101
|
González-Ravina C, Aguirre-Lipperheide M, Pinto F, Martín-Lozano D, Fernández-Sánchez M, Blasco V, Santamaría-López E, Candenas L. Effect of dietary supplementation with a highly pure and concentrated docosahexaenoic acid (DHA) supplement on human sperm function. Reprod Biol 2018; 18:282-288. [DOI: 10.1016/j.repbio.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
|
102
|
The effect of APOE genotype on Alzheimer's disease risk is influenced by sex and docosahexaenoic acid status. Neurobiol Aging 2018; 69:209-220. [DOI: 10.1016/j.neurobiolaging.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/21/2023]
|
103
|
Derbyshire E. Brain Health across the Lifespan: A Systematic Review on the Role of Omega-3 Fatty Acid Supplements. Nutrients 2018; 10:E1094. [PMID: 30111738 PMCID: PMC6116096 DOI: 10.3390/nu10081094] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
The brain is the most significant and complex organ of the human body. Increasingly, we are becoming aware that certain nutrients may help to safeguard brain health. An expanse of research has investigated the effects of omega fatty acids in relation to brain health but effects across the lifespan have not been widely evaluated. The present systematic review collated evidence from 25 randomized controlled trials (n = 3633) published since 2013. Compared with control groups, omega-3 supplementation generally correlated with improvements in blood biomarkers. Subsequently, these appear to benefit those with lower baseline fatty acid levels, who are breastfeeding or who have neuropsychiatric conditions. Whilst multiple studies indicate that omega fatty acids can protect against neurodegeneration in older adults, more work is needed in the years preceding the diagnosis of such medical conditions. Bearing in mind the scale of ageing populations and rising healthcare costs linked to poor brain health, omega supplementation could be a useful strategy for helping to augment dietary intakes and support brain health across the lifespan. Ongoing research is now needed using harmonious methodologies, supplement dosages, ratios and intervention periods to help formulate congruent conclusions.
Collapse
|
104
|
Huang TH, Wang PW, Yang SC, Chou WL, Fang JY. Cosmetic and Therapeutic Applications of Fish Oil's Fatty Acids on the Skin. Mar Drugs 2018; 16:E256. [PMID: 30061538 PMCID: PMC6117694 DOI: 10.3390/md16080256] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023] Open
Abstract
Fish oil has been broadly reported as a potential supplement to ameliorate the severity of some skin disorders such as photoaging, skin cancer, allergy, dermatitis, cutaneous wounds, and melanogenesis. There has been increasing interest in the relationship of fish oil with skin protection and homeostasis, especially with respect to the omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). The other PUFAs, such as α-linolenic acid (ALA) and linoleic acid (LA), also show a beneficial effect on the skin. The major mechanisms of PUFAs for attenuating cutaneous inflammation are the competition with the inflammatory arachidonic acid and the inhibition of proinflammatory eicosanoid production. On the other hand, PUFAs in fish oil can be the regulators that affect the synthesis and activity of cytokines for promoting wound healing. A systemic review was conducted to demonstrate the association between fish oil supplementation and the benefits to the skin. The following describes the different cosmetic and therapeutic approaches using fatty acids derived from fish oil, especially ALA, LA, DHA, and EPA. This review summarizes the cutaneous application of fish oil and the related fatty acids in the cell-based, animal-based, and clinical models. The research data relating to fish oil treatment of skin disorders suggest a way forward for generating advances in cosmetic and dermatological uses.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 33303, Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Wei-Ling Chou
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 33302, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan 33305, Taiwan.
| |
Collapse
|
105
|
Docosanoids Promote Neurogenesis and Angiogenesis, Blood-Brain Barrier Integrity, Penumbra Protection, and Neurobehavioral Recovery After Experimental Ischemic Stroke. Mol Neurobiol 2018; 55:7090-7106. [PMID: 29858774 DOI: 10.1007/s12035-018-1136-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
Abstract
Docosahexaenoic acid (DHA) and neuroprotectin D1 (NPD1) are neuroprotective after experimental ischemic stroke. To explore underlying mechanisms, SD rats underwent 2 h of middle cerebral artery occlusion (MCAo) and treated with DHA (5 mg/kg, IV) or NPD1 (5 μg/per rat, ICV) and vehicles 1 h after. Neuro-behavioral assessments was conducted on days 1, 2, and 3, and on week 1, 2, 3, or 4. BrdU was injected on days 4, 5, and 6, immunohistochemistry was performed on week 2 or 4, MRI on day 7, and lipidomic analysis at 4 and 5 h after onset of stroke. DHA improved short- and long-term behavioral functions and reduced cortical, subcortical, and total infarct volumes (by 42, 47, and 31%, respectively) after 2 weeks and reduced tissue loss by 50% after 4 weeks. DHA increased the number of BrdU+/Ki-67+, BrdU+/DCX+, and BrdU+/NeuN+ cells in the cortex, subventricular zone, and dentate gyrus and potentiated NPD1 synthesis in the penumbra at 5 h after MCAo. NPD1 improved behavior, reduced lesion volumes, protected ischemic penumbra, increased NeuN, GFAP, SMI-71-positive cells and vessels, axonal regeneration in the penumbra, and attenuated blood-brain barrier (BBB) after MCAo. We conclude that docosanoid administration increases neurogenesis and angiogenesis, activates NPD1 synthesis in the penumbra, and diminishes BBB permeability, which correlates to long-term neurobehavioral recovery after experimental ischemic stroke.
Collapse
|
106
|
Ruiz-Roso MB, Olivares-Álvaro E, Quintela JC, Ballesteros S, Espinosa-Parrilla JF, Ruiz-Roso B, Lahera V, de Las Heras N, Martín-Fernández B. Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA. Neuromolecular Med 2018; 20:328-342. [PMID: 29846873 DOI: 10.1007/s12017-018-8496-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/24/2018] [Indexed: 02/04/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H2O2) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O2-) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H2O2-induced cell viability reduction in BV-2 activated cells and O2- production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.
Collapse
Affiliation(s)
- María Belén Ruiz-Roso
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Elena Olivares-Álvaro
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | | | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | | | - Baltasar Ruiz-Roso
- Department of Nutrition and Bromatology I (Nutrition), Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Natalia de Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain.
- Natac Biotech S.L., 28923, Alcorcón, Madrid, Spain.
| |
Collapse
|
107
|
Singh H, Kumar C, Singh N, Paul S, Jain SK. Nanoencapsulation of docosahexaenoic acid (DHA) using a combination of food grade polymeric wall materials and its application for improvement in bioavailability and oxidative stability. Food Funct 2018; 9:2213-2227. [DOI: 10.1039/c7fo01391d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developed nanoencapsulated DHA powder of microalgae oil with improved oxidative stability and bioavailability in brain using combination of wall materials.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of pharmaceutical sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Chateshwar Kumar
- Department of pharmaceutical sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Narpinder Singh
- Department of Food Science and technology
- Guru Nanak Dev University
- Amritsar
- India
| | - Surinder Paul
- Department of Pathology
- Government Medical College
- Amritsar
- India
| | - Subheet Kumar Jain
- Department of pharmaceutical sciences
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
108
|
Abstract
The functions of n-3 fatty acids are known to be diverse, and they play roles in cardiovascular and neuronal systems and in lipid metabolism. Docosahexaenoic acid (DHA), which is the most abundant n-3 fatty acid in the brain, is essential for the maintenance of brain functions throughout the human lifespan. Epidemiological studies have demonstrated that reduced n-3 fatty acid intake is closely associated with the onset of mental and neurological diseases such as brain developmental disorders, depression, and Alzheimer's disease. DHA is primarily involved in neurogenesis, synapse formation, neuronal differentiation, neurite outgrowth, maintenance of membrane fluidity, anti-inflammatory action, and antioxidant action. Its mechanism of action include: 1) the effects on ion channels and membrane bound receptors/enzymes achieved by changing membrane fluidity, as a cell membrane constituent, and 2) free DHA molecules, derived from the cell membrane that directly or metabolically, by conversion to protectin D1 and other molecules, indirectly regulates the gene expression and the activity of intracellular proteins. Although future studies are required, the supplementation of n-3 fatty acids such as DHA may suppress the deterioration of brain functions, delay the onset and progression of various mental/neurological diseases, and further improve the outcome of the neuronal diseases.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine
| |
Collapse
|
109
|
Alzheimer’s Disease, Brain Injury, and C.N.S. Nanotherapy in Humans: Sonoporation Augmenting Drug Targeting. Med Sci (Basel) 2017. [PMCID: PMC5753658 DOI: 10.3390/medsci5040029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Owing to the complexity of neurodegenerative diseases, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted nanoemulsion) are available. Versatile small-molecule drug(s) targeting multiple pathways of Alzheimer’s disease pathogenesis are known. By incorporating such drug(s) into the targeted lipid-coated microbubble/nanoparticle-derived (LCM/ND) lipid nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly scavenger receptor class B type I (SR-BI)), making it possible for various Alzheimer’s-related cell types to be simultaneously sought for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble (LCM) subpopulation (i.e., a stable LCM suspension); such LCM substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer’s patient.
Collapse
|
110
|
Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 2017; 7:11263. [PMID: 28900242 PMCID: PMC5596017 DOI: 10.1038/s41598-017-11766-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022] Open
Abstract
Docosahexaenoic acid (DHA) is uniquely concentrated in the brain, and is essential for its function, but must be mostly acquired from diet. Most of the current supplements of DHA, including fish oil and krill oil, do not significantly increase brain DHA, because they are hydrolyzed to free DHA and are absorbed as triacylglycerol, whereas the transporter at blood brain barrier is specific for phospholipid form of DHA. Here we show that oral administration of DHA to normal adult mice as lysophosphatidylcholine (LPC) (40 mg DHA/kg) for 30 days increased DHA content of the brain by >2-fold. In contrast, the same amount of free DHA did not increase brain DHA, but increased the DHA in adipose tissue and heart. Moreover, LPC-DHA treatment markedly improved the spatial learning and memory, as measured by Morris water maze test, whereas free DHA had no effect. The brain derived neurotrophic factor increased in all brain regions with LPC-DHA, but not with free DHA. These studies show that dietary LPC-DHA efficiently increases brain DHA content and improves brain function in adult mammals, thus providing a novel nutraceutical approach for the prevention and treatment of neurological diseases associated with DHA deficiency, such as Alzheimer’s disease.
Collapse
|
111
|
Basak S, Schmandt N, Gicheru Y, Chakrapani S. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel. eLife 2017; 6:23886. [PMID: 28262093 PMCID: PMC5378477 DOI: 10.7554/elife.23886] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω−3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels. DOI:http://dx.doi.org/10.7554/eLife.23886.001 The nerve cells (or neurons) in the brain communicate with each other by releasing chemicals called neurotransmitters that bind to ion channels on neighboring neurons. This ultimately causes ions to flow in or out of the receiving neuron through these ion channels; this ion flow determines how the neuron responds. One family of ion channels that is found at the junction between neurons, and between neurons and muscle fibers, is known as the pentameric ligand-gated ion channels (or pLGICs). These channels act as ‘gates’ that open to allow ions through them when a neurotransmitter binds to the channel. In addition to the open ‘active’ state, the channels can take on two different ‘inactive’ states that do not allow ions to pass through the channel: a closed (resting) state and a desensitized state (that is still bound to the neurotransmitter). Understanding how channels switch between these states is important for designing drugs that correct problems that cause the channels to work incorrectly. Problems that affect the desensitized state have been linked to neurological disorders such as epilepsy. Medically important molecules such as anesthetics and alcohols are thought to affect desensitization, and drugs that target desensitized ion channels may present ways of treating neurological disorders with fewer side effects. Docosahexaenoic acid (DHA) is an abundant lipid molecule that is present in the membranes of neurons. It is one of the key ingredients in fish oil supplements and is thought to enhance learning and memory. DHA affects the desensitization of pLGICs but it is not clear exactly how it does so. Basak et al. now show that DHA affects a bacterial pLGIC in the same way as it affects human channels – by enhancing desensitization. Using a technique called X-ray crystallography to analyze the channel while bound to DHA revealed a previously unobserved channel structure. The DHA molecule binds to a site at the edge of the channel and causes a change in its structure that leaves the upper part of the channel open while the lower part is constricted. Basak et al. predict that molecules such as anesthetics target this desensitized state. The next step will be to obtain the structures of bacterial and human pLGIC channels in a natural membrane environment. This will allow us to better understand the changes in structure that the channels go through as they transmit signals between neurons, and so help in the development of new treatments for neurological disorders. DOI:http://dx.doi.org/10.7554/eLife.23886.002
Collapse
Affiliation(s)
- Sandip Basak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Nicolaus Schmandt
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Yvonne Gicheru
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
112
|
Atomic determinants of BK channel activation by polyunsaturated fatty acids. Proc Natl Acad Sci U S A 2016; 113:13905-13910. [PMID: 27849612 DOI: 10.1073/pnas.1615562113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated ω-3 fatty acid enriched in oily fish, contributes to better health by affecting multiple targets. Large-conductance Ca2+- and voltage-gated Slo1 BK channels are directly activated by nanomolar levels of DHA. We investigated DHA-channel interaction by manipulating both the fatty acid structure and the channel composition through the site-directed incorporation of unnatural amino acids. Electrophysiological measurements show that the para-group of a Tyr residue near the ion conduction pathway has a critical role. To robustly activate the channel, ionization must occur readily by a fatty acid for a good efficacy, and a long nonpolar acyl tail with a Z double bond present at the halfway position for a high affinity. The results suggest that DHA and the channel form an ion-dipole bond to promote opening and demonstrate the channel druggability. DHA, a marine-derived nutraceutical, represents a promising lead compound for rational drug design and discovery.
Collapse
|