101
|
Xu JY, You D, Leng PQ, Ye BC. Allosteric regulation of a protein acetyltransferase in Micromonospora aurantiaca by the amino acids cysteine and arginine. J Biol Chem 2014; 289:27034-27045. [PMID: 25124041 DOI: 10.1074/jbc.m114.579078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ACT domains (amino acid-binding domains) are linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Seventy proteins with ACT-GCN5-related N-acetyltransferase (GNAT) domain organization were found in actinomycetales. In this study, we investigate the ACT-containing GNAT acetyltransferase, Micau_1670 (MaKat), from Micromonospora aurantiaca ATCC 27029. Arginine and cysteine were identified as ligands by monitoring the conformational changes that occur upon amino acids binding to the ACT domain in the MaKat protein using FRET assay. It was found that MaKat is an amino acid-regulated protein acetyltransferase, whereas arginine and cysteine stimulated the activity of MaKat with regard to acetylation of acetyl-CoA synthetase (Micau_0428). Our research reveals the biochemical characterization of a protein acetyltransferase that contains a fusion of a GNAT domain with an ACT domain and provides a novel signaling pathway for regulating cellular protein acetylation. These findings indicate that acetylation of proteins and acetyltransferase activity may be tightly linked to cellular concentrations of some amino acids in actinomycetales.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pei-Qiang Leng
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
102
|
Xu XL, Grant GA. Regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase by phosphate-modulated quaternary structure dynamics and a potential role for polyphosphate in enzyme regulation. Biochemistry 2014; 53:4239-49. [PMID: 24956108 DOI: 10.1021/bi500469d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the first reaction in the "phosphorylated" pathway of l-serine biosynthesis. In Mycobacterium tuberculosis, it is a type 1 enzyme (mtPGDH) in that it contains both an ACT domain and an ASB domain in addition to a catalytic domain. The published crystal structures (Protein Data Bank entries 1YGY and 3DC2) show a tartrate molecule interacting with cationic residues at the ASB-ACT domain interfaces and a serine molecule bound at the ACT domain interface. These sites have previously been shown to be involved in the mechanism of serine and substrate inhibition of catalytic activity. This investigation has revealed a mechanism of allosteric quaternary structure dynamics in mtPGDH that is modulated by physiologically relevant molecules, phosphate and polyphosphate. In the absence of phosphate and polyphosphate, the enzyme exists in equilibrium between an inactive dimer and an active tetramer that is insensitive to inhibition of catalytic activity by L-serine. Phosphate induces a conversion to an active tetramer and octamer that are sensitive to inhibition of catalytic activity by L-serine. Small polyphosphates (pyrophosphate and triphosphate) induce a conversion to an active dimer that is insensitive to L-serine inhibition. The difference in the tendency of each respective dimer to form a tetramer as well as slightly altered elution positions on size exclusion chromatography indicates that there is likely a conformational difference between the serine sensitive and insensitive states. This appears to constitute a unique mechanism in type 1 PGDHs that may be unique in pathogenic Mycobacterium species and may provide the organisms with a unique metabolic advantage.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Department of Developmental Biology and ‡Department of Medicine, Washington University School of Medicine , 660 South Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| | | |
Collapse
|
103
|
The role of ACT-like subdomain in bacterial threonine dehydratases. PLoS One 2014; 9:e87550. [PMID: 24475306 PMCID: PMC3901761 DOI: 10.1371/journal.pone.0087550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/20/2013] [Indexed: 12/04/2022] Open
Abstract
In bacteria, threonine dehydratases could convert L-threonine to 2-ketobutyrate. Some threonine dehydratases contain only a catalytic domain, while others contain an N-terminal catalytic domain and a C-terminal regulatory domain composed of one or two ACT-like subdomains. However, the role of the ACT-like subdomain in threonine dehydratases is not clear. Here, nine different bacterial threonine dehydratases were studied. Three of the nine contain no ACT-like subdomain, four of them contain a single ACT-like subdomain, and two of them contain two ACT-like subdomains. The nine genes encoding these threonine dehydratases were individually overexpressed in E. coli BL21(DE3), and the enzymes were purified to homogeneity. Activities of the purified enzymes were analyzed after incubation at different temperatures and different pHs. The results showed that threonine dehydratases with a single ACT-like subdomain are more stable at higher temperatures and a broad range of pH than those without ACT-like subdomain or with two ACT-like subdomains. Furthermore, the specific activity of threonine dehydratases increases with the increase of the number of ACT-like subdomains they contain. The results suggest that the ACT-like subdomain plays an important role in bacterial threonine dehydratases.
Collapse
|
104
|
Zhang S, Huang T, Ilangovan U, Hinck AP, Fitzpatrick PF. The solution structure of the regulatory domain of tyrosine hydroxylase. J Mol Biol 2013; 426:1483-97. [PMID: 24361276 DOI: 10.1016/j.jmb.2013.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/13/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022]
Abstract
Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to form 3,4-dihydroxyphenylalanine in the biosynthesis of the catecholamine neurotransmitters. The activity of the enzyme is regulated by phosphorylation of serine residues in a regulatory domain and by binding of catecholamines to the active site. Available structures of TyrH lack the regulatory domain, limiting the understanding of the effect of regulation on structure. We report the use of NMR spectroscopy to analyze the solution structure of the isolated regulatory domain of rat TyrH. The protein is composed of a largely unstructured N-terminal region (residues 1-71) and a well-folded C-terminal portion (residues 72-159). The structure of a truncated version of the regulatory domain containing residues 65-159 has been determined and establishes that it is an ACT domain. The isolated domain is a homodimer in solution, with the structure of each monomer very similar to that of the core of the regulatory domain of phenylalanine hydroxylase. Two TyrH regulatory domain monomers form an ACT domain dimer composed of a sheet of eight strands with four α-helices on one side of the sheet. Backbone dynamic analyses were carried out to characterize the conformational flexibility of TyrH65-159. The results provide molecular details critical for understanding the regulatory mechanism of TyrH.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Tao Huang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Udayar Ilangovan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Andrew P Hinck
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
105
|
Yu X, Li Y, Wang X. Molecular evolution of threonine dehydratase in bacteria. PLoS One 2013; 8:e80750. [PMID: 24324624 PMCID: PMC3851459 DOI: 10.1371/journal.pone.0080750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/06/2013] [Indexed: 11/23/2022] Open
Abstract
Threonine dehydratase converts L-threonine to 2-ketobutyrate. Several threonine dehydratases exist in bacteria, but their origins and evolutionary pathway are unknown. Here we analyzed all the available threonine dehydratases in bacteria and proposed an evolutionary pathway leading to the genes encoding three different threonine dehydratases CTD, BTD1 and BTD2. The ancestral threonine dehydratase might contain only a catalytic domain, but one or two ACT-like subdomains were fused during the evolution, resulting BTD1 and BTD2, respectively. Horizontal gene transfer, gene fusion, gene duplication, and gene deletion may occur during the evolution of this enzyme. The results are important for understanding the functions of various threonine dehydratases found in bacteria.
Collapse
Affiliation(s)
- Xuefei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Ye Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
- * E-mail:
| |
Collapse
|
106
|
Identification and characterization of two new types of bacterial l-serine dehydratases and assessment of the function of the ACT domain. Arch Biochem Biophys 2013; 540:62-9. [DOI: 10.1016/j.abb.2013.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/17/2022]
|
107
|
Benstein RM, Ludewig K, Wulfert S, Wittek S, Gigolashvili T, Frerigmann H, Gierth M, Flügge UI, Krueger S. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. THE PLANT CELL 2013; 25:5011-29. [PMID: 24368794 PMCID: PMC3904002 DOI: 10.1105/tpc.113.118992] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/26/2013] [Accepted: 12/06/2013] [Indexed: 05/17/2023]
Abstract
In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and phosphoserine aminotransferase1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.
Collapse
|
108
|
Aghamirzaie D, Nabiyouni M, Fang Y, Klumas C, Heath LS, Grene R, Collakova E. Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos. BIOLOGY 2013; 2:1311-37. [PMID: 24833227 PMCID: PMC4009788 DOI: 10.3390/biology2041311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/17/2022]
Abstract
Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.
Collapse
Affiliation(s)
- Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Mahdi Nabiyouni
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yihui Fang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Curtis Klumas
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
109
|
Structural features of the regulatory ACT domain of phenylalanine hydroxylase. PLoS One 2013; 8:e79482. [PMID: 24244510 PMCID: PMC3828330 DOI: 10.1371/journal.pone.0079482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/22/2013] [Indexed: 11/30/2022] Open
Abstract
Phenylalanine hydroxylase (PAH) catalyzes the conversion of L-Phe to L-Tyr. Defects in PAH activity, caused by mutations in the human gene, result in the autosomal recessively inherited disease hyperphenylalaninemia. PAH activity is regulated by multiple factors, including phosphorylation and ligand binding. In particular, PAH displays positive cooperativity for L-Phe, which is proposed to bind the enzyme on an allosteric site in the N-terminal regulatory domain (RD), also classified as an ACT domain. This domain is found in several proteins and is able to bind amino acids. We used molecular dynamics simulations to obtain dynamical and structural insights into the isolated RD of PAH. Here we show that the principal motions involve conformational changes leading from an initial open to a final closed domain structure. The global intrinsic motions of the RD are correlated with exposure to solvent of a hydrophobic surface, which corresponds to the ligand binding-site of the ACT domain. Our results strongly suggest a relationship between the Phe-binding function and the overall dynamic behaviour of the enzyme. This relationship may be affected by structure-disturbing mutations. To elucidate the functional implications of the mutations, we investigated the structural effects on the dynamics of the human RD PAH induced by six missense hyperphenylalaninemia-causing mutations, namely p.G46S, p.F39C, p.F39L, p.I65S, p.I65T and p.I65V. These studies showed that the alterations in RD hydrophobic interactions induced by missense mutations could affect the functionality of the whole enzyme.
Collapse
|
110
|
Payyavula RS, Singh RK, Navarre DA. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5115-31. [PMID: 24098049 PMCID: PMC3830490 DOI: 10.1093/jxb/ert303] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids.
Collapse
Affiliation(s)
- Raja S. Payyavula
- Irrigated Agricultural Research and Extension Center, Washington State
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
- * Present address: Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rajesh K. Singh
- Irrigated Agricultural Research and Extension Center, Washington State
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Duroy A. Navarre
- Irrigated Agricultural Research and Extension Center, Washington State
- USDA-Agricultural Research Service 24106 North Bunn Road, Prosser, WA 99350, USA
- † To whom correspondence should be addressed. E-mail:
| |
Collapse
|
111
|
A novel branched chain amino acids responsive transcriptional regulator, BCARR, negatively acts on the proteolytic system in Lactobacillus helveticus. PLoS One 2013; 8:e75976. [PMID: 24146802 PMCID: PMC3795697 DOI: 10.1371/journal.pone.0075976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/18/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptional negative regulation of the proteolytic system of Lactobacillus helveticus CM4 in response to amino acids seems to be very important for the control of antihypertensive peptide production; however, it remains poorly understood. A 26-kDa protein with N-terminal cystathionine β-synthase domains (CBS domain protein), which seems to be involved in the regulatory system, was purified by using a DNA-sepharose bound 300-bp DNA fragment corresponding to the upstream regions of the six proteolytic genes that are down-regulated by amino acids. The CBS domain protein bound to a DNA fragment corresponding to the region upstream of the pepV gene in response to branched chain amino acids (BCAAs). The expression of the pepV gene in Escherichia coli grown in BCAA-enriched medium was repressed when the CBS domain protein was co-expressed. These results reveal that the CBS domain protein acts as a novel type of BCAA-responsive transcriptional regulator (BCARR) in L. helveticus. From comparative analysis of the promoter regions of the six proteolysis genes, a palindromic AT-rich motif, 5′-AAAAANNCTWTTATT-3′, was predicted as the consensus DNA motif for the BCARR protein binding. Footprint analysis using the pepV promotor region and gel shift analyses with the corresponding short DNA fragments strongly suggested that the BCARR protein binds adjacent to the pepV promoter region and affects the transcription level of the pepV gene in the presence of BCAAs. Homology search analysis of the C-terminal region of the BCARR protein suggested the existence of a unique βαββαβ fold structure that has been reported in a variety of ACT (aspartate kinase-chorismate mutase-tyrA) domain proteins for sensing amino acids. These results also suggest that the sensing of BCAAs by the ACT domain might promote the binding of the BCARR to DNA sequences upstream of proteolysis genes, which affects the gene expression of the proteolytic system in L. helveticus.
Collapse
|
112
|
Zhang SR, Lin GM, Chen WL, Wang L, Zhang CC. ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2013; 195:4536-44. [PMID: 23935047 PMCID: PMC3807476 DOI: 10.1128/jb.00724-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/01/2013] [Indexed: 12/24/2022] Open
Abstract
When deprived of a combined-nitrogen source in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) can form heterocysts capable of nitrogen fixation. The process of heterocyst differentiation takes about 20 to 24 h, during which extensive metabolic and morphological changes take place. Guanosine tetraphosphate (ppGpp) is the signal of the stringent response that ensures cell survival by adjusting major cellular activities in response to nutrient starvation in bacteria, and ppGpp accumulates at the early stage of heterocyst differentiation (J. Akinyanju, R. J. Smith, FEBS Lett. 107:173-176, 1979; J Akinyanju, R. J. Smith, New Phytol. 105:117-122, 1987). Here we show that all1549 (here designated relana) in Anabaena, homologous to relA/spoT, is upregulated in response to nitrogen deprivation and predominantly localized in vegetative cells. The disruption of relana strongly affects the synthesis of ppGpp, and the resulting mutant, all1549Ωsp/sm, fails to form heterocysts and to grow in the absence of a combined-nitrogen source. This phenotype can be complemented by a wild-type copy of relana. Although the upregulation of hetR is affected in the mutant, ectopic overexpression of hetR cannot rescue the phenotype. However, we found that the mutant rapidly loses its viability, within a time window of 3 to 6 h, following the deprivation of combined nitrogen. We propose that ppGpp plays a major role in rebalancing the metabolic activities of the cells in the absence of the nitrogen source supply and that this regulation is necessary for filament survival and consequently for the success of heterocyst differentiation.
Collapse
Affiliation(s)
- Shao-Ran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Gui-Ming Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Li Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Cheng-Cai Zhang
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne UMR 7283, Marseille, France
| |
Collapse
|
113
|
Cross PJ, Parker EJ. Allosteric inhibitor specificity of Thermotoga maritima 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. FEBS Lett 2013; 587:3063-8. [PMID: 23916814 DOI: 10.1016/j.febslet.2013.07.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first step of the shikimate pathway for the biosynthesis of aromatic amino acids. Allosteric regulation of Thermotoga maritima DAH7PS is mediated by L-Tyr binding to a discrete ACT regulatory domain appended to a core catalytic (β/α)8 barrel. Variants of T. maritima DAH7PS (TmaDAH7PS) were created to probe the role of key residues in inhibitor selection. Substitution Ser31Gly severely reduced inhibition by L-Tyr. In contrast both L-Tyr and L-Phe inhibited the TmaHis29Ala variant, while the variant where Ser31 and His29 were interchanged (His29Ser/Ser31His), was inhibited to a greater extent by L-Phe than L-Tyr. These studies highlight the role and importance of His29 and Ser31 for determining both inhibitory ligand selectivity and the potency of allosteric response by TmaDAH7PS.
Collapse
Affiliation(s)
- Penelope J Cross
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
114
|
Engineering allosteric control to an unregulated enzyme by transfer of a regulatory domain. Proc Natl Acad Sci U S A 2013; 110:2111-6. [PMID: 23345433 DOI: 10.1073/pnas.1217923110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allosteric regulation of protein function is a critical component of metabolic control. Its importance is underpinned by the diversity of mechanisms and its presence in all three domains of life. The first enzyme of the aromatic amino acid biosynthesis, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, shows remarkable variation in allosteric response and machinery, and both contemporary regulated and unregulated orthologs have been described. To examine the molecular events by which allostery can evolve, we have generated a chimeric protein by joining the catalytic domain of an unregulated 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with the regulatory domain of a regulated enzyme. We demonstrate that this simple gene fusion event on its own is sufficient to confer functional allostery to the unregulated enzyme. The fusion protein shares structural similarities with its regulated parent protein and undergoes an analogous major conformational change in response to the binding of allosteric effector tyrosine to the regulatory domain. These findings help delineate a remarkably facile mechanism for the evolution of modular allostery by domain recruitment.
Collapse
|
115
|
Karanth NM, Sarma SP. The Coil-to-Helix Transition in IlvN Regulates the Allosteric Control of Escherichia coli Acetohydroxyacid Synthase I. Biochemistry 2012. [DOI: 10.1021/bi301415m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| |
Collapse
|
116
|
The C-terminal domain of the virulence factor MgtC is a divergent ACT domain. J Bacteriol 2012; 194:6255-63. [PMID: 22984256 DOI: 10.1128/jb.01424-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MgtC is a virulence factor of unknown function important for survival inside macrophages in several intracellular bacterial pathogens, including Mycobacterium tuberculosis. It is also involved in adaptation to Mg(2+) deprivation, but previous work suggested that MgtC is not a Mg(2+) transporter. In this study, we demonstrated that the amount of the M. tuberculosis MgtC protein is not significantly increased by Mg(2+) deprivation. Members of the MgtC protein family share a conserved membrane N-terminal domain and a more divergent cytoplasmic C-terminal domain. To get insights into MgtC functional and structural organization, we have determined the nuclear magnetic resonance (NMR) structure of the C-terminal domain of M. tuberculosis MgtC. This structure is not affected by the Mg(2+) concentration, indicating that it does not bind Mg(2+). The structure of the C-terminal domain forms a βαββαβ fold found in small molecule binding domains called ACT domains. However, the M. tuberculosis MgtC ACT domain differs from canonical ACT domains because it appears to lack the ability to dimerize and to bind small molecules. We have shown, using a bacterial two-hybrid system, that the M. tuberculosis MgtC protein can dimerize and that the C-terminal domain somehow facilitates this dimerization. Taken together, these results indicate that M. tuberculosis MgtC does not have an intrinsic function related to Mg(2+) uptake or binding but could act as a regulatory factor based on protein-protein interaction that could be facilitated by its ACT domain.
Collapse
|
117
|
Grant GA. Kinetic Evidence of a Noncatalytic Substrate Binding Site That Regulates Activity in Legionella pneumophilal-Serine Dehydratase. Biochemistry 2012; 51:6961-7. [DOI: 10.1021/bi3008774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregory A. Grant
- Department of Developmental
Biology and Department of Medicine, Washington University School of Medicine, 660 South
Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| |
Collapse
|
118
|
Mutational and structural analysis of L-N-carbamoylase reveals new insights into a peptidase M20/M25/M40 family member. J Bacteriol 2012; 194:5759-68. [PMID: 22904279 DOI: 10.1128/jb.01056-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Carbamoyl-L-amino acid amidohydrolases (L-carbamoylases) are important industrial enzymes used in kinetic resolution of racemic mixtures of N-carbamoyl-amino acids due to their strict enantiospecificity. In this work, we report the first L-carbamoylase structure belonging to Geobacillus stearothermophilus CECT43 (BsLcar), at a resolution of 2.7 Å. Structural analysis of BsLcar and several members of the peptidase M20/M25/M40 family confirmed the expected conserved residues at the active site in this family, and site-directed mutagenesis revealed their relevance to substrate binding. We also found an unexpectedly conserved arginine residue (Arg(234) in BsLcar), proven to be critical for dimerization of the enzyme. The mutation of this sole residue resulted in a total loss of activity and prevented the formation of the dimer in BsLcar. Comparative studies revealed that the dimerization domain of the peptidase M20/M25/M40 family is a "small-molecule binding domain," allowing further evolutionary considerations for this enzyme family.
Collapse
|
119
|
Chen S, Xu XL, Grant GA. Allosteric Activation and Contrasting Properties of l-Serine Dehydratase Types 1 and 2. Biochemistry 2012; 51:5320-8. [DOI: 10.1021/bi300523p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shawei Chen
- Department
of Developmental Biology and ‡Department of Medicine, Washington University School of Medicine, 660 South
Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| | - Xiao Lan Xu
- Department
of Developmental Biology and ‡Department of Medicine, Washington University School of Medicine, 660 South
Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| | - Gregory A. Grant
- Department
of Developmental Biology and ‡Department of Medicine, Washington University School of Medicine, 660 South
Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| |
Collapse
|
120
|
Bitto E, Kim DJ, Bingman CA, Kim HJ, Han BW, Phillips GN. Crystal structure of tandem ACT domain-containing protein ACTP from Galdieria sulphuraria. Proteins 2012; 80:2105-2109. [PMID: 22528523 DOI: 10.1002/prot.24101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 11/09/2022]
Abstract
The ACT domain is a structurally conserved small molecule binding domain which is mostly involved in amino acid and purine metabolism. Here, we report the crystal structure of a tandem ACT domain-containing protein (ACTP) from Galdieria sulphuraria. The two ACTP monomers in the asymmetric unit form a dimer with a non-crystallographic twofold axis in a domain-swapped manner, showing a horseshoe-like structure with a central crevice. This structure contributes to expand our knowledge on the structural diversity of ACT domain-containing proteins.
Collapse
Affiliation(s)
- Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood, New Jersey 08701, USA
| | - Do Jin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Craig A Bingman
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - George N Phillips
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
121
|
Chen L, Chen Z, Zheng P, Sun J, Zeng AP. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Appl Microbiol Biotechnol 2012; 97:2939-49. [PMID: 22669632 DOI: 10.1007/s00253-012-4176-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/26/2022]
Abstract
Biosynthetic threonine deaminase (TD) is a key enzyme for the synthesis of isoleucine which is allosterically inhibited and activated by Ile and Val, respectively. The binding sites of Ile and Val and the mechanism of their regulations in TD are not clear, but essential for a rational design of efficient productive strain(s) for Ile and related amino acids. In this study, structure-based computational approach and site-directed mutagenesis were combined to identify the potential binding sites of Ile and Val in Escherichia coli TD. Our results demonstrated that each regulatory domain of the TD monomer possesses two nonequivalent effector-binding sites. The residues R362, E442, G445, A446, Y369, I460, and S461 only interact with Ile while E347, G350, and F352 are involved not only in the Ile binding but also in the Val binding. By further considering enzyme kinetic data, we propose a concentration-dependent mechanism of the allosteric regulation of TD by Ile and Val. For the construction of Ile overproducing strain, a novel TD mutant with double mutation of F352A/R362F was also created, which showed both higher activity and much stronger resistance to Ile inhibition comparing to those of wild-type enzyme. Overexpression of this mutant TD in E. coli JW3591 significantly increased the production of ketobutyrate and Ile in comparison to the reference strains overexpressing wild-type TD or the catabolic threonine deaminase (TdcB). This work builds a solid basis for the reengineering of TD and related microorganisms for Ile production.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
122
|
Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys 2012; 519:194-201. [PMID: 22005392 PMCID: PMC3271142 DOI: 10.1016/j.abb.2011.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA.
| |
Collapse
|
123
|
NIU XH, LIU X, ZHOU YF, XI Z, SU XD. Crystallization of Escherichia coli AHASⅠRegulatory Subunit IlvN and Co-crystallization IlvN With a Valine Effector*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
124
|
Structural and functional characterization of α-isopropylmalate synthase and citramalate synthase, members of the LeuA dimer superfamily. Arch Biochem Biophys 2012; 519:202-9. [DOI: 10.1016/j.abb.2011.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022]
|
125
|
Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation. PLoS One 2012; 7:e31529. [PMID: 22363664 PMCID: PMC3282753 DOI: 10.1371/journal.pone.0031529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022] Open
Abstract
A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.
Collapse
|
126
|
The many faces of aspartate kinases. Arch Biochem Biophys 2011; 519:186-93. [PMID: 22079167 DOI: 10.1016/j.abb.2011.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Based on recent X-ray structures and biochemical characterizations of aspartate kinases from different species, we show in this review how various organizations of a regulatory domain have contributed to the different mechanisms of control observed in aspartate kinases allowing simple to complex allosteric controls in branched pathways. The aim of this review is to show the relationships between domain organization, effector binding sites, mechanism of inhibition and regulatory function of an allosteric enzyme in a biosynthetic pathway.
Collapse
|
127
|
Grant GA. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch Biochem Biophys 2011; 519:175-85. [PMID: 22023909 DOI: 10.1016/j.abb.2011.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 11/26/2022]
Abstract
D-3-Phosphoglycerate dehydrogenases (PGDH) exist with at least three different structural motifs and the enzymes from different species display distinctly different mechanisms. In many species, particularly bacteria, the catalytic activity is regulated allosterically through binding of l-serine to a distinct structural domain, termed the ACT domain. Some species, such as Mycobacterium tuberculosis, contain an additional domain, called the "allosteric substrate binding" or ASB domain, that functions as a co-domain in the regulation of catalytic activity. That is, both substrate and effector function synergistically in the regulation of activity to give the enzyme some interesting properties that may have physiological relevance for the persistent state of tuberculosis. Both enzymes function through a V-type regulatory mechanism and, in the Escherichia coli enzyme, it has been demonstrated that this results from a dead-end complex that decreases the concentration of active species rather than a decrease in the velocity of the active species. This review compares and contrasts what we know about these enzymes and provides additional insight into their mechanism of allosteric regulation.
Collapse
Affiliation(s)
- Gregory A Grant
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, USA.
| |
Collapse
|
128
|
A truncated form of SpoT, including the ACT domain, inhibits the production of cyclic lipopeptide arthrofactin, and is associated with moderate elevation of guanosine 3',5'-bispyrophosphate level in Pseudomonas sp. MIS38. Biosci Biotechnol Biochem 2011; 75:1880-8. [PMID: 21979063 DOI: 10.1271/bbb.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arthrofactin is a biosurfactant produced by Pseudomonas sp. MIS38. We have reported that transposon insertion into spoT (spoT::Tn5) causes moderate accumulation of guanosine 3',5'-bispyrophosphate (ppGpp) and abrogates arthrofactin production. To analyze the linkage of SpoT function and ablation of arthrofactin production, we examined the spoT::Tn5 mutation. The results showed that spoT::Tn5 is not a null mutation, but encodes separate segments of SpoT. Deletion of the 3' region of spoT increased the level of arthrofactin production, suggesting that the C-terminal region of SpoT plays a suppressive role. We evaluated the expression of a distinct segment of SpoT. Forced expression of the C-terminal region that contains the ACT domain resulted in the accumulation of ppGpp and abrogated arthrofactin production. Expression of the C-terminal segment also reduced MIS38 swarming and resulted in extensive biofilm formation, which constitutes the phenocopy of the spoT::Tn5 mutant.
Collapse
|
129
|
Yang Q, Yu K, Yan L, Li Y, Chen C, Li X. Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis. Protein Cell 2011; 2:745-54. [PMID: 21976064 DOI: 10.1007/s13238-011-1094-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 09/01/2011] [Indexed: 12/01/2022] Open
Abstract
The aspartate kinase (AK) from Mycobacterium tuberculosis (Mtb) catalyzes the biosynthesis of aspartate family amino acids, including lysine, threonine, isoleucine and methionine. We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone (referred to as MtbAKβ) and in complex with threonine (referred to as MtbAKβ-Thr) at resolutions of 2.6 Å and 2.0 Å, respectively. MtbAKβ is composed of two perpendicular non-equivalent ACT domains [aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase)] per monomer. Each ACT domain contains two α helices and four antiparallel β strands. The structure of MtbAKβ shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum (referred to as CgAKβ), suggesting similar regulatory mechanisms. Biochemical assays in our study showed that MtbAK is inhibited by threonine. Based on crystal structure analysis, we discuss the regulatory mechanism of MtbAK.
Collapse
Affiliation(s)
- Qingzhu Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
130
|
Zhou L, Wu J, Vijayalakshmi J, Shumilin IA, Bauerle R, Kretsinger RH, Woodard RW. Structure and characterization of the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Aeropyrum pernix. Bioorg Chem 2011; 40:79-86. [PMID: 22035970 DOI: 10.1016/j.bioorg.2011.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022]
Abstract
The first enzyme in the shikimic acid biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS), varies significantly in size and complexity in the bacteria and plants that express it. The DAH7PS from the archaebacterium Aeropyrum pernix (DAH7PS(Ap)) is among the smallest and least complex of the DAH7PS enzymes, leading to the hypothesis that DAH7PS(Ap) would not be subject to feedback regulation by shikimic acid pathway products. We overexpressed DAH7PS(Ap) in Escherichia coli, purified it, and characterized its enzymatic activity. We then solved its X-ray crystal structure with a divalent manganese ion and phosphoenolpyruvate bound (PDB ID: 1VS1). DAH7PS(Ap) is a homodimeric metalloenzyme in solution. Its enzymatic activity increases dramatically above 60 °C, with optimum activity at 95 °C. Its pH optimum at 60 °C is 5.7. DAH7PS(Ap) follows Michaelis-Menten kinetics at 60 °C, with a K(M) for erythrose 4-phosphate of 280 μM, a K(M) for phosphoenolpyruvate of 891 μM, and a k(cat) of 1.0 s(-1). None of the downstream products of the shikimate biosynthetic pathway we tested inhibited the activity of DAH7PS(Ap). The structure of DAH7PS(Ap) is similar to the structures of DAH7PS from Thermatoga maritima (PDB ID: 3PG8) and Pyrococcus furiosus (PDB ID: 1ZCO), and is consistent with its designation as an unregulated DAH7PS.
Collapse
Affiliation(s)
- Lily Zhou
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48105-1065, United States.
| | - Jing Wu
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48105-1065, United States.
| | - J Vijayalakshmi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48105-1065, United States
| | - Igor A Shumilin
- Department of Biology, University of Virginia, Charlottesville, VA 22903, United States.
| | - Ronald Bauerle
- Department of Biology, University of Virginia, Charlottesville, VA 22903, United States.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22903, United States.
| | - Ronald W Woodard
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48105-1065, United States.
| |
Collapse
|
131
|
Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S. The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:70-85. [PMID: 21799034 PMCID: PMC3165899 DOI: 10.1104/pp.111.182774] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), transit peptides for chloroplast-destined preproteins can be phosphorylated by the protein kinases STY8, STY17, and STY46. In this study, we have investigated the in vitro properties of these plant-specific kinases. Characterization of the mechanistic functioning of STY8 led to the identification of an essential threonine in the activation segment, which is phosphorylated by an intramolecular mechanism. STY8 is inhibited by specific tyrosine kinase inhibitors, although it lacked the ability to phosphorylate tyrosine residues in vitro. In vivo analysis of sty8, sty17, and sty46 Arabidopsis knockout/knockdown mutants revealed a distinct function of the three kinases in the greening process and in the efficient differentiation of chloroplasts. Mutant plants displayed not only a delayed accumulation of chlorophyll but also a reduction of nucleus-encoded chloroplast proteins and a retarded establishment of photosynthetic capacity during the first 6 h of deetiolation, supporting a role of cytosolic STY kinases in chloroplast differentiation.
Collapse
|
132
|
Sung TY, Chung TY, Hsu CP, Hsieh MH. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis. BMC PLANT BIOLOGY 2011; 11:118. [PMID: 21861936 PMCID: PMC3173338 DOI: 10.1186/1471-2229-11-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/24/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The ACT domain, named after bacterial aspartate kinase, chorismate mutase and TyrA (prephenate dehydrogenase), is a regulatory domain that serves as an amino acid-binding site in feedback-regulated amino acid metabolic enzymes. We have previously identified a novel type of ACT domain-containing protein family, the ACT domain repeat (ACR) protein family, in Arabidopsis. Members of the ACR family, ACR1 to ACR8, contain four copies of the ACT domain that extend throughout the entire polypeptide. Here, we describe the identification of four novel ACT domain-containing proteins, namely ACR9 to ACR12, in Arabidopsis. The ACR9 and ACR10 proteins contain three copies of the ACT domain, whereas the ACR11 and ACR12 proteins have a putative transit peptide followed by two copies of the ACT domain. The functions of these plant ACR proteins are largely unknown. RESULTS The ACR11 and ACR12 proteins are predicted to target to chloroplasts. We used protoplast transient expression assay to demonstrate that the Arabidopsis ACR11- and ACR12-green fluorescent fusion proteins are localized to the chloroplast. Analysis of an ACR11 promoter-β-glucuronidase (GUS) fusion in transgenic Arabidopsis revealed that the GUS activity was mainly detected in mature leaves and sepals. Interestingly, coexpression analysis revealed that the GLN2, which encodes a chloroplastic glutamine synthetase, has the highest mutual rank in the coexpressed gene network connected to ACR11. We used RNA gel blot analysis to confirm that the expression pattern of ACR11 is similar to that of GLN2 in various organs from 6-week-old Arabidopsis. Moreover, the expression of ACR11 and GLN2 is highly co-regulated by sucrose and light/dark treatments in 2-week-old Arabidopsis seedlings. CONCLUSIONS This study reports the identification of four novel ACT domain repeat proteins, ACR9 to ACR12, in Arabidopsis. The ACR11 and ACR12 proteins are localized to the chloroplast, and the expression of ACR11 and GLN2 is highly coordinated. These results suggest that the ACR11 and GLN2 genes may belong to the same functional module. The Arabidopsis ACR11 protein may function as a regulatory protein that is related to glutamine metabolism or signaling in the chloroplast.
Collapse
Affiliation(s)
- Tzu-Ying Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Ping Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
133
|
Xu XL, Chen S, Grant GA. Kinetic, mutagenic, and structural homology analysis of L-serine dehydratase from Legionella pneumophila. Arch Biochem Biophys 2011; 515:28-36. [PMID: 21878319 DOI: 10.1016/j.abb.2011.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022]
Abstract
A structural database search has revealed that the same fold found in the allosteric substrate binding (ASB) domain of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase (PGDH) is found in l-serine dehydratase from Legionella pneumophila. The M. tuberculosis PGDH ASB domain functions in the control of catalytic activity. Bacterial l-serine dehydratases are 4Fe-4S proteins that convert l-serine to pyruvate and ammonia. Sequence homology reveals two types depending on whether their α and β domains are on the same (Type 2) or separate (Type 1) polypeptides. The α domains contain the catalytic iron-sulfur center while the β domains do not yet have a described function, but the structural homology with PGDH suggests a regulatory role. Type 1 β domains also contain additional sequence homologous to PGDH ACT domains. A continuous assay for l-serine dehydratase is used to demonstrate homotropic cooperativity, a broad pH range, and essential irreversibility. Product inhibition analysis reveals a Uni-Bi ordered mechanism with ammonia dissociating before pyruvate. l-Threonine is a poor substrate and l-cysteine and d-serine are competitive inhibitors with K(i) values that differ by almost 10-fold from those reported for Escherichia colil-serine dehydratase. Mutagenesis identifies the three cysteine residues at the active site that anchor the iron-sulfur complex.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
134
|
Bai Y, Pattanaik S, Patra B, Werkman JR, Xie CH, Yuan L. Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. PLANTA 2011; 234:363-75. [PMID: 21484270 DOI: 10.1007/s00425-011-1407-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/28/2011] [Indexed: 05/04/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) comprise one of the largest families of TFs involved in developmental and physiological processes in plants. Here, we describe the functional characterization of two bHLH TFs (NtAn1a and NtAn1b) isolated from tobacco (Nicotiana tabacum) flowers. NtAn1a and NtAn1b originate from two ancestors of tobacco, N. sylvestris and N. tomentosiformis, respectively. NtAn1a and NtAn1b share high sequence similarity with other known flavonoid-related bHLH TFs and are predominantly expressed in flowers. GUS expression driven by the NtAn1a promoter is consistent with NtAn1 transcript profile in tobacco flowers. Both NtAn1a and NtAn1b are transcriptional activators as demonstrated by transactivation assays using yeast cells and tobacco protoplasts. Ectopic expression of NtAn1a or NtAn1b enhances anthocyanin accumulation in tobacco flowers. In transgenic tobacco expressing NtAn1a or NtAn1b, both subsets of early and late flavonoid pathway genes were up-regulated. Yeast two-hybrid assays showed that NtAn1 proteins interact with the previously characterized R2R3-MYB TF, NtAn2. The NtAn1-NtAn2 complex activated the promoters of two key anthocyanin pathway genes, dihydroflavonol reductase and chalcone synthase. The promoter activation is severely repressed by dominant repressive forms of either NtAn1a or NtAn2, created by fusing the SRDX repressor domain to the TFs. Our results show that NtAn1 and NtAn2 act in concert to regulate the anthocyanin pathway in tobacco flowers and NtAn2 up-regulates NtAn1 gene expression.
Collapse
Affiliation(s)
- Yanhong Bai
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
135
|
A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol 2011; 193:4456-68. [PMID: 21725014 DOI: 10.1128/jb.00345-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The compatible solutes ectoine and hydroxyectoine are widely produced by bacteria as protectants against osmotic and temperature stress. l-Aspartate-beta-semialdehyde is used as the precursor molecule for ectoine/hydroxyectoine biosynthesis that is catalyzed by the EctABCD enzymes. l-Aspartate-beta-semialdehyde is a central intermediate in different biosynthetic pathways and is produced from l-aspartate by aspartokinase (Ask) and aspartate-semialdehyde-dehydrogenase (Asd). Ask activity is typically stringently regulated by allosteric control to avoid gratuitous synthesis of aspartylphosphate. Many organisms have evolved multiple forms of aspartokinase, and feedback regulation of these specialized Ask enzymes is often adapted to the cognate biochemical pathways. The ectoine/hydroxyectoine biosynthetic genes (ectABCD) are followed in a considerable number of microorganisms by an askgene (ask_ect), suggesting that Ask_Ect is a specialized enzyme for this osmoadaptive biosynthetic pathway. However, none of these Ask_Ect enzymes have been functionally characterized. Pseudomonas stutzeri A1501 synthesizes both ectoine and hydroxyectoine in response to increased salinity, and it possesses two Ask enzymes: Ask_Lys and Ask_Ect. We purified both Ask enzymes and found significant differences with regard to their allosteric control: Ask_LysC was inhibited by threonine and in a concerted fashion by threonine and lysine, whereas Ask_Ect showed inhibition only by threonine. The ectABCD_askgenes from P. stutzeri A1501 were cloned and functionally expressed in Escherichia coli, and this led to osmostress protection. An E. colistrain carrying the plasmid-based ectABCD_askgene cluster produced significantly more ectoine/hydroxyectoine than a strain expressing the ectABCDgene cluster alone. This finding suggests a specialized role for Ask_Ect in ectoine/hydroxyectoine biosynthesis.
Collapse
|
136
|
Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production. Appl Environ Microbiol 2011; 77:4352-60. [PMID: 21531824 DOI: 10.1128/aem.02912-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Product feedback inhibition of allosteric enzymes is an essential issue for the development of highly efficient microbial strains for bioproduction. Here we used aspartokinase from Corynebacterium glutamicum (CgAK), a key enzyme controlling the biosynthesis of industrially important aspartate family amino acids, as a model to demonstrate a fast and efficient approach to the deregulation of allostery. In the last 50 years many researchers and companies have made considerable efforts to deregulate this enzyme from allosteric inhibition by lysine and threonine. However, only a limited number of positive mutants have been identified so far, almost exclusively by random mutation and selection. In this study, we used statistical coupling analysis of protein sequences, a method based on coevolutionary analysis, to systematically clarify the interaction network within the regulatory domain of CgAK that is essential for allosteric inhibition. A cluster of interconnected residues linking different inhibitors' binding sites as well as other regions of the protein have been identified, including most of the previously reported positions of successful mutations. Beyond these mutation positions, we have created another 14 mutants that can partially or completely desensitize CgAK from allosteric inhibition, as shown by enzyme activity assays. The introduction of only one of the inhibition-insensitive CgAK mutations (here Q298G) into a wild-type C. glutamicum strain by homologous recombination resulted in an accumulation of 58 g/liter L-lysine within 30 h of fed-batch fermentation in a bioreactor.
Collapse
|
137
|
Grant GA. Transient kinetic analysis of L-serine interaction with Escherichia coli D-3-phosphoglycerate dehydrogenase containing amino acid mutations in the hinge regions. Biochemistry 2011; 50:2900-6. [PMID: 21391703 DOI: 10.1021/bi200211z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Escherichia colid-3-phosphoglycerate dehydrogenase, the amino acid sequences G294-G295 and G336-G337 are found between structural domains and appear to function as hinge regions. Mutagenesis studies of these sequences showed that bulky side chains had significant effects on the kinetic properties of the enzyme. Placement of a tryptophanyl residue near the serine binding site (W139F/E360W) allows serine binding to be monitored by fluorescence quenching analysis. Pre-steady-state analysis has demonstrated that serine binds to two forms of the free enzyme, E and E*. Conversion of Gly-336 to valine has its main effect on the Kd of serine binding to one form of the free enzyme (E) while maintaining the cooperativity of binding observed in the native enzyme. Conversion of Gly-294 to valine eliminates a rate limiting conformational change that follows serine binding to E. The conformational change between the two forms of free enzyme is maintained, but the Hill coefficient for cooperativity is significantly lowered. The data indicate that the cooperative transmission induced by serine binding is transmitted through the Gly294-Gly295 hinge region to the opposite serine binding interface and that this is most likely propagated by way of the substrate binding domain-regulatory domain interface. In the G294 mutant enzyme, both serine bound species, E·Ser and E*·Ser, are present in significant amounts indicating that cooperativity of serine binding does not result from the binding to two different forms. The data also suggest that the E* form may be inactive even when serine is not bound.
Collapse
Affiliation(s)
- Gregory A Grant
- Department of Developmental Biology and the Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, Missouri 63110, USA.
| |
Collapse
|
138
|
Wang S, Lasagna M, Daubner SC, Reinhart GD, Fitzpatrick PF. Fluorescence spectroscopy as a probe of the effect of phosphorylation at serine 40 of tyrosine hydroxylase on the conformation of its regulatory domain. Biochemistry 2011; 50:2364-70. [PMID: 21302933 DOI: 10.1021/bi101844p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylation of Ser40 in the regulatory domain of tyrosine hydroxylase activates the enzyme by increasing the rate constant for dissociation of inhibitory catecholamines from the active site by 3 orders of magnitude. To probe the changes in the structure of the N-terminal domain upon phosphorylation, individual phenylalanine residues at positions 14, 34, and 74 were replaced with tryptophan in a form of the protein in which the endogenous tryptophans had all been mutated to phenylalanine (W(3)F TyrH). The steady-state fluorescence anisotropy of F74W W(3)F TyrH was unaffected by phosphorylation, but the anisotropies of both F14W and F34W W(3)F TyrH increased significantly upon phosphorylation. The fluorescence of the single tryptophan residue at position 74 was less readily quenched by acrylamide than those at the other two positions; fluorescence increased the rate constant for quenching of the residues at positions 14 and 34 but did not affect that for the residue at position 74. Frequency domain analyses were consistent with phosphorylation having no effect on the amplitude of the rotational motion of the indole ring at position 74, resulting in a small increase in the rotational motion of the residue at position 14 and resulting in a larger increase in the rotational motion of the residue at position 34. These results are consistent with the local environment at position 74 being unaffected by phosphorylation, that at position 34 becoming much more flexible upon phosphorylation, and that at position 14 becoming slightly more flexible upon phosphorylation. The results support a model in which phosphorylation at Ser40 at the N-terminus of the regulatory domain causes a conformational change to a more open conformation in which the N-terminus of the protein no longer inhibits dissociation of a bound catecholamine from the active site.
Collapse
Affiliation(s)
- Shanzhi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | | | | | | | | |
Collapse
|
139
|
Cross PJ, Dobson RCJ, Patchett ML, Parker EJ. Tyrosine latching of a regulatory gate affords allosteric control of aromatic amino acid biosynthesis. J Biol Chem 2011; 286:10216-24. [PMID: 21282100 DOI: 10.1074/jbc.m110.209924] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The first step of the shikimate pathway for aromatic amino acid biosynthesis is catalyzed by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Thermotoga maritima DAH7PS (TmaDAH7PS) is tetrameric, with monomer units comprised of a core catalytic (β/α)(8) barrel and an N-terminal domain. This enzyme is inhibited strongly by tyrosine and to a lesser extent by the presence of phenylalanine. A truncated mutant of TmaDAH7PS lacking the N-terminal domain was catalytically more active and completely insensitive to tyrosine and phenylalanine, consistent with a role for this domain in allosteric inhibition. The structure of this protein was determined to 2.0 Å. In contrast to the wild-type enzyme, this enzyme is dimeric. Wild-type TmaDAH7PS was co-crystallized with tyrosine, and the structure of this complex was determined to a resolution of 2.35 Å. Tyrosine was found to bind at the interface between two regulatory N-terminal domains, formed from diagonally located monomers of the tetramer, revealing a major reorganization of the regulatory domain with respect to the barrel relative to unliganded enzyme. This significant conformational rearrangement observed in the crystal structures was also clearly evident from small angle X-ray scattering measurements recorded in the presence and absence of tyrosine. The closed conformation adopted by the protein on tyrosine binding impedes substrate entry into the neighboring barrel, revealing an unusual tyrosine-controlled gating mechanism for allosteric control of this enzyme.
Collapse
Affiliation(s)
- Penelope J Cross
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8040, New Zealand
| | | | | | | |
Collapse
|
140
|
Li J, Ilangovan U, Daubner SC, Hinck AP, Fitzpatrick PF. Direct evidence for a phenylalanine site in the regulatory domain of phenylalanine hydroxylase. Arch Biochem Biophys 2010; 505:250-5. [PMID: 20951114 DOI: 10.1016/j.abb.2010.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
The hydroxylation of phenylalanine to tyrosine by the liver enzyme phenylalanine hydroxylase is regulated by the level of phenylalanine. Whether there is a distinct allosteric binding site for phenylalanine outside of the active site has been unclear. The enzyme contains an N-terminal regulatory domain that extends through Thr117. The regulatory domain of rat phenylalanine hydroxylase was expressed in Escherichia coli. The purified protein behaves as a dimer on a gel filtration column. In the presence of phenylalanine, the protein elutes earlier from the column, consistent with a conformational change in the presence of the amino acid. No change in elution is seen in the presence of the non-activating amino acid proline. ¹H-¹⁵N HSQC NMR spectra were obtained of the ¹⁵N-labeled protein alone and in the presence of phenylalanine or proline. A subset of the peaks in the spectrum exhibits chemical shift perturbation in the presence of phenylalanine, consistent with binding of phenylalanine at a specific site. No change in the NMR spectrum is seen in the presence of proline. These results establish that the regulatory domain of phenylalanine hydroxylase can bind phenylalanine, consistent with the presence of an allosteric site for the amino acid.
Collapse
Affiliation(s)
- Jun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, 77843-2128, United States
| | | | | | | | | |
Collapse
|
141
|
Chiu HJ, Abdubek P, Astakhova T, Axelrod HL, Carlton D, Clayton T, Das D, Deller MC, Duan L, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, McMullan D, Miller MD, Morse AT, Nigoghossian E, Okach L, Reyes R, Tien HJ, Trame CB, van den Bedem H, Weekes D, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1317-25. [PMID: 20944228 PMCID: PMC2954222 DOI: 10.1107/s1744309110021688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/07/2010] [Indexed: 11/10/2022]
Abstract
Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of chorismate to prephenate and the NAD(P)(+)-dependent oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The crystal structure of the prephenate dehydrogenase component (HinfPDH) of the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor tyrosine and cofactor NAD(+) has been determined to 2.0 Å resolution. HinfPDH is a dimeric enzyme, with each monomer consisting of an N-terminal α/β dinucleotide-binding domain and a C-terminal α-helical dimerization domain. The structure reveals key active-site residues at the domain interface, including His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding and are highly conserved in TyrA proteins from all three kingdoms of life. Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive inhibitor of HinfPDH. Comparisons with its structural homologues reveal important differences around the active site, including the absence of an α-β motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis sp. arogenate dehydrogenase. Residues from this motif are involved in discrimination between NADP(+) and NAD(+). The loop between β5 and β6 in the N-terminal domain is much shorter in HinfPDH and an extra helix is present at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation compared with TyrA proteins that do not have tyrosine bound. This conformational change brings the substrate, cofactor and active-site residues into close proximity for catalysis. An ionic network consisting of Arg297 (a key residue for tyrosine binding), a water molecule, Asp206 (from the loop between β5 and β6) and Arg365' (from the additional C-terminal helix of the adjacent monomer) is observed that might be involved in gating the active site.
Collapse
Affiliation(s)
- Hsiu-Ju Chiu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Herbert L. Axelrod
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Debanu Das
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anna Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kevin K. Jin
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Abhinav Kumar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel McMullan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mitchell D. Miller
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Henry J. Tien
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christine B. Trame
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Henry van den Bedem
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Qingping Xu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley M. Deacon
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
142
|
Yoshida A, Tomita T, Kuzuyama T, Nishiyama M. Mechanism of concerted inhibition of alpha2beta2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum. J Biol Chem 2010; 285:27477-27486. [PMID: 20573952 PMCID: PMC2930746 DOI: 10.1074/jbc.m110.111153] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/08/2010] [Indexed: 11/06/2022] Open
Abstract
Aspartate kinase (AK) is the first and committed enzyme of the biosynthetic pathway producing aspartate family amino acids, lysine, threonine, and methionine. AK from Corynebacterium glutamicum (CgAK), a bacterium used for industrial fermentation of amino acids, including glutamate and lysine, is inhibited by lysine and threonine in a concerted manner. To elucidate the mechanism of this unique regulation in CgAK, we determined the crystal structures in several forms: an inhibitory form complexed with both lysine and threonine, an active form complexed with only threonine, and a feedback inhibition-resistant mutant (S301F) complexed with both lysine and threonine. CgAK has a characteristic alpha(2)beta(2)-type heterotetrameric structure made up of two alpha subunits and two beta subunits. Comparison of the crystal structures between inhibitory and active forms revealed that binding inhibitors causes a conformational change to a closed inhibitory form, and the interaction between the catalytic domain in the alpha subunit and beta subunit (regulatory subunit) is a key event for stabilizing the inhibitory form. This study shows not only the first crystal structures of alpha(2)beta(2)-type AK but also the mechanism of concerted inhibition in CgAK.
Collapse
Affiliation(s)
- Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
143
|
Dermoun Z, Foulon A, Miller MD, Harrington DJ, Deacon AM, Sebban-Kreuzer C, Roche P, Lafitte D, Bornet O, Wilson IA, Dolla A. TM0486 from the hyperthermophilic anaerobe Thermotoga maritima is a thiamin-binding protein involved in response of the cell to oxidative conditions. J Mol Biol 2010; 400:463-76. [PMID: 20471400 DOI: 10.1016/j.jmb.2010.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/28/2010] [Accepted: 05/07/2010] [Indexed: 11/28/2022]
Abstract
The COG database was used for a comparative genome analysis with genomes from anaerobic and aerobic microorganisms with the aim of identifying proteins specific to the anaerobic way of life. A total of 33 COGs were identified, five of which correspond to proteins of unknown function. We focused our study on TM0486 from Thermotoga maritima, which belongs to one of these COGs of unknown function, namely COG0011. The crystal structure of the protein was determined at 2 A resolution. The structure adopts a beta alpha beta beta alpha beta ferredoxin-like fold and assembles as a homotetramer. The structure also revealed the presence of a pocket in each monomer that bound an unidentified ligand. NMR and calorimetry revealed that TM0486 specifically bound thiamin with a K(d) of 1.58 microM, but not hydroxymethyl pyrimidine (HMP), which has been implicated as a potential ligand. We demonstrated that the TM0486 gene belongs to the same multicistronic unit as TM0483, TM0484 and TM0485. Although these three genes have been assigned to the transport of HMP, with TM0484 being the periplasmic thiamin/HMP-binding protein and TM0485 and TM0483 the transmembrane and the ATPase components, respectively, our results led us to conclude that this operon encodes an ABC transporter dedicated to thiamin, with TM0486 transporting charged thiamin in the cytoplasm. Given that this transcriptional unit was up-regulated when T. maritima was exposed to oxidative conditions, we propose that, by chelating cytoplasmic thiamin, TM0486 and, by extension, proteins belonging to COG0011 are involved in the response mechanism to stress that could arise during aerobic conditions.
Collapse
Affiliation(s)
- Zorah Dermoun
- IMR-CNRS, IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Iwig JS, Chivers PT. Coordinating intracellular nickel-metal-site structure-function relationships and the NikR and RcnR repressors. Nat Prod Rep 2010; 27:658-67. [PMID: 20442957 DOI: 10.1039/b906683g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metalloregulator function requires both sensitivity and selectivity to ensure metal-specific activity without interfering with intracellular metal trafficking pathways. Here, we examine the role of metal coordination geometry in the function of NikR and RcnR, two widely conserved nickel-responsive regulators that are both present in E. coli. The available data suggest an emerging trend in which coordination number is linked to metal-binding affinity, and thus regulatory function. The differences in coordination geometry also suggest that the kinetic mechanisms of metal-association and dissociation will contribute to metalloregulator function. We also discuss ways in which the ligand binding properties of metalloregulators may be tuned to alter the regulatory response.
Collapse
Affiliation(s)
- Jeffrey S Iwig
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, USA
| | | |
Collapse
|
145
|
Maeda H, Shasany AK, Schnepp J, Orlova I, Taguchi G, Cooper BR, Rhodes D, Pichersky E, Dudareva N. RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. THE PLANT CELL 2010; 22:832-49. [PMID: 20215586 PMCID: PMC2861463 DOI: 10.1105/tpc.109.073247] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/11/2010] [Accepted: 02/23/2010] [Indexed: 05/19/2023]
Abstract
l-Phe, a protein building block and precursor of numerous phenolic compounds, is synthesized from prephenate via an arogenate and/or phenylpyruvate route in which arogenate dehydratase (ADT) or prephenate dehydratase, respectively, plays a key role. Here, we used Petunia hybrida flowers, which are rich in Phe-derived volatiles, to determine the biosynthetic routes involved in Phe formation in planta. Of the three identified petunia ADTs, expression of ADT1 was the highest in petunia petals and positively correlated with endogenous Phe levels throughout flower development. ADT1 showed strict substrate specificity toward arogenate, although with the lowest catalytic efficiency among the three ADTs. ADT1 suppression via RNA interference in petunia petals significantly reduced ADT activity, levels of Phe, and downstream phenylpropanoid/benzenoid volatiles. Unexpectedly, arogenate levels were unaltered, while shikimate and Trp levels were decreased in transgenic petals. Stable isotope labeling experiments showed that ADT1 suppression led to downregulation of carbon flux toward shikimic acid. However, an exogenous supply of shikimate bypassed this negative regulation and resulted in elevated arogenate accumulation. Feeding with shikimate also led to prephenate and phenylpyruvate accumulation and a partial recovery of the reduced Phe level in transgenic petals, suggesting that the phenylpyruvate route can also operate in planta. These results provide genetic evidence that Phe is synthesized predominantly via arogenate in petunia petals and uncover a novel posttranscriptional regulation of the shikimate pathway.
Collapse
Affiliation(s)
- Hiroshi Maeda
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Ajit K Shasany
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Jennifer Schnepp
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Irina Orlova
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Goro Taguchi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Bruce R. Cooper
- Bindley Bioscience Center, Metabolite Profiling Facility, Purdue University, West Lafayette, Indiana 47907
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
146
|
Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways. Microbiol Mol Biol Rev 2010; 73:594-651. [PMID: 19946135 DOI: 10.1128/mmbr.00024-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspartokinase (Ask) exists within a variable network that supports the synthesis of 9 amino acids and a number of other important metabolites. Lysine, isoleucine, aromatic amino acids, and dipicolinate may arise from the ASK network or from alternative pathways. Ask proteins were subjected to cohesion group analysis, a methodology that sorts a given protein assemblage into groups in which evolutionary continuity is assured. Two subhomology divisions, ASK(alpha) and ASK(beta), have been recognized. The ASK(alpha) subhomology division is the most ancient, being widely distributed throughout the Archaea and Eukarya and in some Bacteria. Within an indel region of about 75 amino acids near the N terminus, ASK(beta) sequences differ from ASK(alpha) sequences by the possession of a proposed ancient deletion. ASK(beta) sequences are present in most Bacteria and usually exhibit an in-frame internal translational start site that can generate a small Ask subunit that is identical to the C-terminal portion of the larger subunit of a heterodimeric unit. Particularly novel are ask genes embedded in gene contexts that imply specialization for ectoine (osmotic agent) or aromatic amino acids. The cohesion group approach is well suited for the easy recognition of relatively recent lateral gene transfer (LGT) events, and many examples of these are described. Given the current density of genome representation for Proteobacteria, it is possible to reconstruct more ancient landmark LGT events. Thus, a plausible scenario in which the three well-studied and iconic Ask homologs of Escherichia coli are not within the vertical genealogy of Gammaproteobacteria, but rather originated via LGT from a Bacteroidetes donor, is supported.
Collapse
|
147
|
Exploring the molecular basis for selective binding of Mycobacterium tuberculosis Asp kinase toward its natural substrates and feedback inhibitors: a docking and molecular dynamics study. J Mol Model 2010; 16:1357-67. [PMID: 20140471 DOI: 10.1007/s00894-010-0653-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensively drug resistant (XDR)-TB. In this context, aspartokinase of mycobacterium tuberculosis has drawn attention for designing novel anti-TB drugs. Asp kinase is an enzyme responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate and involved in the branched biosynthetic pathway leading to the synthesis of amino acids lysine, threonine, methionine and isoleucine. An intermediate of lysine biosynthetic branch, mesodiaminopimelate is also a component of the peptidoglycan which is a component of bacterial cell wall. To interfere with the production of all these amino acids and cell wall, it is possible to inhibit Asp kinase activity. This can be achieved using Asp kinase inhibitors. In order to design novel Asp kinase inhibitors as effective anti-TB drugs, it is necessary to have an understanding of the binding sites of Asp kinase. As no crystal structure of the enzyme has yet been published, we built a homology model of Asp kinase using the crystallized Asp kinase from M. Jannaschii, as template structures (2HMF and 3C1M). After the molecular dynamics refinement, the optimized homology model was assessed as a reliable structure by PROCHECK, ERRAT, WHAT-IF, PROSA2003 and VERIFY-3D. The results of molecular docking studies with natural substrates, products and feedback inhibitors are in agreement with the published data and showed that ACT domain plays an important role in binding to ligands. Based on the docking conformations, pharmacophore model can be developed by probing the common features of ligands. By analyzing the results, ACT domain architecture, certain key residues that are responsible for binding to feedback inhibitors and natural substrates were identified. This would be very helpful in understanding the blockade mechanism of Asp kinase and providing insights into rational design of novel Asp kinase inhibitors for M.tuberculosis.
Collapse
|
148
|
Bidle KA, Haramaty L, Baggett N, Nannen J, Bidle KD. Tantalizing evidence for caspase-like protein expression and activity in the cellular stress response of Archaea. Environ Microbiol 2010; 12:1161-72. [DOI: 10.1111/j.1462-2920.2010.02157.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
149
|
Bahlawane C, Dian C, Muller C, Round A, Fauquant C, Schauer K, de Reuse H, Terradot L, Michaud-Soret I. Structural and mechanistic insights into Helicobacter pylori NikR activation. Nucleic Acids Res 2010; 38:3106-18. [PMID: 20089510 PMCID: PMC2875016 DOI: 10.1093/nar/gkp1216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NikR is a transcriptional metalloregulator central in the mandatory response to acidity of Helicobacter pylori that controls the expression of numerous genes by binding to specific promoter regions. NikR/DNA interactions were proposed to rely on protein activation by Ni(II) binding to high-affinity (HA) and possibly secondary external (X) sites. We describe a biochemical characterization of HpNikR mutants that shows that the HA sites are essential but not sufficient for DNA binding, while the secondary external (X) sites and residues from the HpNikR dimer–dimer interface are important for DNA binding. We show that a second metal is necessary for HpNikR/DNA binding, but only to some promoters. Small-angle X-ray scattering shows that HpNikR adopts a defined conformation in solution, resembling the cis-conformation and suggests that nickel does not trigger large conformational changes in HpNikR. The crystal structures of selected mutants identify the effects of each mutation on HpNikR structure. This study unravels key structural features from which we derive a model for HpNikR activation where: (i) HA sites and an hydrogen bond network are required for DNA binding and (ii) metallation of a unique secondary external site (X) modulates HpNikR DNA binding to low-affinity promoters by disruption of a salt bridge.
Collapse
Affiliation(s)
- C Bahlawane
- CNRS UMR 5249 Laboratoire de Chimie et Biologie des Métaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Burton RL, Chen S, Xu XL, Grant GA. Transient kinetic analysis of the interaction of L-serine with Escherichia coli D-3-phosphoglycerate dehydrogenase reveals the mechanism of V-type regulation and the order of effector binding. Biochemistry 2010; 48:12242-51. [PMID: 19924905 DOI: 10.1021/bi901489n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pre-steady state stopped-flow analysis of Escherichia coli d-3-phosphoglycerate dehydrogenase (PGDH) reveals that the physiological inhibitor, l-serine, exerts its effect on at least two steps in the kinetic mechanism, but to very different degrees. First, there is a small but significant effect on the dissociation constant of NADH, the first substrate to bind in the ordered mechanism. The effect of serine is mainly on the binding off rate, increasing the K(d) to 5 and 23 muM from 0.6 and 9 muM, respectively, for the two sets of sites in the enzyme. A more profound effect is seen after the second substrate is added. Serine reduces the amplitude of the signal without a significant effect on the observed rate constants for binding. The serine concentration that reduces the amplitude by 50% is equal to the K(0.5) for serine inhibition. The data are consistent with the conclusion that serine binding eliminates a conformational change subsequent to substrate binding by formation of a dead-end quaternary complex consisting of enzyme, coenzyme, substrate, and effector. Thus, the mechanistic basis for V-type regulation in this enzyme is a reduction in the population of active species rather than a differential decrease in the velocity of active species. Pre-steady state analysis of binding of serine to a mutant PGDH (W139F/E360W) demonstrates that each serine binding interface produces an integrated fluorescent signal. The observed rate data are complex but conform to a model in which serine can bind to two forms of the enzyme with different affinities. The integrated signal from each interface allows the amplitude data to clearly define the order of binding to each site, and modeling the amplitude data with species distribution equations clearly demonstrates an alternate interface binding mechanism and the direction of binding cooperativity.
Collapse
Affiliation(s)
- Rodney L Burton
- Department of Developmental Biology, Washington University School of Medicine,660 South Euclid Avenue, Box 8103, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|