involved in key metabolic pathways. The sequestration of these pathways not only improves the overall reaction efficiency; it can also harbor toxic or volatile pathway intermediates, which would otherwise be detrimental to the cell. Genomic and phylogenetic analyses reveal the presence of these unique organelles in a diverse range of bacterial species, highlighting their evolutionary importance and the essential role that they play in bacterial cell survival. Functional and structural analyses of BMCs involved in ethanolamine utilization are developing our understanding of the self-assembly and encapsulation mechanisms employed by these protein supercomplexes. This knowledge will open up exciting new avenues of research with a range of potential engineering and biotechnological applications.
Collapse
Affiliation(s)
- Mark Held
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minn., USA
| | | | | |
Collapse
|
107
|
Price GD, Pengelly JJL, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:753-68. [PMID: 23028015 DOI: 10.1093/jxb/ers257] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Crop yields need to nearly double over the next 35 years to keep pace with projected population growth. Improving photosynthesis, via a range of genetic engineering strategies, has been identified as a promising target for crop improvement with regard to increased photosynthetic yield and better water-use efficiency (WUE). One approach is based on integrating components of the highly efficient CO(2)-concentrating mechanism (CCM) present in cyanobacteria (blue-green algae) into the chloroplasts of key C(3) crop plants, particularly wheat and rice. Four progressive phases towards engineering components of the cyanobacterial CCM into C(3) species can be envisaged. The first phase (1a), and simplest, is to consider the transplantation of cyanobacterial bicarbonate transporters to C(3) chloroplasts, by host genomic expression and chloroplast targeting, to raise CO(2) levels in the chloroplast and provide a significant improvement in photosynthetic performance. Mathematical modelling indicates that improvements in photosynthesis as high as 28% could be achieved by introducing both of the single-gene, cyanobacterial bicarbonate transporters, known as BicA and SbtA, into C(3) plant chloroplasts. Part of the first phase (1b) includes the more challenging integration of a functional cyanobacterial carboxysome into the chloroplast by chloroplast genome transformation. The later three phases would be progressively more elaborate, taking longer to engineer other functional components of the cyanobacterial CCM into the chloroplast, and targeting photosynthetic and WUE efficiencies typical of C(4) photosynthesis. These later stages would include the addition of NDH-1-type CO(2) pumps and suppression of carbonic anhydrase and C(3) Rubisco in the chloroplast stroma. We include a score card for assessing the success of physiological modifications gained in phase 1a.
Collapse
Affiliation(s)
- G Dean Price
- Molecular Plant Physiology Cluster, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Meyer M, Griffiths H. Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:769-86. [PMID: 23345319 DOI: 10.1093/jxb/ers390] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The importance of the eukaryotic algal CO(2)-concentrating mechanism (CCM) is considered in terms of global productivity as well as molecular phylogeny and diversity. The three major constituents comprising the CCM in the majority of eukaryotes are described. These include: (i) likely plasma- and chloroplast-membrane inorganic carbon transporters; (ii) a suite of carbonic anhydrase enzymes in strategic locations; and usually (iii) a microcompartment in which most Rubisco aggregates (the chloroplast pyrenoid). The molecular diversity of known CCM components are set against the current green algal model for their probable operation. The review then focuses on the kinetic and cystallographic interactions of Rubisco, which permit pyrenoid formation and CCM function. Firstly, we consider observations that surface residues of the Rubisco small subunit directly condition Rubisco aggregation and pyrenoid formation. Secondly, we reanalyse the phylogenetic progression in green Rubisco kinetic properties, and suggest that Rubisco substrate selectivity (the specificity factor, S(rel), and affinity for CO(2), K(c)) demonstrate a systematic relaxation, which directly relates to the origins and effectiveness of a CCM. Finally, we consider the implications of eukaryotic CCM regulation and minimum components needed for introduction into higher plants as a possible means to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Moritz Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | |
Collapse
|
109
|
Zarzycki J, Axen SD, Kinney JN, Kerfeld CA. Cyanobacterial-based approaches to improving photosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:787-98. [PMID: 23095996 DOI: 10.1093/jxb/ers294] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants rely on the Calvin-Benson (CB) cycle for CO(2) fixation. The key carboxylase of the CB cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Efforts to enhance carbon fixation in plants have traditionally focused on RubisCO or on approaches that can help to remedy RubisCO's undesirable traits: its low catalytic efficiency and photorespiration. Towards reaching the goal of improving plant photosynthesis, cyanobacteria may be instrumental. Because of their evolutionary relationship to chloroplasts, they represent ideal model organisms for photosynthesis research. Furthermore, the molecular understanding of cyanobacterial carbon fixation provides a rich source of strategies that can be exploited for the bioengineering of chloroplasts. These strategies include the cyanobacterial carbon concentrating mechanism (CCM), which consists of active and passive transporter systems for inorganic carbon and a specialized organelle, the carboxysome. The carboxysome encapsulates RubisCO together with carbonic anhydrase in a protein shell, resulting in an elevated CO(2) concentration around RubisCO. Moreover, cyanobacteria differ from plants in the isoenzymes involved in the CB cycle and the photorespiratory pathways as well as in mechanisms that can affect the activity of RubisCO. In addition, newly available cyanobacterial genome sequence data from the CyanoGEBA project, which has more than doubled the amount of genomic information available for cyanobacteria, increases our knowledge on the CCM and the occurrence and distribution of genes of interest.
Collapse
Affiliation(s)
- Jan Zarzycki
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | | | | | | |
Collapse
|
110
|
Kim EY, Tullman-Ercek D. Engineering nanoscale protein compartments for synthetic organelles. Curr Opin Biotechnol 2012; 24:627-32. [PMID: 23273660 DOI: 10.1016/j.copbio.2012.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 01/05/2023]
Abstract
Advances in metabolic engineering have given rise to the biological production of novel fuels and chemicals, but yields are often low without significant optimization. One generalizable solution is to create a specialized organelle for the sequestration of engineered metabolic pathways. Bacterial microcompartments are an excellent scaffold for such an organelle. These compartments consist of a porous protein shell that encapsulates enzymes. To repurpose these structures, researchers have begun to determine how the protein shell is assembled, how pores may be used to control small molecule transport across the protein shell, and how to target heterologous enzymes to the compartment interior. With these advances, it will soon be possible to use engineered forms of these protein shells to create designer organelles.
Collapse
Affiliation(s)
- Edward Y Kim
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, CA 94720, United States
| | | |
Collapse
|
111
|
Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc Natl Acad Sci U S A 2012; 109:14995-5000. [PMID: 22927404 DOI: 10.1073/pnas.1207516109] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial microcompartments (MCPs) are a widespread family of proteinaceous organelles that consist of metabolic enzymes encapsulated within a protein shell. For MCPs to function specific enzymes must be encapsulated. We recently reported that a short N-terminal targeting sequence of propionaldehyde dehydrogenase (PduP) is necessary and sufficient for the packaging of enzymes into a MCP that functions in 1,2-propanediol (1,2-PD) utilization (Pdu) by Salmonella enterica. Here we show that encapsulation is mediated by binding of the PduP targeting sequence to a short C-terminal helix of the PduA shell protein. In vitro studies indicated binding between PduP and PduA (and PduJ) but not other MCP shell proteins. Alanine scanning mutagenesis determined that the key residues involved in binding are E7, I10, and L14 of PduP and H81, V84, and L88 of PduA. In vivo targeting studies indicated that the binding between the N terminus of PduP and the C terminus of PduA is critical for encapsulation of PduP within the Pdu MCP. Structural models suggest that the N terminus of PduP and C terminus of PduA both form helical structures that bind one another via the key residues identified by mutagenesis. Cumulatively, these results show that the N-terminal targeting sequence of PduP promotes its encapsulation by binding to MCP shell proteins. This is a unique report determining the mechanism by which a MCP targeting sequence functions. We propose that specific interactions between the termini of shell proteins and lumen enzymes have general importance for guiding the assembly and the higher level organization of bacterial MCPs.
Collapse
|
112
|
Rae BD, Long BM, Badger MR, Price GD. Structural determinants of the outer shell of β-carboxysomes in Synechococcus elongatus PCC 7942: roles for CcmK2, K3-K4, CcmO, and CcmL. PLoS One 2012; 7:e43871. [PMID: 22928045 PMCID: PMC3425506 DOI: 10.1371/journal.pone.0043871] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/27/2012] [Indexed: 02/02/2023] Open
Abstract
Cyanobacterial CO(2)-fixation is supported by a CO(2)-concentrating mechanism which improves photosynthesis by saturating the primary carboxylating enzyme, ribulose 1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), with its preferred substrate CO(2). The site of CO(2)-concentration is a protein bound micro-compartment called the carboxysome which contains most, if not all, of the cellular RuBisCO. The shell of β-type carboxysomes is thought to be composed of two functional layers, with the inner layer involved in RuBisCO scaffolding and bicarbonate dehydration, and the outer layer in selective permeability to dissolved solutes. Here, four genes (ccmK2-4, ccmO), whose products were predicted to function in the outer shell layer of β-carboxysomes from Synechococcus elongatus PCC 7942, were investigated by analysis of defined genetic mutants. Deletion of the ccmK2 and ccmO genes resulted in severe high-CO(2)-requiring mutants with aberrant carboxysomes, whilst deletion of ccmK3 or ccmK4 resulted in cells with wild-type physiology and normal ultrastructure. However, a tandem deletion of ccmK3-4 resulted in cells with wild-type carboxysome structure, but physiologically deficient at low CO(2) conditions. These results revealed the minimum structural determinants of the outer shell of β-carboxysomes from this strain: CcmK2, CcmO and CcmL. An accessory set of proteins was required to refine the function of the pre-existing shell: CcmK3 and CcmK4. These data suggested a model for the facet structure of β-carboxysomes with CcmL forming the vertices, CcmK2 forming the bulk facet, and CcmO, a "zipper protein," interfacing the edges of carboxysome facets.
Collapse
Affiliation(s)
- Benjamin D. Rae
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Benedict M. Long
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Murray R. Badger
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - G. Dean Price
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
113
|
A dodecameric CcmK2 structure suggests β-carboxysomal shell facets have a double-layered organization. Structure 2012; 20:1353-62. [PMID: 22748766 DOI: 10.1016/j.str.2012.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/30/2012] [Accepted: 05/04/2012] [Indexed: 01/28/2023]
Abstract
Cyanobacteria fix carbon within carboxysomes. Here, RubisCO and carbonic anhydrase are coencapsulated within a semipermeable protein shell built from paralogs of the CcmK proteins. Crystal packing patterns suggest that the shell facets may be built as a single layer of CcmK molecules tiled hexagonally in a continuous sheet. We used fluorescence resonance energy transfer (FRET) to measure interactions mediated by CcmK paralogs from Thermosynechococcus elongatus. CcmK2-an abundant, universally present paralog-shows uniquely strong self-interactions. The CcmK2 structure reveals a back-to-back dodecameric organization, with interactions mediated by a helix comprised of residues 95-101. Modeling indicates that this dodecameric interaction could seamlessly fuse two sheets into a double-layered shell. This model predicts several aspects of CcmK2 interactions, including the attenuation of FRET by Glu95Ala variants at the dodecameric interface. This model also accurately predicts the observed shell thickness, implying that the β-carboxysome shell is most likely organized as a double layer.
Collapse
|
114
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
115
|
Kinney JN, Salmeen A, Cai F, Kerfeld CA. Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 2012; 287:17729-17736. [PMID: 22461622 DOI: 10.1074/jbc.m112.355305] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial microcompartments are organelles composed of a protein shell that surrounds functionally related proteins. Bioinformatic analysis of sequenced genomes indicates that homologs to shell protein genes are widespread among bacteria and suggests that the shell proteins are capable of encapsulating diverse enzymes. The carboxysome is a bacterial microcompartment that enhances CO(2) fixation in cyanobacteria and some chemoautotrophs by sequestering ribulose-1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase in the microcompartment shell. Here, we report the in vitro and in vivo characterization of CcmN, a protein of previously unknown function that is absolutely conserved in β-carboxysomal gene clusters. We show that CcmN localizes to the carboxysome and is essential for carboxysome biogenesis. CcmN has two functionally distinct regions separated by a poorly conserved linker. The N-terminal portion of the protein is important for interaction with CcmM and, by extension, ribulose-1,5-bisphosphate carboxylase/oxygenase and the carbonic anhydrase CcaA, whereas the C-terminal peptide is essential for interaction with the carboxysome shell. Deletion of the peptide abolishes carboxysome formation, indicating that its interaction with the shell is an essential step in microcompartment formation. Peptides with similar length and sequence properties to those in CcmN can be bioinformatically detected in a large number of diverse proteins proposed to be encapsulated in functionally distinct microcompartments, suggesting that this peptide and its interaction with its cognate shell proteins are common features of microcompartment assembly.
Collapse
Affiliation(s)
- James N Kinney
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Annette Salmeen
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Fei Cai
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Cheryl A Kerfeld
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720; Department of Plant and Microbial Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
116
|
Abstract
Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO(2)-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO(2). Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO(2) in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures.
Collapse
|
117
|
Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes. Microb Cell Fact 2011; 10:92. [PMID: 22046962 PMCID: PMC3247854 DOI: 10.1186/1475-2859-10-92] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/03/2011] [Indexed: 12/23/2022] Open
Abstract
Many bacterial species contain intracellular nano- and micro-compartments consisting of self-assembling proteins that form protein-only shells. These structures are built up by combinations of a reduced number of repeated elements, from 60 repeated copies of one unique structural element self-assembled in encapsulins of 24 nm to 10,000-20,000 copies of a few protein species assembled in a organelle of around 100-150 nm in cross-section. However, this apparent simplicity does not correspond to the structural and functional sophistication of some of these organelles. They package, by not yet definitely solved mechanisms, one or more enzymes involved in specific metabolic pathways, confining such reactions and sequestering or increasing the inner concentration of unstable, toxics or volatile intermediate metabolites. From a biotechnological point of view, we can use the self assembling properties of these particles for directing shell assembling and enzyme packaging, mimicking nature to design new applications in biotechnology. Upon appropriate engineering of the building blocks, they could act as a new family of self-assembled, protein-based vehicles in Nanomedicine to encapsulate, target and deliver therapeutic cargoes to specific cell types and/or tissues. This would provide a new, intriguing platform of microbial origin for drug delivery.
Collapse
|
118
|
Long BM, Rae BD, Badger MR, Price GD. Over-expression of the β-carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content. PHOTOSYNTHESIS RESEARCH 2011; 109:33-45. [PMID: 21597987 DOI: 10.1007/s11120-011-9659-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 04/22/2011] [Indexed: 05/19/2023]
Abstract
Carboxysomes, containing the cell's complement of RuBisCO surrounded by a specialized protein shell, are a central component of the cyanobacterial CO(2)-concentrating mechanism. The ratio of two forms of the β-carboxysomal protein CcmM (M58 and M35) may affect the carboxysomal carbonic anhydrase (CcaA) content. We have over-expressed both M35 and M58 in the β-cyanobacterium Synechococcus PCC7942. Over-expression of M58 resulted in a marked increase in the amount of this protein in carboxysomes at the expense of M35, with a concomitant increase in the observed CcaA content of carboxysomes. Conversely, M35 over-expression diminished M58 content of carboxysomes and led to a decrease in CcaA content. Carboxysomes of air-grown wild-type cells contained slightly elevated CcaA and M58 content and slightly lower M35 content compared to their 2% CO(2)-grown counterparts. Over a range of CcmM expression levels, there was a strong correlation between M58 and CcaA content, indicating a constant carboxysomal M58:CcaA stoichiometry. These results also confirm a role for M58 in the recruitment of CcaA into the carboxysome and suggest a tight regulation of M35 and M58 translation is required to produce carboxysomes with an appropriate CA content. Analysis of carboxysomal protein ratios, resulting from the afore-mentioned over-expression studies, revealed that β-carboxysomal protein stoichiometries are relatively flexible. Determination of absolute protein quantities supports the hypothesis that M35 is distributed throughout the β-carboxysome. A modified β-carboxysome packing model is presented.
Collapse
Affiliation(s)
- Benedict M Long
- Molecular Plant Physiology, Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
119
|
Espie GS, Kimber MS. Carboxysomes: cyanobacterial RubisCO comes in small packages. PHOTOSYNTHESIS RESEARCH 2011; 109:7-20. [PMID: 21556873 DOI: 10.1007/s11120-011-9656-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/07/2011] [Indexed: 05/19/2023]
Abstract
Cyanobacteria (as well as many chemoautotrophs) actively pump inorganic carbon (in the form of HCO(3)(-)) into the cytosol in order to enhance the overall efficiency of carbon fixation. The success of this approach is dependent upon the presence of carboxysomes-large, polyhedral, cytosolic bodies which sequester ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and carbonic anhydrase. Carboxysomes seem to function by allowing ready passage of HCO(3)(-) into the body, but hindering the escape of evolved CO(2), promoting the accumulation of CO(2) in the vicinity of RubisCO and, consequently, efficient carbon fixation. This selectivity is mediated by a thin shell of protein, which envelops the carboxysome's enzymatic core and uses narrow pores to control the passage of small molecules. In this review, we summarize recent advances in understanding the organization and functioning of these intriguing, and ecologically very important molecular machines.
Collapse
Affiliation(s)
- George S Espie
- Department of Cell and Systems Biology, University of Toronto, Mississauga, ON, Canada.
| | | |
Collapse
|
120
|
Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. PHOTOSYNTHESIS RESEARCH 2011; 109:205-21. [PMID: 21365259 DOI: 10.1007/s11120-011-9634-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 02/13/2011] [Indexed: 05/12/2023]
Abstract
It is believed that intracellular carbonic anhydrases (CAs) are essential components of carbon concentrating mechanisms in microalgae. In this study, putative CA-encoding genes were identified in the genome sequences of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Subsequently, the subcellular localizations of the encoded proteins were determined. Nine and thirteen CA sequences were found in the genomes of P. tricornutum and T. pseudonana, respectively. Two of the β-CA genes in P. tricornutum corresponded to ptca1 and ptca2 identified previously. Immunostaining transmission electron microscopy of a PtCA1:YFP fusion expressed in the cells of P. tricornutum clearly showed the localization of PtCA1 within the central part of the pyrenoid structure in the chloroplast. Besides these two β-CA genes, P. tricornutum likely contains five α- and two γ-CA genes, whereas T. pseudonana has three α-, five γ-, four δ-, and one ζ-CA genes. Semi-quantitative reverse transcription PCR performed on mRNA from the two diatoms grown in changing light and CO(2) conditions revealed that levels of six putative α- and γ-CA mRNAs in P. tricornutum did not change between cells grown in air-level CO(2) and 5% CO(2). However, mRNA levels of one putative α-CA gene, CA-VII in P. tricornutum, were reduced in the dark compared to that in the light. In T. pseudonana, mRNA accumulation levels of putative α-CA (CA-1), ζ-CA (CA-3) and δ-CA (CA-7) were analyzed and all levels found to be significantly reduced when cells were grown in 0.16% CO(2). Intercellular localizations of eight putative CAs were analyzed by expressing GFP fusion in P. tricornutum and T. pseudonana. In P. tricornutum, CA-I and II localized in the periplastidial compartment, CA-III, VI, VII were found in the chloroplast endoplasmic reticulum, and CA-VIII was localized in the mitochondria. On the other hand, T. pseudonana CA-1 localized in the stroma and CA-3 was found in the periplasm. These results suggest that CAs are constitutively present in the four chloroplastic membrane systems in P. tricornutum and that CO(2) responsive CAs occur in the pyrenoid of P. tricornutum, and in the stroma and periplasm of T. pseudonana.
Collapse
Affiliation(s)
- Masaaki Tachibana
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University,Sanda, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
121
|
Kinney JN, Axen SD, Kerfeld CA. Comparative analysis of carboxysome shell proteins. PHOTOSYNTHESIS RESEARCH 2011; 109:21-32. [PMID: 21279737 PMCID: PMC3173617 DOI: 10.1007/s11120-011-9624-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/07/2011] [Indexed: 05/19/2023]
Abstract
Carboxysomes are metabolic modules for CO(2) fixation that are found in all cyanobacteria and some chemoautotrophic bacteria. They comprise a semi-permeable proteinaceous shell that encapsulates ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. Structural studies are revealing the integral role of the shell protein paralogs to carboxysome form and function. The shell proteins are composed of two domain classes: those with the bacterial microcompartment (BMC; Pfam00936) domain, which oligomerize to form (pseudo)hexamers, and those with the CcmL/EutN (Pfam03319) domain which form pentamers in carboxysomes. These two shell protein types are proposed to be the basis for the carboxysome's icosahedral geometry. The shell proteins are also thought to allow the flux of metabolites across the shell through the presence of the small pore formed by their hexameric/pentameric symmetry axes. In this review, we describe bioinformatic and structural analyses that highlight the important primary, tertiary, and quaternary structural features of these conserved shell subunits. In the future, further understanding of these molecular building blocks may provide the basis for enhancing CO(2) fixation in other organisms or creating novel biological nanostructures.
Collapse
Affiliation(s)
- James N. Kinney
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Seth D. Axen
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Cheryl A. Kerfeld
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
122
|
The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. J Bacteriol 2011; 193:5623-8. [PMID: 21821773 DOI: 10.1128/jb.05661-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica produces a proteinaceous microcompartment for B(12)-dependent 1,2-propanediol utilization (Pdu MCP). The Pdu MCP consists of catabolic enzymes encased within a protein shell, and its function is to sequester propionaldehyde, a toxic intermediate of 1,2-propanediol degradation. We report here that a short N-terminal region of the medium subunit (PduD) is required for packaging the coenzyme B(12)-dependent diol dehydratase (PduCDE) into the lumen of the Pdu MCP. Analysis of soluble cell extracts and purified MCPs by Western blotting showed that the PduD subunit mediated packaging of itself and other subunits of diol dehydratase (PduC and PduE) into the Pdu MCP. Deletion of 35 amino acids from the N terminus of PduD significantly impaired the packaging of PduCDE with minimal effects on its enzyme activity. Western blotting showed that fusing the 18 N-terminal amino acids of PduD to green fluorescent protein or glutathione S-transferase resulted in the association of these fusion proteins with the MCP. Immunoprecipitation tests indicated that the fusion proteins were encapsulated inside the MCP shell.
Collapse
|
123
|
Yeates TO, Thompson MC, Bobik TA. The protein shells of bacterial microcompartment organelles. Curr Opin Struct Biol 2011; 21:223-31. [PMID: 21315581 PMCID: PMC3070793 DOI: 10.1016/j.sbi.2011.01.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/07/2011] [Accepted: 01/19/2011] [Indexed: 01/27/2023]
Abstract
Details are emerging on the structure and function of a remarkable class of capsid-like protein assemblies that serve as simple metabolic organelles in many bacteria. These bacterial microcompartments consist of a few thousand shell proteins, which encapsulate two or more sequentially acting enzymes in order to enhance or sequester certain metabolic pathways, particularly those involving toxic or volatile intermediates. Genomic data indicate that bacterial microcompartment shell proteins are present in a wide range of bacterial species, where they encapsulate varied reactions. Crystal structures of numerous shell proteins from distinct types of microcompartments have provided keys for understanding how the shells are assembled and how they conduct molecular transport into and out of microcompartments. The structural data emphasize a high level of mechanistic sophistication in the protein shell, and point the way for further studies on this fascinating but poorly appreciated class of subcellular structures.
Collapse
Affiliation(s)
- Todd O Yeates
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA, USA.
| | | | | |
Collapse
|
124
|
Price GD, Badger MR, von Caemmerer S. The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. PLANT PHYSIOLOGY 2011; 155:20-6. [PMID: 20923885 PMCID: PMC3075752 DOI: 10.1104/pp.110.164681] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 09/30/2010] [Indexed: 05/18/2023]
Affiliation(s)
- G Dean Price
- Molecular Plant Physiology Cluster, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | |
Collapse
|
125
|
Tsai SJ, Yeates TO. Bacterial microcompartments insights into the structure, mechanism, and engineering applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:1-20. [PMID: 21999993 DOI: 10.1016/b978-0-12-415906-8.00008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacterial microcompartments are large supramolecular assemblies, resembling viruses in size and shape, found inside many bacterial cells. A protein-based shell encapsulates a series of sequentially acting enzymes in order to sequester certain sensitive metabolic processes within the cell. Crystal structures of the individual shell proteins have revealed details about how they self-assemble and how pores through their centers facilitate molecular transport into and out of the microcompartments. Biochemical and genetic studies have shown that enzymes are directed to the interior in some cases by special targeting sequences in their termini. Together, these findings open up prospects for engineering bacterial microcompartments with novel functionalities for applications ranging from metabolic engineering to targeted drug delivery.
Collapse
Affiliation(s)
- Sophia J Tsai
- UCLA Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| | | |
Collapse
|
126
|
Domingo-Espín J, Unzueta U, Saccardo P, Rodríguez-Carmona E, Corchero JL, Vázquez E, Ferrer-Miralles N. Engineered biological entities for drug delivery and gene therapy protein nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:247-98. [PMID: 22093221 PMCID: PMC7173510 DOI: 10.1016/b978-0-12-416020-0.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of genetic engineering techniques has speeded up the growth of the biotechnological industry, resulting in a significant increase in the number of recombinant protein products on the market. The deep knowledge of protein function, structure, biological interactions, and the possibility to design new polypeptides with desired biological activities have been the main factors involved in the increase of intensive research and preclinical and clinical approaches. Consequently, new biological entities with added value for innovative medicines such as increased stability, improved targeting, and reduced toxicity, among others have been obtained. Proteins are complex nanoparticles with sizes ranging from a few nanometers to a few hundred nanometers when complex supramolecular interactions occur, as for example, in viral capsids. However, even though protein production is a delicate process that imposes the use of sophisticated analytical methods and negative secondary effects have been detected in some cases as immune and inflammatory reactions, the great potential of biodegradable and tunable protein nanoparticles indicates that protein-based biotechnological products are expected to increase in the years to come.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Ugutz Unzueta
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Paolo Saccardo
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Escarlata Rodríguez-Carmona
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - José Luís Corchero
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Esther Vázquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| |
Collapse
|
127
|
Mendoza-Hernández G, Pérez-Gómez B, Krogmann DW, Gutiérrez-Cirlos EB, Gómez-Lojero C. Interactions of linker proteins with the phycobiliproteins in the phycobilisome substructures of Gloeobacter violaceus. PHOTOSYNTHESIS RESEARCH 2010; 106:247-261. [PMID: 21136295 DOI: 10.1007/s11120-010-9601-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 11/17/2010] [Indexed: 05/30/2023]
Abstract
Gloeobacter violaceus PCC 7421 is a unicellular oxygenic photosynthetic organism, which precedes the diversification of cyanobacteria in the phylogenetic tree. It is the only cyanobacterium that does not contain internal membranes. The unique structure of the rods of the phycobilisome (PBS), grouped as one bundle of six parallel rods, distinguishes G. violaceus from the other PBS-containing cyanobacteria. It has been proposed that unique multidomain rod-linkers are responsible for this peculiarly organized shape. However, the localization of the multidomain linkers Glr1262 and Glr2806 in the PBS-rods remains controversial (Koyama et al. 2006, FEBS Lett 580:3457-3461; Krogmann et al. 2007, Photosynth Res 93:27-43). To further increase our understanding of the structure of the G. violaceus PBS, the identification of the proteins present in fractions obtained from sucrose gradient centrifugation and from native electrophoresis of partially dissociated PBS was conducted. The identification of the proteins, after electrophoresis, was done by spectrophotometry and mass spectrometry. The results support the localization of the multidomain linkers as previously proposed by us. The Glr1262 (92 kDa) linker protein was found to be the rod-core linker L(RC) (92), and Glr2806 (81 kDa), a special rod linker L(R) (81) that joins six disks of hexameric PC. Consequently, we propose to designate glr1262 as gene cpcGm (encoding L(RC) (92)) and glr2806 as gene cpcJm (encoding L(R) (81)). We also propose that the cpeC (glr1263) gene encoding L(R) (31.8) forms the interface that binds PC to PE.
Collapse
|
128
|
Long BM, Tucker L, Badger MR, Price GD. Functional cyanobacterial beta-carboxysomes have an absolute requirement for both long and short forms of the CcmM protein. PLANT PHYSIOLOGY 2010; 153:285-93. [PMID: 20304968 PMCID: PMC2862411 DOI: 10.1104/pp.110.154948] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/15/2010] [Indexed: 05/19/2023]
Abstract
Carboxysomes are an essential part of the cyanobacterial CO2-concentrating mechanism, consisting of a protein shell and an interior of Rubisco. The beta-carboxysome shell protein CcmM forms two peptides via a proposed internal ribosomal entry site (IRES) within the ccmM transcript in Synechococcus PCC7942. The abundant short form (35 kD, M35) consists of Rubisco small subunit-like repeats and binds Rubisco. The lower abundance long form (58 kD, M58) also contains a gamma-carbonic anhydrase-like domain, which binds the carboxysomal carbonic anhydrase, CcaA. We examined whether these CcmM forms arise via an IRES or by other means. Mutations of a putative internal start codon (GTG) and Shine-Dalgarno sequence within ccmM, along with a gene coding for M35 alone, were examined in the high-CO2-requiring (HCR) carboxysomeless mutant, DeltaccmM. Expression of wild-type ccmM in DeltaccmM restored the wild-type phenotype, while mutation of putative start and Shine-Dalgarno sequences led to as much as 20-fold reduction in M35 content with no recovery from HCR phenotype. These cells also contained small electron-dense structures. Cells producing little or no M58, but sufficient M35, were found to contain large electron-dense structures, no CcaA, and had a HCR phenotype. Large subcellular aggregates can therefore form in the absence of M58, suggesting a role for M35 in internal carboxysome Rubisco packing. The results confirm that M35 is independently translated via an IRES within ccmM. Importantly, the data reveal that functional carboxysomes require both M35 and M58 in sufficient quantities and with a minimum stoichiometry of close to 1:1.
Collapse
Affiliation(s)
| | | | | | - G. Dean Price
- Molecular Plant Physiology Group, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
129
|
Addressing microbial organelles: a short peptide directs enzymes to the interior. Proc Natl Acad Sci U S A 2010; 107:7627-8. [PMID: 20400692 DOI: 10.1073/pnas.1003433107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
130
|
Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM. Proc Natl Acad Sci U S A 2010; 107:2455-60. [PMID: 20133749 DOI: 10.1073/pnas.0910866107] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO(2) by carbonic anhydrase (CA) prior to fixation. Paradoxically, many beta-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal beta-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to gamma-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA-the first catalytically active bacterial gamma-CA reported. The 2.0 A structure of CcmM209 reveals a trimeric, left-handed beta-helix structure that closely resembles Cam, except that residues 198-207 form a third alpha-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 A structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the beta-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.
Collapse
|
131
|
Abstract
Some bacteria contain organelles or microcompartments consisting of a large virion-like protein shell encapsulating sequentially acting enzymes. These organized microcompartments serve to enhance or protect key metabolic pathways inside the cell. The variety of bacterial microcompartments provide diverse metabolic functions, ranging from CO(2) fixation to the degradation of small organic molecules. Yet they share an evolutionarily related shell, which is defined by a conserved protein domain that is widely distributed across the bacterial kingdom. Structural studies on a number of these bacterial microcompartment shell proteins are illuminating the architecture of the shell and highlighting its critical role in controlling molecular transport into and out of microcompartments. Current structural, evolutionary, and mechanistic ideas are discussed, along with genomic studies for exploring the function and diversity of this family of bacterial organelles.
Collapse
Affiliation(s)
- Todd O Yeates
- Department of Chemistry and Biochemistry, Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
132
|
Organization, structure, and assembly of alpha-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol 2009; 396:105-17. [PMID: 19925807 DOI: 10.1016/j.jmb.2009.11.019] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 12/31/2022]
Abstract
Carboxysomes are polyhedral inclusion bodies that play a key role in autotrophic metabolism in many bacteria. Using electron cryotomography, we examined carboxysomes in their native states within intact cells of three chemolithoautotrophic bacteria. We found that carboxysomes generally cluster into distinct groups within the cytoplasm, often in the immediate vicinity of polyphosphate granules, and a regular lattice of density frequently connects granules to nearby carboxysomes. Small granular bodies were also seen within carboxysomes. These observations suggest a functional relationship between carboxysomes and polyphosphate granules. Carboxysomes exhibited greater size, shape, and compositional variability in cells than in purified preparations. Finally, we observed carboxysomes in various stages of assembly, as well as filamentous structures that we attribute to misassembled shell protein. Surprisingly, no more than one partial carboxysome was ever observed per cell. Based on these observations, we propose a model for carboxysome assembly in which the shell and the internal RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) lattice form simultaneously, likely guided by specific interactions between shell proteins and RuBisCOs.
Collapse
|
133
|
Cannon GC, Heinhorst S, Kerfeld CA. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:382-92. [PMID: 19818881 DOI: 10.1016/j.bbapap.2009.09.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/08/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO(2) concentrations by employing a CO(2)-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO(2)-fixing enzyme, RubisCO. The efficiency of CO(2) fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO(2). There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.
Collapse
Affiliation(s)
- Gordon C Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA.
| | | | | |
Collapse
|
134
|
Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix. Biochem J 2009; 419:681-8. [PMID: 19200059 DOI: 10.1042/bj20082315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A beta-type carbonic anhydrase, PtCA1, of the marine diatom Phaeodactylum tricornutum was previously shown to be present in the chloroplast as clumped particles on the girdle lamellae. A series of deletions was carried out on the PtCA1 gene, ptca1, at regions encoding N- or C-terminal domains of the mature PtCA1. These deletion constructs were fused with the EGFP [enhanced GFP (green fluorescent protein)] gene, egfp, introduced and expressed in the cells of P. tricornutum. All three types of N-terminal deletions, Delta52-63, Delta64-75 and Delta76-87 relative to the initiation methionine, showed little interference with the particle formation of the PtCA1::GFP fusion protein. Similarly, one of the three types of C-terminal deletions, Delta253-262, was silent. However, the remaining two C-terminal deletions, Delta263-272 and Delta273-282 relative to the initiation methionine, were strongly inhibitory to the particle formation of PtCA1. The C-terminal 263-282 region comprises five hydrophobic amino acids, Met(263), Leu(266), Ile(269), Leu(272) and Leu(275), which were predicted to form a hydrophobic cluster on the C-terminal alpha-helix. Each or all five of these hydrophobic residues were replaced with a hydrophilic residue with a side chain of similar size and structure, glutamate. Particle formations of PtCA1 were moderately inhibited by substitutions of Met(263), Leu(266) and Ile(269) but more evidently by substitutions of Leu(272) and Leu(275). Finally, substitutions of all five hydrophobic residues resulted in an efficient inhibition of particle formation and the GFP signal was totally dispersed throughout the stroma area. These results strongly suggest that the amphipathic C-terminal helix of PtCA1 plays an essential role in the formation of the macromolecular protein complex.
Collapse
|
135
|
Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 2009; 6:681-91. [PMID: 18679172 DOI: 10.1038/nrmicro1913] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many bacteria contain intracellular microcompartments with outer shells that are composed of thousands of protein subunits and interiors that are filled with functionally related enzymes. These microcompartments serve as organelles by sequestering specific metabolic pathways in bacterial cells. The carboxysome, a prototypical bacterial microcompartment that is found in cyanobacteria and some chemoautotrophs, encapsulates ribulose-l,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase, and thereby enhances carbon fixation by elevating the levels of CO2 in the vicinity of RuBisCO. Evolutionarily related, but functionally distinct, microcompartments are present in diverse bacteria. Although bacterial microcompartments were first observed more than 40 years ago, a detailed understanding of how they function is only now beginning to emerge.
Collapse
|
136
|
Tanaka S, Sawaya MR, Phillips M, Yeates TO. Insights from multiple structures of the shell proteins from the beta-carboxysome. Protein Sci 2009; 18:108-20. [PMID: 19177356 PMCID: PMC2708042 DOI: 10.1002/pro.14] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 11/08/2022]
Abstract
Carboxysomes are primitive bacterial organelles that function as a part of a carbon concentrating mechanism (CCM) under conditions where inorganic carbon is limiting. The carboxysome enhances the efficiency of cellular carbon fixation by encapsulating together carbonic anhydrase and the CO(2)-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The carboxysome has a roughly icosahedral shape with an outer shell between 800 and 1500 A in diameter, which is constructed from a few thousand small protein subunits. In the cyanobacterium Synechocystis sp. PCC 6803, the previous structure determination of two homologous shell protein subunits, CcmK2 and CcmK4, elucidated how the outer shell is formed by the tight packing of CcmK hexamers into a molecular layer. Here we describe the crystal structure of the hexameric shell protein CcmK1, along with structures of mutants of both CcmK1 and CcmK2 lacking their sometimes flexible C-terminal tails. Variations in the way hexamers pack into layers are noted, while sulfate ions bound in pores through the layer provide further support for the hypothesis that the pores serve for transport of substrates and products into and out of the carboxysome. One of the new structures provides a high-resolution (1.3 A) framework for subsequent computational studies of molecular transport through the pores. Crystal and solution studies of the C-terminal deletion mutants demonstrate the tendency of the terminal segments to participate in protein--protein interactions, thereby providing a clue as to which side of the molecular layer of hexameric shell proteins is likely to face toward the carboxysome interior.
Collapse
Affiliation(s)
- Shiho Tanaka
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, California
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and ProteomicsLos Angeles, California
| | - Martin Phillips
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, California
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, California
- UCLA-DOE Institute for Genomics and ProteomicsLos Angeles, California
- UCLA Molecular Biology InstituteLos Angeles, California
| |
Collapse
|
137
|
Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA. Bacterial microcompartments: their properties and paradoxes. Bioessays 2008; 30:1084-95. [PMID: 18937343 PMCID: PMC3272490 DOI: 10.1002/bies.20830] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many bacteria conditionally express proteinaceous organelles referred to here as microcompartments (Fig. 1). These microcompartments are thought to be involved in a least seven different metabolic processes and the number is growing. Microcompartments are very large and structurally sophisticated. They are usually about 100-150 nm in cross section and consist of 10,000-20,000 polypeptides of 10-20 types. Their unifying feature is a solid shell constructed from proteins having bacterial microcompartment (BMC) domains. In the examples that have been studied, the microcompartment shell encases sequentially acting metabolic enzymes that catalyze a reaction sequence having a toxic or volatile intermediate product. It is thought that the shell of the microcompartment confines such intermediates, thereby enhancing metabolic efficiency and/or protecting cytoplasmic components. Mechanistically, however, this creates a paradox. How do microcompartments allow enzyme substrates, products and cofactors to pass while confining metabolic intermediates in the absence of a selectively permeable membrane? We suggest that the answer to this paradox may have broad implications with respect to our understanding of the fundamental properties of biological protein sheets including microcompartment shells, S-layers and viral capsids.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | - Yu Liu
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | | | | | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
138
|
Menon BB, Dou Z, Heinhorst S, Shively JM, Cannon GC. Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RubisCO species. PLoS One 2008; 3:e3570. [PMID: 18974784 PMCID: PMC2570492 DOI: 10.1371/journal.pone.0003570] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/09/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The carboxysome is a bacterial microcompartment that consists of a polyhedral protein shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme that catalyzes the first step of CO2 fixation via the Calvin-Benson-Bassham cycle. METHODOLOGY/PRINCIPAL FINDINGS To analyze the role of RubisCO in carboxysome biogenesis in vivo we have created a series of Halothiobacillus neapolitanus RubisCO mutants. We identified the large subunit of the enzyme as an important determinant for its sequestration into alpha-carboxysomes and found that the carboxysomes of H. neapolitanus readily incorporate chimeric and heterologous RubisCO species. Intriguingly, a mutant lacking carboxysomal RubisCO assembles empty carboxysome shells of apparently normal shape and composition. CONCLUSIONS/SIGNIFICANCE These results indicate that carboxysome shell architecture is not determined by the enzyme they normally sequester. Our study provides, for the first time, clear evidence that carboxysome contents can be manipulated and suggests future nanotechnological applications that are based upon engineered protein microcompartments.
Collapse
Affiliation(s)
- Balaraj B. Menon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Zhicheng Dou
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Sabine Heinhorst
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Jessup M. Shively
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Gordon C. Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| |
Collapse
|
139
|
Supuran CT. Carbonic anhydrases as drug targets. Curr Pharm Des 2008; 20:3467-74. [PMID: 18336304 DOI: 10.1016/j.bmcl.2010.05.009] [Citation(s) in RCA: 520] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 12/20/2022]
Abstract
Carbonic anhydrases (CAs), the metalloenzymes that catalyze the conversion between carbon dioxide and bicarbonate, continue to be surprising targets, as many exciting new discoveries related to them emerge constantly. This is indeed unprecedented as these are quite "old" enzymes, which were discovered in 1933, and thoroughly investigated since then as drug targets. Furthermore, their inhibitors are in clinical use since the 50s. However, in the last years, a host of interesting reports were made regarding the catalytic/inhibition mechanism as well as isolation/characterization of new isozymes belonging to this family, as well as of CAs of non-vertebrate origin.
Collapse
|
140
|
Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO. Atomic-Level Models of the Bacterial Carboxysome Shell. Science 2008; 319:1083-6. [DOI: 10.1126/science.1151458] [Citation(s) in RCA: 321] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
141
|
Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Cannon GC. CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 2008; 283:10377-84. [PMID: 18258595 DOI: 10.1074/jbc.m709285200] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely accepted models for the role of carboxysomes in the carbon-concentrating mechanism of autotrophic bacteria predict the carboxysomal carbonic anhydrase to be a crucial component. The enzyme is thought to dehydrate abundant cytosolic bicarbonate and provide ribulose 1.5-bisphosphate carboxylase/oxygenase (RubisCO) sequestered within the carboxysome with sufficiently high concentrations of its substrate, CO(2), to permit its efficient fixation onto ribulose 1,5-bisphosphate. In this study, structure and function of carboxysomes purified from wild type Halothiobacillus neapolitanus and from a high CO(2)-requiring mutant that is devoid of carboxysomal carbonic anhydrase were compared. The kinetic constants for the carbon fixation reaction confirmed the importance of a functional carboxysomal carbonic anhydrase for efficient catalysis by RubisCO. Furthermore, comparisons of the reaction in intact and broken microcompartments and by purified carboxysomal RubisCO implicated the protein shell of the microcompartment as impeding diffusion of CO(2) into and out of the carboxysome interior.
Collapse
Affiliation(s)
- Zhicheng Dou
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-0001, USA
| | | | | | | | | | | |
Collapse
|