101
|
Haussler MR, Haussler CA, Whitfield GK, Hsieh JC, Thompson PD, Barthel TK, Bartik L, Egan JB, Wu Y, Kubicek JL, Lowmiller CL, Moffet EW, Forster RE, Jurutka PW. The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the "Fountain of Youth" to mediate healthful aging. J Steroid Biochem Mol Biol 2010; 121:88-97. [PMID: 20227497 PMCID: PMC2906618 DOI: 10.1016/j.jsbmb.2010.03.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/08/2010] [Indexed: 12/13/2022]
Abstract
The nuclear vitamin D receptor (VDR) binds 1,25-dihydroxyvitamin D3 (1,25D), its high affinity renal endocrine ligand, to signal intestinal calcium and phosphate absorption plus bone remodeling, generating a mineralized skeleton free of rickets/osteomalacia with a reduced risk of osteoporotic fractures. 1,25D/VDR signaling regulates the expression of TRPV6, BGP, SPP1, LRP5, RANKL and OPG, while achieving feedback control of mineral ions to prevent age-related ectopic calcification by governing CYP24A1, PTH, FGF23, PHEX, and klotho transcription. Vitamin D also elicits numerous intracrine actions when circulating 25-hydroxyvitamin D3, the metabolite reflecting vitamin D status, is converted to 1,25D locally by extrarenal CYP27B1, and binds VDR to promote immunoregulation, antimicrobial defense, xenobiotic detoxification, anti-inflammatory/anticancer actions and cardiovascular benefits. VDR also affects Wnt signaling through direct interaction with beta-catenin, ligand-dependently blunting beta-catenin mediated transcription in colon cancer cells to attenuate growth, while potentiating beta-catenin signaling via VDR ligand-independent mechanisms in osteoblasts and keratinocytes to function osteogenically and as a pro-hair cycling receptor, respectively. Finally, VDR also drives the mammalian hair cycle in conjunction with the hairless corepressor by repressing SOSTDC1, S100A8/S100A9, and PTHrP. Hair provides a shield against UV-induced skin damage and cancer in terrestrial mammals, illuminating another function of VDR that facilitates healthful aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine-Phoenix in partnership with Arizona State University, Phoenix, AZ 85004-2157, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Chefetz I, Sprecher E. Familial tumoral calcinosis and the role of O-glycosylation in the maintenance of phosphate homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:847-52. [PMID: 19013236 PMCID: PMC3169301 DOI: 10.1016/j.bbadis.2008.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 12/18/2022]
Abstract
Familial tumoral calcinosis refers to a group of disorders inherited in an autosomal recessive fashion. Hyperphosphatemic tumoral calcinosis is characterized by increased re-absorption of phosphate through the renal proximal tubule, resulting in elevated phosphate concentration and deposition of calcified deposits in cutaneous and subcutaneous tissues, as well as, occasionally, in visceral organs. The disease was found to result from mutations in at least 3 genes: GALNT3, encoding a glycosyltransferase termed ppGalNacT3, FGF23 encoding a potent phosphaturic protein, and KL encoding Klotho. Recent data showed that ppGalNacT3 mediates O-glycosylation of FGF23, thereby allowing for its secretion and possibly protecting it from proteolysis-mediated inactivation. Klotho was found to serve as a co-receptor for FGF23, thereby integrating the genetic data into a single physiological system. The elucidation of the molecular basis of HFTC shed new light upon the mechanisms regulating phosphate homeostasis, suggesting innovative therapeutic strategies for the management of hyperphosphatemia in common acquired conditions such as chronic renal failure.
Collapse
Affiliation(s)
- Ilana Chefetz
- Center for Translational Genetics, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Center for Translational Genetics, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
103
|
Brown EM. Anti-parathyroid and anti-calcium sensing receptor antibodies in autoimmune hypoparathyroidism. Endocrinol Metab Clin North Am 2009; 38:437-45, x. [PMID: 19328421 PMCID: PMC2700354 DOI: 10.1016/j.ecl.2009.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The parathyroid glands are an infrequent target for autoimmunity, the exception being autoimmune polyglandular syndrome type 1, in which autoimmune hypoparathyroidism is the rule. Antibodies that are directed against the parathyroid cell surface calcium-sensing receptor (CaSR) have recently been recognized to be present in the serum of patients with autoimmune hypoparathyroidism. In some individuals, these anti-CaSR antibodies have also been shown to produce functional activation of the receptor, suggesting a direct pathogenic role in hypocalcemia. Additionally, a few hypercalcemic patients with autoimmune hypocalciuric hypercalcemia owing to anti-CaSR antibodies that inhibit receptor activation have now been identified. Other novel parathyroid autoantigens are starting to be elucidated, suggesting that new approaches to treatment, such as CaSR antagonists or agonists (calcilytics/calcimimetics), may be worthwhile.
Collapse
Affiliation(s)
- Edward M Brown
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
104
|
Davies SA, Terhzaz S. Organellar calcium signalling mechanisms in Drosophilaepithelial function. J Exp Biol 2009; 212:387-400. [DOI: 10.1242/jeb.024513] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Calcium signalling and calcium homeostasis are essential for life. Studies of calcium signalling thus constitute a major proportion of research in the life sciences, although the majority of these studies are based in cell lines or isolated cells. Epithelial cells and tissues are essential in the regulation of critical physiological processes, including fluid transport; and so the modulation of such processes in vivo by cell-specific calcium signalling is thus of interest. In this review, we describe the approaches to measuring intracellular calcium in the genetically tractable fluid-transporting tissue, the Drosophila Malpighian tubule by targeting cell-specific protein-based calcium reporters to defined regions,cells and intracellular compartments of the intact Malpighian tubule. We also discuss recent findings on the roles of plasma membrane and intracellular calcium channels; and on organellar stores – including mitochondria,Golgi and peroxisomes – in Malpighian tubule function.
Collapse
Affiliation(s)
- Shireen A. Davies
- Integrative and Systems Biology Group, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| | - Selim Terhzaz
- Integrative and Systems Biology Group, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK
| |
Collapse
|
105
|
Kempe DS, Ackermann TF, Fischer SS, Koka S, Boini KM, Mahmud H, Föller M, Rosenblatt KP, Kuro-O M, Lang F. Accelerated suicidal erythrocyte death in Klotho-deficient mice. Pflugers Arch 2009; 458:503-12. [PMID: 19184092 DOI: 10.1007/s00424-009-0636-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/23/2008] [Accepted: 01/08/2009] [Indexed: 01/30/2023]
Abstract
Klotho, a membrane protein mainly expressed in parathyroid glands, kidney, and choroid plexus, counteracts aging and increases the life span. Accordingly, life span is significantly shorter in Klotho-deficient mice (klotho(-/-)) than in their wild-type littermates (klotho(+/+)). The pleotropic effects of Klotho include inhibition of 1,25-dihydroxyvitamin D(3)(1,25(OH)(2)D(3)) formation. Vitamin D-deficient diet reverses the shortening of life span in klotho(-/-) mice. In a variety of cells, 1,25(OH)(2)D(3) stimulates Ca(2+) entry. In erythrocytes, increased Ca(2+) entry stimulates suicidal erythrocyte death, which is characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte surface. The present study explored the putative impact of Klotho on eryptosis. According to Fluo3 fluorescence, cytosolic Ca(2+) concentration was significantly larger in klotho(-/-) erythrocytes as compared to klotho(+/+) erythrocytes. According to annexin V-binding, phosphatidylserine exposure was significantly enhanced, and according to forward scatter, cell volume significantly decreased in klotho(-/-) erythrocytes as compared to klotho(+/+) erythrocytes. Energy depletion (13 h glucose depletion) and oxidative stress (35 min 1 mM tert-butyl-hydroxyl-peroxide [tert-BOOH]) increased phosphatidylserine exposure to values again significantly larger in klotho(-/-) erythrocytes as compared to klotho(+/+) erythrocytes. Reticulocyte number was significantly increased in klotho (-/-) mice, pointing to enhanced erythrocyte turnover. Vitamin D-deficient diet reversed the enhanced Ca(2+) entry and annexin V-binding of klotho(-/-) erythrocytes. The present observations reveal a novel function of Klotho, i.e., the at least partially vitamin D-dependent regulation of cytosolic Ca(2+) activity in and suicidal death of erythrocytes.
Collapse
Affiliation(s)
- Daniela S Kempe
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Chefetz I, Kohno K, Izumi H, Uitto J, Richard G, Sprecher E. GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:61-7. [PMID: 18976705 PMCID: PMC3169302 DOI: 10.1016/j.bbadis.2008.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 12/16/2022]
Abstract
GALNT3 encodes UDP-N-acetyl-alpha-d-galactosamine: polypeptide N-acetylgalactosaminyl-transferarase 3 (ppGalNacT3), a glycosyltransferase which has been suggested to prevent proteolysis of FGF23, a potent phosphaturic protein. Accordingly, loss-of-function mutations in GALNT3 cause hyperphosphatemic familial tumoral calcinosis (HFTC), a rare autosomal recessive disorder manifesting with increased kidney reabsorption of phosphate, resulting in severe hyperphosphatemia and widespread ectopic calcifications. Although these findings definitely attribute a role to ppGalNacT3 in the regulation of phosphate homeostasis, little is currently known about the factors regulating GALNT3 expression. In addition, the effect of decreased GALNT3 expression in peripheral tissues has not been explored so far. In the present study, we demonstrate that GALNT3 expression is under the regulation of a number of factors known to be associated with phosphate homeostasis, including inorganic phosphate itself, calcium and 1,25-dihydroxyvitamin D(3). In addition, we show that decreased GALNT3 expression in human skin fibroblasts leads to increased expression of FGF7 and of matrix metalloproteinases, which have been previously implicated in the pathogenesis of ectopic calcification. Thus, the present data suggest that ppGalNacT3 may play a role in peripheral tissues of potential relevance to the pathogenesis of disorders of phosphate metabolism.
Collapse
Affiliation(s)
- Ilana Chefetz
- Laboratory of Molecular Dermatology and Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
- Center for Translational Genetics, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine Haifa, Technion – Israel Institute of Technology, Haifa, Israel
| | - Kimitoshi Kohno
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroto Izumi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gabriele Richard
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- GeneDx, Gaithersburg, Maryland, USA
| | - Eli Sprecher
- Laboratory of Molecular Dermatology and Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
- Center for Translational Genetics, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine Haifa, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
107
|
Foster BL, Tompkins KA, Rutherford RB, Zhang H, Chu EY, Fong H, Somerman MJ. Phosphate: known and potential roles during development and regeneration of teeth and supporting structures. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2008; 84:281-314. [PMID: 19067423 PMCID: PMC4526155 DOI: 10.1002/bdrc.20136] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic phosphate (P(i)) is abundant in cells and tissues as an important component of nucleic acids and phospholipids, a source of high-energy bonds in nucleoside triphosphates, a substrate for kinases and phosphatases, and a regulator of intracellular signaling. The majority of the body's P(i) exists in the mineralized matrix of bones and teeth. Systemic P(i) metabolism is regulated by a cast of hormones, phosphatonins, and other factors via the bone-kidney-intestine axis. Mineralization in bones and teeth is in turn affected by homeostasis of P(i) and inorganic pyrophosphate (PPi), with further regulation of the P(i)/PP(i) ratio by cellular enzymes and transporters. Much has been learned by analyzing the molecular basis for changes in mineralized tissue development in mutant and knock-out mice with altered P(i) metabolism. This review focuses on factors regulating systemic and local P(i) homeostasis and their known and putative effects on the hard tissues of the oral cavity. By understanding the role of P(i) metabolism in the development and maintenance of the oral mineralized tissues, it will be possible to develop improved regenerative approaches.
Collapse
Affiliation(s)
- Brian L Foster
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|