101
|
Abstract
Intestinal fibrosis is a common feature of Crohn's disease and may appear as a stricture, stenosis, or intestinal obstruction. Fibrostenosing Crohn's disease leads to a significantly impaired quality of life in affected patients and constitutes a challenging treatment situation. In the absence of specific medical antifibrotic treatment options, endoscopic or surgical therapy approaches with their potential harmful side effects are frequently used. However, our understanding of mechanisms of fibrogenesis in general and specifically intestinal fibrosis has emerged. Progression of fibrosis in the liver, lung, or skin can be halted or even reversed, and possible treatment targets have been identified. In face of this observation and given the fact that fibrotic alterations in various organs of the human body share distinct core characteristics, this article aims to address whether reversibility of intestinal fibrosis may be conceivable and to highlight promising research avenues and therapies.
Collapse
Affiliation(s)
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
102
|
Abstract
The extracellular matrix (ECM) of the lung serves as both a scaffold for resident cells and a mechanical support for respiratory function. The ECM is deposited during development and undergoes continuous turnover and maintenance during organ growth and homeostasis. Cells of the mesenchyme, including the tissue resident fibroblast, take a leading role in depositing and organizing the matrix and do so in an anatomically distinct fashion, with differing composition, organization, and mechanical properties within the airways, vessels, and alveoli of the lung. Recent technological advancements have allowed the lung's ECM biochemical composition and mechanical properties to be studied with improved resolution, thereby identifying novel disease-related changes in ECM characteristics. In parallel, efforts to study cells seeded on normal and disease-derived matrices have illustrated the powerful role the ECM can play in altering key functions of lung resident cells. The mechanical properties of the matrix have been identified as an important modifier of cell-matrix adhesions, with matrices of pathologic stiffness promoting profibrotic signaling and cell function. Ongoing work is identifying both mechanically activated pathways in mesenchymal cells and disease-related ECM molecules that biochemically regulate cell function. Uncovering the control systems by which cells respond to and regulate the matrix, and the failures in these systems that underlie aberrant repair, remains a major challenge. Progress in this area will be an essential element in efforts to engineer functional lung tissue for regenerative approaches and will be key to identifying new therapeutic strategies for lung diseases characterized by disturbed matrix architecture.
Collapse
|
103
|
Kulkarni YM, Dutta S, Iyer AKV, Venkatadri R, Kaushik V, Ramesh V, Wright CA, Semmes OJ, Yakisich JS, Azad N. A proteomics approach to identifying key protein targets involved in VEGF inhibitor mediated attenuation of bleomycin-induced pulmonary fibrosis. Proteomics 2015; 16:33-46. [PMID: 26425798 DOI: 10.1002/pmic.201500171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2015] [Revised: 08/07/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a life expectancy of less than 5 years post diagnosis for most patients. Poor molecular characterization of IPF has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies. In this study, we have integrated a label-free LC-MS based approach with systems biology to identify signaling pathways and regulatory nodes within protein interaction networks that govern phenotypic changes that may lead to IPF. Ingenuity Pathway Analysis of proteins modulated in response to bleomycin treatment identified PI3K/Akt and Wnt signaling as the most significant profibrotic pathways. Similar analysis of proteins modulated in response to vascular endothelial growth factor (VEGF) inhibitor (CBO-P11) treatment identified natural killer cell signaling and PTEN signaling as the most significant antifibrotic pathways. Mechanistic/mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) were identified to be key mediators of pro- and antifibrotic response, where bleomycin (BLM) treatment resulted in increased expression and VEGF inhibitor treatment attenuated expression of mTOR and ERK. Using a BLM mouse model of pulmonary fibrosis and VEGF inhibitor CBO-P11 as a therapeutic measure, we identified a comprehensive set of signaling pathways and proteins that contribute to the pathogenesis of pulmonary fibrosis that can be targeted for therapy against this fatal disease.
Collapse
Affiliation(s)
- Yogesh M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Sucharita Dutta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA.,Leroy T. Canoles Jr, Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Anand Krishnan V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Rajkumar Venkatadri
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Vani Ramesh
- Department of Obstetrics and Gynecology, The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Clayton A Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA.,Leroy T. Canoles Jr, Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Juan S Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| |
Collapse
|
104
|
Naba A, Clauser KR, Hynes RO. Enrichment of Extracellular Matrix Proteins from Tissues and Digestion into Peptides for Mass Spectrometry Analysis. J Vis Exp 2015:e53057. [PMID: 26273955 PMCID: PMC4545199 DOI: 10.3791/53057] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) is a complex meshwork of cross-linked proteins that provides biophysical and biochemical cues that are major regulators of cell proliferation, survival, migration, etc. The ECM plays important roles in development and in diverse pathologies including cardio-vascular and musculo-skeletal diseases, fibrosis, and cancer. Thus, characterizing the composition of ECMs of normal and diseased tissues could lead to the identification of novel prognostic and diagnostic biomarkers and potential novel therapeutic targets. However, the very nature of ECM proteins (large in size, cross-linked and covalently bound, heavily glycosylated) has rendered biochemical analyses of ECMs challenging. To overcome this challenge, we developed a method to enrich ECMs from fresh or frozen tissues and tumors that takes advantage of the insolubility of ECM proteins. We describe here in detail the decellularization procedure that consists of sequential incubations in buffers of different pH and salt and detergent concentrations and that results in 1) the extraction of intracellular (cytosolic, nuclear, membrane and cytoskeletal) proteins and 2) the enrichment of ECM proteins. We then describe how to deglycosylate and digest ECM-enriched protein preparations into peptides for subsequent analysis by mass spectrometry.
Collapse
Affiliation(s)
- Alexandra Naba
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology;
| | | | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
105
|
|
106
|
Holmes WE, Angel TE, Li KW, Hellerstein MK. Dynamic Proteomics: In Vivo Proteome-Wide Measurement of Protein Kinetics Using Metabolic Labeling. Methods Enzymol 2015; 561:219-76. [PMID: 26358907 DOI: 10.1016/bs.mie.2015.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Control of biosynthetic and catabolic rates of polymers, including proteins, stands at the center of phenotype, physiologic adaptation, and disease pathogenesis. Advances in stable isotope-labeling concepts and mass spectrometric instrumentation now allow accurate in vivo measurement of protein synthesis and turnover rates, both for targeted proteins and for unbiased screening across the proteome. We describe here the underlying principles and operational protocols for measuring protein dynamics, focusing on metabolic labeling with (2)H2O (heavy water) combined with tandem mass spectrometric analysis of mass isotopomer abundances in trypsin-generated peptides. The core principles of combinatorial analysis (mass isotopomer distribution analysis or MIDA) are reviewed in detail, including practical advantages, limitations, and technical procedures to ensure optimal kinetic results. Technical factors include heavy water labeling protocols, optimal duration of labeling, clean up and simplification of sample matrices, accurate quantitation of mass isotopomer abundances in peptides, criteria for adequacy of mass spectrometric abundance measurements, and calculation algorithms. Some applications are described, including the noninvasive "virtual biopsy" strategy for measuring molecular flux rates in tissues through measurements in body fluids. In addition, application of heavy water labeling to measure flux lipidomics is noted. In summary, the combination of stable isotope labeling, particularly from (2)H2O, with tandem mass spectrometric analysis of mass isotopomer abundances in peptides, provides a powerful approach for characterizing the dynamics of proteins across the global proteome. Many applications in research and clinical medicine have been achieved and many others can be envisioned.
Collapse
Affiliation(s)
- W E Holmes
- KineMed Inc., Emeryville, California, USA
| | - T E Angel
- KineMed Inc., Emeryville, California, USA
| | - K W Li
- KineMed Inc., Emeryville, California, USA
| | - M K Hellerstein
- KineMed Inc., Emeryville, California, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
107
|
Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA, Schwarzmayr T, Strom TM, Eickelberg O, Mann M. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 2015; 11:819. [PMID: 26174933 PMCID: PMC4547847 DOI: 10.15252/msb.20156123] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis of proteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies.
Collapse
Affiliation(s)
- Herbert B Schiller
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christoph Schaab
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Richard A Scheltema
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
108
|
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol 2015; 49:10-24. [PMID: 26163349 DOI: 10.1016/j.matbio.2015.06.003] [Citation(s) in RCA: 709] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of multicellular organisms that provides mechanical and chemical cues that orchestrate cellular and tissue organization and functions. Degradation, hyperproduction or alteration of the composition of the ECM cause or accompany numerous pathologies. Thus, a better characterization of ECM composition, metabolism, and biology can lead to the identification of novel prognostic and diagnostic markers and therapeutic opportunities. The development over the last few years of high-throughput ("omics") approaches has considerably accelerated the pace of discovery in life sciences. In this review, we describe new bioinformatic tools and experimental strategies for ECM research, and illustrate how these tools and approaches can be exploited to provide novel insights in our understanding of ECM biology. We also introduce a web platform "the matrisome project" and the database MatrisomeDB that compiles in silico and in vivo data on the matrisome, defined as the ensemble of genes encoding ECM and ECM-associated proteins. Finally, we present a first draft of an ECM atlas built by compiling proteomics data on the ECM composition of 14 different tissues and tumor types.
Collapse
Affiliation(s)
- Alexandra Naba
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Karl R Clauser
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Huiming Ding
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Barbara K. Ostrom Bioinformatics and Computing facility at the Swanson Biotechnology Center, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Barbara K. Ostrom Bioinformatics and Computing facility at the Swanson Biotechnology Center, Cambridge, MA 02139, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
109
|
Decaris ML, Emson CL, Li K, Gatmaitan M, Luo F, Cattin J, Nakamura C, Holmes WE, Angel TE, Peters MG, Turner SM, Hellerstein MK. Turnover rates of hepatic collagen and circulating collagen-associated proteins in humans with chronic liver disease. PLoS One 2015; 10:e0123311. [PMID: 25909381 PMCID: PMC4409311 DOI: 10.1371/journal.pone.0123311] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2014] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
Accumulation and degradation of scar tissue in fibrotic liver disease occur slowly, typically over many years. Direct measurement of fibrogenesis, the rate of scar tissue deposition, may provide valuable therapeutic and prognostic information. We describe here results from a pilot study utilizing in vivo metabolic labeling to measure the turnover rate of hepatic collagen and collagen-associated proteins in plasma for the first time in human subjects. Eight subjects with chronic liver disease were labeled with daily oral doses of 2H2O for up to 8 weeks prior to diagnostic liver biopsy and plasma collection. Tandem mass spectrometry was used to measure the abundance and fractional synthesis rate (FSR) of proteins in liver and blood. Relative protein abundance and FSR data in liver revealed marked differences among subjects. FSRs of hepatic type I and III collagen ranged from 0.2–0.6% per day (half-lives of 4 months to a year) and correlated significantly with worsening histologic fibrosis. Analysis of plasma protein turnover revealed two collagen-associated proteins, lumican and transforming growth factor beta-induced-protein (TGFBI), exhibiting FSRs that correlated significantly with FSRs of hepatic collagen. In summary, this is the first direct measurement of liver collagen turnover in vivo in humans and suggests a high rate of collagen remodeling in advanced fibrosis. In addition, the FSRs of collagen-associated proteins in plasma are measurable and may provide a novel strategy for monitoring hepatic fibrogenesis rates.
Collapse
Affiliation(s)
- Martin L. Decaris
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
- * E-mail: (ST); (MD)
| | - Claire L. Emson
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
| | - Kelvin Li
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
| | - Michelle Gatmaitan
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
| | - Flora Luo
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
| | - Jerome Cattin
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
| | - Corelle Nakamura
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
| | - William E. Holmes
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
| | - Thomas E. Angel
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
| | - Marion G. Peters
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, California, United States of America
| | - Scott M. Turner
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
- * E-mail: (ST); (MD)
| | - Marc K. Hellerstein
- Department of Fibrosis, KineMed Inc., Emeryville, California, United States of America
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| |
Collapse
|