Castaneda F, Zimmermann D, Nolte J, Baumbach JI. Role of undecan-2-one on ethanol-induced apoptosis in HepG2 cells.
Cell Biol Toxicol 2007;
23:477-85. [PMID:
17453350 DOI:
10.1007/s10565-007-9009-y]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 03/16/2007] [Indexed: 12/20/2022]
Abstract
Based on the reduced expression of ethanol-oxidizing enzymes in human hepatocellular carcinoma (HepG2) cells, we analyzed the role of nonoxidative metabolites in ethanol-induced apoptosis in HepG2 cells. For this purpose, an analysis of volatile metabolites of ethanol using ion-mobility spectrometry and gas chromatography-mass spectrometry was performed. HepG2 cells exposed to 1 mmol/L ethanol exhibited significant synthesis of undecan-2-one compared to untreated cells. Undecan-2-one is a fatty acid ethyl ester metabolite synthesized through a nonoxidative pathway. Undecan-2-one had a dose-dependent cytotoxic effect on HepG2 cells as shown by release of lactate dehydrogenase (LDH). The most notable finding of this study was the potentiation of ethanol-induced apoptosis demonstrated by an increased apoptotic rate induced by undecan-2-one in ethanol-treated HepG2 cells. The data presented in this study contribute to the better understanding of the molecular mechanisms of ethanol exposure at low concentration in HepG2 cells, a human hepatocellular carcinoma-derived cell line.
Collapse