101
|
Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide. ACTA ACUST UNITED AC 2015; 1:1-11. [PMID: 29766984 PMCID: PMC5884463 DOI: 10.1016/j.aninu.2015.02.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
Poultry production has undergone a substantial increase compared to the livestock industries since 1970. However, the industry worldwide is now facing challenges with the removal of in-feed antibiotics completely or gradually, as the once well-controlled poultry diseases have re-emerged to cause tremendous loss of production. Necrotic enteritis (NE) is one of the most important diseases which costs the industry over two billion dollars annually. In this paper, we review the progress on the etiology of NE and its control through dietary modifications, pre- and probiotics, short chain fatty acids, and vaccination. The other likely measures resulted in the most advances in the toxin characterization are also discussed. Vaccine strategies may have greater potential for the control of NE mainly due to clearer etiology of NE having been elucidated in recent years with the identification of necrotic enteritis toxin B-like (NetB) toxin. Therefore, the use of alternatives to in-feed antibiotics with a better understanding of the relationship between nutrition and NE, and limiting exposure to infectious agents through biosecurity and vaccination, might be a tool to reduce the incidence of NE and to improve gut health in the absence of in-feed antibiotics. More importantly, the combinations of different measures may achieve greater protection of birds against the disease. Among all the alternatives investigated, prebiotics, organic acids and vaccination have shown improved gastrointestinal health and thus, have potential for the control of NE.
Collapse
|
102
|
Huff GR, Huff WE, Rath NC, El-Gohary FA, Zhou ZY, Shini S. Efficacy of a novel prebiotic and a commercial probiotic in reducing mortality and production losses due to cold stress and Escherichia coli challenge of broiler chicks 1. Poult Sci 2015; 94:918-26. [PMID: 25743418 DOI: 10.3382/ps/pev068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 12/20/2022] Open
Abstract
Prebiotics consisting of resistant starch may alter intestinal ecology, thus modulating inflammation and increasing intestinal health through increased cecal production of short-chain fatty acids (SCFA). Probiotics may directly alter the intestinal microbiome, resulting in the same effects. We hypothesize that adding prebiotics and probiotics to feed may protect the gut of young chicks under stress. Studies 1, 2, and 3 evaluated treatments in a cold stress (CS) and Escherichia coli (EC) oral challenge to 430 day-old broiler chicks for 3 wk. In study 1, prebiotics were administered as 15% of the diet during the first week only and consisted of the following: Hi-Maize resistant starch (HM), potato starch (PS), or raw potato (RP). In studies 2 and 3, the PS treatment was identical to study 1, and an additional probiotic treatment (PRO) was administered in feed and water. In study 1, PS protected BW during the first week and decreased the mortality of CS/EC-challenged birds during the first week and wk 3, while RP decreased the mortality of warm-brooded birds challenged with EC during the first week. In study 2, PS decreased and PRO increased the main effect mean (MEM) of the first week BW. PS and PRO numerically decreased the feed conversion ratio (FCR) by 23 and 29 points, respectively, in CS/EC-challenged birds with no effects on mortality. In study 3, PS decreased and PRO increased the first week and wk 3 MEM BW. PS numerically increased FCR by 16 points, while PRO decreased FCR by 2 points. Both PS and PRO tended to increase overall mortality, and PRO significantly increased mortality in the CS/EC challenge. These results suggest that the effects of PS may be too variable in this challenge model for further study; however, the PRO treatment improved production values and may have potential as an alternative to antibiotics during the first weeks after hatch.
Collapse
Affiliation(s)
- G R Huff
- USDA, Agricultural Research Service, Poultry Production and Product Safety Research Unit, Fayetteville, AR 72701
| | - W E Huff
- USDA, Agricultural Research Service, Poultry Production and Product Safety Research Unit, Fayetteville, AR 72701
| | - N C Rath
- USDA, Agricultural Research Service, Poultry Production and Product Safety Research Unit, Fayetteville, AR 72701
| | - F A El-Gohary
- Department of Animal Hygiene, Mansoura University, Elgomhouria St. Mansoura City 35516, Egypt
| | - Z Y Zhou
- Department of Veterinary Medicine, Southwest University, 160 Xueyuan Road Rongchang County, Chongqing, 402460, China
| | - S Shini
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
103
|
Tousson E, Salama AF, Ibrahim W, Sakr S, Masoud A, Akela MA, El-Rahman MAA. Epigenetic Study of Parkinson's Disease in Experimental Animal Model. PHARMACOLOGIA 2015; 6:52-62. [DOI: 10.5567/pharmacologia.2015.52.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
104
|
Jiang Y, Zhang WH, Gao F, Zhou GH. Micro-encapsulated sodium butyrate attenuates oxidative stress induced by corticosterone exposure and modulates apoptosis in intestinal mucosa of broiler chickens. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an13348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to investigate the effects of micro-encapsulated sodium butyrate (MSB) on oxidative stress and apoptosis induced by dietary corticosterone (CORT) in the intestinal mucosa of broiler chickens. In total, 120 1-day-old male broilers (Arbor Acres) were randomly allocated to two treatment groups and were fed on a control diet (without MSB) or 0.4 g MSB/kg diet. Each treatment had six replicates with five chickens each. From 7 days of age onward, 50% of the chickens in each dietary treatment were subjected to CORT treatment (30 mg/kg of diet). The experimental period was 21 days. The results showed that CORT administration decreased (P < 0.001) feed intake and bodyweight gain and increased (P < 0.001) feed to gain ratio (F : G) of broiler chickens. The dietary MSB supplementation decreased (P < 0.01) F : G and there was an interaction between MSB and CORT on F : G (P < 0.05). Moreover, the activities of superoxide dismutase, glutathione peroxidase and catalase in intestinal mucosa were decreased (P < 0.01 or P < 0.001), and the concentrations of malondialdehyde in the intestinal mucosa were elevated (P < 0.01) by CORT administration. In contrast, treatment of MSB increased (P < 0.01) the catalase activities in duodenal and jejunal mucosa and decreased (P < 0.01) the malondialdehyde concentrations in duodenal mucosa. Higher apoptosis index and lower mRNA expressions of bcl-2 in intestinal epithelial cells were induced (P < 0.05) by CORT treatment. However, MSB decreased (P < 0.05) the apoptosis index and increased the bcl-2 expression. These results suggest that dietary MSB can partially attenuate oxidative stress induced by CORT treatment and inhibit apoptosis of intestinal epithelial cells in broiler chickens.
Collapse
|
105
|
Zhou ZY, Packialakshmi B, Makkar SK, Dridi S, Rath NC. Effect of butyrate on immune response of a chicken macrophage cell line. Vet Immunol Immunopathol 2014; 162:24-32. [PMID: 25278494 DOI: 10.1016/j.vetimm.2014.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/22/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022]
Abstract
Butyric acid is a major short chain fatty acid (SCFA), produced in the gastrointestinal tract by anaerobic bacterial fermentation, that has beneficial health effects in many species including poultry. To understand the immunomodulating effects of butyrate on avian macrophage, we treated a naturally transformed line of chicken macrophage cells named HTC with Na-butyrate in the absence or presence of Salmonella typhimurium lipopolysaccharide (LPS) or phorbol-12-myristate-13-acetate (PMA), a metabolic activator, evaluating its various functional parameters. The results demonstrate that, butyrate by itself had no significant effect on variables such as nitric oxide (NO) production and the expression of genes associated with various inflammatory cytokines but it inhibited NO production, and reduced the expression of cytokines such as IL-1β, IL-6, IFN-γ, and IL-10 in LPS-stimulated cells. Butyrate decreased the expression of TGF-β3 in the presence or absence of LPS, while it had no effect on IL-4, Tβ4, and MMP2 gene expression. In addition, butyrate augmented PMA induced oxidative burst indicated by DCF-DA oxidation and restored LPS induced attenuation of tartrate resistant acid phosphatase (TRAP) activity. Although butyrate had no significant effect on phagocytosis or matrix metalloproteinase (MMP) activities of resting macrophages, it significantly suppressed the effects induced by their respective stimulants such as LPS induced phagocytosis and PMA induced MMP expression. These results suggest that butyrate has immunomodulatory property in the presence of agents that incite the cells thus, has potential to control inflammation and restore immune homeostasis.
Collapse
Affiliation(s)
- Z Y Zhou
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Chongqing 402460, Rongchang County, China; USDA/ARS, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA
| | - B Packialakshmi
- USDA/ARS, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA; Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - S K Makkar
- USDA/ARS, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA; Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - S Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - N C Rath
- USDA/ARS, Poultry Production and Product Safety Research Unit, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
106
|
Chamba F, Puyalto M, Ortiz A, Torrealba H, Mallo J, Riboty R. Effect of Partially Protected Sodium Butyrate on Performance, Digestive Organs, Intestinal Villi and E. coli Development in Broilers Chickens. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ijps.2014.390.396] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
107
|
Edmonds M, Johal S, Moreland S. Effect of supplemental humic and butyric acid on performance and mortality in broilers raised under various environmental conditions. J APPL POULTRY RES 2014. [DOI: 10.3382/japr.2013-00901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
108
|
Csikó G, Nagy G, Mátis G, Neogrády Z, Kulcsár Á, Jerzsele A, Szekér K, Gálfi P. Effects of dietary sodium butyrate on hepatic biotransformation and pharmacokinetics of erythromycin in chickens. J Vet Pharmacol Ther 2014; 37:406-12. [PMID: 24628435 DOI: 10.1111/jvp.12109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/12/2014] [Indexed: 11/27/2022]
Abstract
Butyrate, a commonly applied feed additive in poultry nutrition, can modify the expression of certain genes, including those encoding cytochrome P450 (CYP) enzymes. In comparative in vitro and in vivo experiments, the effect of butyrate on hepatic CYP genes was examined in primary cultures of chicken hepatocytes and in liver samples of chickens collected from animals that had been given butyrate as a feed additive. Moreover, the effect of butyrate on the biotransformation of erythromycin, a marker substance for the activity of enzymes of the CYP3A family, was investigated in vitro and in vivo. Butyrate increased the expression of the avian-specific CYP2H1 both in vitro and in vivo. In contrast, the avian CYP3A37 expression was decreased in hepatocytes following butyrate exposure, but not in the in vivo model. CYP1A was suppressed by butyrate in the in vitro experiments, and overexpressed in vivo in butyrate-fed animals. The concomitant incubation of hepatocytes with butyrate and erythromycin led to an increased CYP2H1 expression and a less pronounced inhibition of CYP3A37. In in vivo pharmacokinetic experiments, butyrate-fed animals given a single i.m. injection of erythromycin, a slower absorption phase (longer T(half-abs) and delayed T(max)) but a rapid elimination phase of this marker substrate was observed. Although these measurable differences were detected in the pharmacokinetics of erythromycin, it is unlikely that a concomitant application of sodium butyrate with erythromycin or other CYP substrates will cause clinically significant feed-drug interaction in chickens.
Collapse
Affiliation(s)
- G Csikó
- Department of Pharmacology and Toxicology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Harrison LM, Balan KV, Babu US. Dietary fatty acids and immune response to food-borne bacterial infections. Nutrients 2013; 5:1801-22. [PMID: 23698167 PMCID: PMC3708349 DOI: 10.3390/nu5051801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 01/18/2023] Open
Abstract
Functional innate and acquired immune responses are required to protect the host from pathogenic bacterial infections. Modulation of host immune functions may have beneficial or deleterious effects on disease outcome. Different types of dietary fatty acids have been shown to have variable effects on bacterial clearance and disease outcome through suppression or activation of immune responses. Therefore, we have chosen to review research across experimental models and food sources on the effects of commonly consumed fatty acids on the most common food-borne pathogens, including Salmonella sp., Campylobacter sp., Shiga toxin-producing Escherichia coli, Shigella sp., Listeria monocytogenes, and Staphylococcus aureus. Altogether, the compilation of literature suggests that no single fatty acid is an answer for protection from all food-borne pathogens, and further research is necessary to determine the best approach to improve disease outcomes.
Collapse
Affiliation(s)
- Lisa M Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | | | |
Collapse
|
110
|
Morales-Lopez R, Brufau J. Immune-modulatory effects of dietarySaccharomyces cerevisiaecell wall in broiler chickens inoculated withEscherichia colilipopolysaccharide. Br Poult Sci 2013; 54:247-51. [DOI: 10.1080/00071668.2013.782386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
111
|
|
112
|
Zhang WH, Gao F, Zhu QF, Li C, Jiang Y, Dai SF, Zhou GH. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult Sci 2011; 90:2592-9. [PMID: 22010246 DOI: 10.3382/ps.2011-01446] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study was to investigate the effects of dietary microencapsulated sodium butyrate (SB) and acute pre-slaughter stress, mimicked by subcutaneous corticosterone (CORT) administration, on BW, carcass characteristics, muscle antioxidant status, and meat quality of broiler chickens. A total of 120 1-d-old broiler chickens were fed a control diet (without SB) or a 0.4-g microencapsulated SB/kg diet. On 42 d, half of the birds from each treatment were given 1 single subcutaneous injection of CORT (4 mg/kg of BW in corn oil) to mimic acute stress, whereas the other half were injected with the same amount of corn oil (sham control). Three hours later, BW loss was determined and breast meat samples were collected. The results showed that the BW of the CORT-challenged groups lost much more than the sham control group (P < 0.001), whereas it was alleviated by the dietary microencapsulated SB (P < 0.05). Meanwhile, the catalase activity was decreased and malondialdehyde level was increased by the stress (P < 0.05), and the microencapsulated-SB diet significantly inhibited this effect (P < 0.05). Lower pH values and higher yellowness values were also observed in CORT-challenged chickens (P < 0.05), and the microencapsulated-SB diet treatment partially exerted a preventive effect. Microencapsulated SB significantly decreased the contents of saturated fatty acids and C18:0 (P < 0.01 and P < 0.001), and increased C20:0 and C20:4 contents. However, the effect of the stress treatment on fatty acid composition was insignificant (P > 0.05). In addition, diet and stress did not significantly influence carcass characteristics and the chemical composition of breast meat (P > 0.05). These results suggest that microencapsulated SB was favorable for chickens in the presence of stress, which may be partially ascribed to the ability of SB to decrease catabolism and oxidative injury of tissues.
Collapse
Affiliation(s)
- W H Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|