101
|
Bangar SP, Ashogbon AO, Singh A, Chaudhary V, Whiteside WS. Enzymatic modification of starch: A green approach for starch applications. Carbohydr Polym 2022; 287:119265. [DOI: 10.1016/j.carbpol.2022.119265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022]
|
102
|
Wu Z, Qiao D, Zhao S, Lin Q, Zhang B, Xie F. Nonthermal physical modification of starch: An overview of recent research into structure and property alterations. Int J Biol Macromol 2022; 203:153-175. [PMID: 35092737 DOI: 10.1016/j.ijbiomac.2022.01.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
To tailor the properties and enhance the applicability of starch, various ways of starch modification have been practiced. Among them, physical modification methods (micronization, nonthermal plasma, high-pressure, ultrasonication, pulsed electric field, and γ-irradiation) are highly potential for starch modification considering its safety, environmentally friendliness, and cost-effectiveness, without generating chemical wastes. Thus, this article provides an overview of the recent advances in nonthermal physical modification of starch and summarizes the resulting changes in the multi-level structures and physicochemical properties. While the effect of these techniques highly depends on starch type and treatment condition, they generally lead to the destruction of starch granules, the degradation of molecules, decreases in crystallinity, gelatinization temperatures, and viscosity, increases in solubility and swelling power, and an increase or decrease in digestibility, to different extents. The advantages and shortcomings of these techniques in starch processing are compared, and the knowledge gap in this area is commented on.
Collapse
Affiliation(s)
- Zhuoting Wu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
103
|
Applicability of Food Grade Modified Starches as a Carrier of Microelements. Processes (Basel) 2022. [DOI: 10.3390/pr10020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Growth in the human population and intensive, large-scale farming results in a lowering in the quality of nutrition. An oversupply of food energy is often accompanied with a deficiency in micronutrients. To address this problem, the food industry provides products enriched with bioactive substances. The main challenge of this technology is the even distribution of micronutrients in the matrix of the fortified food. A possible solution to this challenge is to use stable and effective carriers. The aim of this work was to verify the applicability of native potato starch and modified starches (commonly used in the food industry) as carriers for microelements. Adsorptions were carried out in starch suspensions at a temperature below gelatinisation. The native potato starch and the modified starches (E 1404, E 1412, E 1420, and E 1422) were assessed for their effectiveness in adsorbing copper, iron, and zinc sulphates or gluconates. Pasting characteristics were analysed using a Brabender viscograph and light microscopy. Furthermore, texture profile analysis of starch-based desserts was carried out with the use of the tested carriers. Starch in both its native and modified forms was able to effectively adsorb copper, iron, and zinc ions. Adsorption was more efficient when using modified starches containing hydrophilic carboxyl groups. The effectiveness of adsorption with oxidised starches increased with an increase in the degree of substitution. Starches containing more hydrophobic acetyl groups were less effective as adsorbents of microelements. The cation adsorption efficiency decreased in the order copper > iron > zinc, and sulphates were better adsorbed than gluconates. Copper ions influenced the pasting characteristics of the oxidised starches, and these effects were dependent on the degree of substitution with carboxyl groups. As observed by light microscopy, the presence of copper ions changes the interaction between the starch macromolecules and water. However, the above-mentioned changes did not significantly affect the texture of traditional sweet desserts. Starch, particularly its oxidised derivatives containing hydrophilic oxidised groups, can be recommended as a carrier of microelements for food fortification. The use of modified starches containing relatively hydrophobic acetyl groups is not appropriate because they absorb microelements less efficiently than native starch.
Collapse
|
104
|
Li C, Hu Y. New definition of resistant starch types from the gut microbiota perspectives - a review. Crit Rev Food Sci Nutr 2022; 63:6412-6422. [PMID: 35075962 DOI: 10.1080/10408398.2022.2031101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current definition of resistant starch (RS) types is largely based on their interactions with digestive enzymes from human upper gastrointestinal tract. However, this is frequently inadequate to reflect their effects on the gut microbiota, which is an important mechanism for RS to fulfill its function to improve human health. Distinct shifts of gut microbiota compositions and alterations of fermented metabolites could be resulted by the consumption of RS from the same type. This review summarized these defects from the current definitions of RS types, while more importantly proposed pioneering concepts for new definitions of RS types from the gut microbiota perspectives. New RS types considered the aspects of RS fermentation rate, fermentation end products, specificity toward gut microbiota and shifts of gut microbiota caused by the consumption of RS. These definitions were depending on the known outcomes from RS-gut microbiota interactions. The application of new RS types in understanding the complex RS-gut microbiota interactions and promoting human health should be focused in the future.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
105
|
Okyere AY, Boakye PG, Bertoft E, Annor GA. Structural characterization and enzymatic hydrolysis of radio frequency cold plasma treated starches. J Food Sci 2022; 87:686-698. [DOI: 10.1111/1750-3841.16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Akua Y. Okyere
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| | - Prince G. Boakye
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| | - Eric Bertoft
- Bertoft Solutions Gamla Sampasvägen 18, 20960 Turku Finland
| | - George A. Annor
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| |
Collapse
|
106
|
Santos DCD, Ataide CDG, Mota da Costa N, Oliveira Junior VPD, Egea MB. Blenderized formulations in home enteral nutrition: a narrative review about challenges in nutritional security and food safety. Nutr Rev 2022; 80:1580-1598. [PMID: 35026011 DOI: 10.1093/nutrit/nuab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blenderized formulations (BFs) are prepared by homogenization of food that is normally used in oral nutrition. BFs are mainly used in home enteral nutrition (HEN), although their use has also been reported by hospitals when commercial enteral formulas are not available. HEN is applied when the patient has been discharged from the hospital. This nutritional therapy promotes the patient's reintegration into the family nucleus and promotes humanized care, and decreases treatment costs. However, the patient should continue to receive health and nutritional care, ranging from periodic nutritional re-evaluation to adaptation of the dietary plan. HEN provides the patient a greater contact with the family, whereas BFs promote the adaptation of the diet with food, respecting the food diversity and culture, lower cost, and easier access to food. Disadvantages of BFs include more time spent by the professional to calculate the dietary plan, greater difficulty in adjusting daily needs, and less microbiological and chemical stability. In this review, the nutritional, food security, and safety aspects of BF used in HEN are discussed. Technological quality aspects that are essential knowledge in the preparation of the patient's dietary plan also are presented.
Collapse
Affiliation(s)
- Daiane Costa Dos Santos
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| | - Carla Daniela Gomes Ataide
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| | - Nair Mota da Costa
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| | - Valtemir Paula de Oliveira Junior
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| | - Mariana Buranelo Egea
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| |
Collapse
|
107
|
Walkowiak K, Przybył K, Baranowska HM, Koszela K, Masewicz Ł, Piątek M. The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers (Basel) 2022; 14:184. [PMID: 35012206 PMCID: PMC8747266 DOI: 10.3390/polym14010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Currently, society expects convenience food, which is healthy, safe, and easy to prepare and eat in all conditions. On account of the increasing popularity of modified potato starch in food industry and its increasing scope of use, this study focused on improving the physical modification of native starch with temperature changes. As a result, it was found that the suggested method of starch modification with the use of microwave power of 150 W/h had an impact on the change in starch granules. The LF-NMR method determined the whole range of temperatures in which the creation of a starch polymer network occurs. Therefore, the applied LF-NMR technique is a highly promising, noninvasive physical method, which allows obtaining a better-quality structure of potato starch gels.
Collapse
Affiliation(s)
- Katarzyna Walkowiak
- Department of Physics and Biophysics, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland; (K.W.); (H.M.B.); (Ł.M.)
| | - Krzysztof Przybył
- Department of Dairy and Process Engineering, Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland; (K.W.); (H.M.B.); (Ł.M.)
| | - Krzysztof Koszela
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-625 Poznan, Poland
| | - Łukasz Masewicz
- Department of Physics and Biophysics, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland; (K.W.); (H.M.B.); (Ł.M.)
| | - Michał Piątek
- Department of Meat Technology, Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 50, 60-625 Poznan, Poland;
| |
Collapse
|
108
|
|
109
|
Jia S, Yu B, Zhao H, Tao H, Liu P, Cui B. Physicochemical Properties and In Vitro Digestibility of Dual‐Modified Starch by Cross‐Linking and Annealing. STARCH-STARKE 2022. [DOI: 10.1002/star.202100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuyu Jia
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| |
Collapse
|
110
|
Morinval A, Averous L. Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexis Morinval
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| |
Collapse
|
111
|
Grossmann L, McClements DJ. The science of plant-based foods: Approaches to create nutritious and sustainable plant-based cheese analogs. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
112
|
Zdybel E, Wilczak A, Kapelko-Żeberska M, Tomaszewska-Ciosk E, Gryszkin A, Gawrońska A, Zięba T. Physicochemical Properties and Digestion Resistance of Acetylated Starch Obtained from Annealed Starch. Polymers (Basel) 2021; 13:4141. [PMID: 34883643 PMCID: PMC8659483 DOI: 10.3390/polym13234141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
One of the examples of physical starch modifications is the retention of a starch suspension in water having a temperature slightly lower than the pasting temperature (annealing). The aim of this study was to investigate the effect of the annealing process performed at various temperatures as the first stage of starch modification. The annealed starch preparations were then esterified using acetic acid anhydride. Finally, the annealed and acetylated starch preparations were determined for their properties. The annealing of starch before acetylation triggered changes in the properties of the modified preparations. It contributed to a higher degree of starch substitution with acetic acid residues and to the increased swelling power of starch. Both these properties were also affected by the annealing temperature. The highest resistance to amylolysis was found in the case of the starch preparation annealed at 53.5 °C and acetylated. The double modification involving annealing and acetylation processes increased the onset and end pasting temperatures compared to the acetylation alone. Similar observations were made for the consistency coefficient and yield point.
Collapse
Affiliation(s)
- Ewa Zdybel
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
| | - Aleksandra Wilczak
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wrocław, Poland;
| | - Małgorzata Kapelko-Żeberska
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
| | - Ewa Tomaszewska-Ciosk
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
| | - Artur Gryszkin
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
| | - Anna Gawrońska
- Institute of Sport, Tourism and Nutrition, Faculty of Biological Sciences, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| | - Tomasz Zięba
- Department of Food Storage and Technology, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (E.Z.); (E.T.-C.); (A.G.); (T.Z.)
- Institute of Sport, Tourism and Nutrition, Faculty of Biological Sciences, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| |
Collapse
|
113
|
Hu Y, Li C, Hou Y. Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review. Food Funct 2021; 12:11154-11164. [PMID: 34694313 DOI: 10.1039/d1fo02416g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Liver glycogen α particles in diabetic patients are fragile relative to those in healthy individuals, and restoring these fragile glycogen particles to a normal state shows potential to contribute to the remission of diabetes. Resistant starch (RS) is beneficial for diabetes management through its interactions with the gut microbiota. However, its effects on glycogen fragility are not fully understood. This review aims to summarize the recent understanding of the interactions between RS and the human gut microbiota and the possible connections to liver glycogen biosynthesis to elucidate its role in the development of glycogen fragility. RS might regulate glycogen fragility in diabetes by modulating the postprandial glycemic response and glycogen biosynthesis pathways. Before RS can be applied to repair fragile glycogen, more work should be done to better understand in vivo RS structures and identify the factor binding glycogen β particles together. This review contains important information on the connections between glycogen fragility and RS-gut microbiota interactions, which could help to better understand the health benefits of RS consumption.
Collapse
Affiliation(s)
- Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
114
|
Amaraweera SM, Gunathilake C, Gunawardene OHP, Fernando NML, Wanninayaka DB, Dassanayake RS, Rajapaksha SM, Manamperi A, Fernando CAN, Kulatunga AK, Manipura A. Development of Starch-Based Materials Using Current Modification Techniques and Their Applications: A Review. Molecules 2021; 26:6880. [PMID: 34833972 PMCID: PMC8625705 DOI: 10.3390/molecules26226880] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Starch is one of the most common biodegradable polymers found in nature, and it is widely utilized in the food and beverage, bioplastic industry, paper industry, textile, and biofuel industries. Starch has received significant attention due to its environmental benignity, easy fabrication, relative abundance, non-toxicity, and biodegradability. However, native starch cannot be directly used due to its poor thermo-mechanical properties and higher water absorptivity. Therefore, native starch needs to be modified before its use. Major starch modification techniques include genetic, enzymatic, physical, and chemical. Among those, chemical modification techniques are widely employed in industries. This review presents comprehensive coverage of chemical starch modification techniques and genetic, enzymatic, and physical methods developed over the past few years. In addition, the current applications of chemically modified starch in the fields of packaging, adhesives, pharmaceuticals, agriculture, superabsorbent and wastewater treatment have also been discussed.
Collapse
Affiliation(s)
- Sumedha M. Amaraweera
- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (S.M.A.); (N.M.L.F.); (A.K.K.)
| | - Chamila Gunathilake
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (O.H.P.G.); (D.B.W.); (A.M.)
- Department of Material & Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya 60200, Sri Lanka;
| | - Oneesha H. P. Gunawardene
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (O.H.P.G.); (D.B.W.); (A.M.)
| | - Nimasha M. L. Fernando
- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (S.M.A.); (N.M.L.F.); (A.K.K.)
| | - Drashana B. Wanninayaka
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (O.H.P.G.); (D.B.W.); (A.M.)
| | - Rohan S. Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama 10200, Sri Lanka
| | - Suranga M. Rajapaksha
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama 10200, Sri Lanka;
| | - Asanga Manamperi
- Materials Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Chakrawarthige A. N. Fernando
- Department of Material & Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya 60200, Sri Lanka;
| | - Asela K. Kulatunga
- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (S.M.A.); (N.M.L.F.); (A.K.K.)
| | - Aruna Manipura
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (O.H.P.G.); (D.B.W.); (A.M.)
| |
Collapse
|
115
|
Dudu OE, Ma Y, Olurin TO, Oyedeji AB, Oyeyinka SA, Ogungbemi JW. Synergistic effect of hydrothermal and additive treatments on structural and functional characteristics of cassava starch. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Olayemi E. Dudu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Ying Ma
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Taiwo O. Olurin
- Department of Chemical and Food Sciences Bells University of Technology Ota Nigeria
| | - Ajibola B. Oyedeji
- Department of Biotechnology and Food Technology University of Johannesburg Johannesburg South Africa
| | - Samson A. Oyeyinka
- Department of Biotechnology and Food Technology University of Johannesburg Johannesburg South Africa
| | - Jessica W. Ogungbemi
- Department of Chemical and Food Sciences Bells University of Technology Ota Nigeria
| |
Collapse
|
116
|
Xie F, Zhang H, Wu Y, Xia Y, Ai L. Effects of tamarind seed polysaccharide on physicochemical properties of corn starch treated by high pressure homogenization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
117
|
Li C, Hu Y. Align resistant starch structures from plant-based foods with human gut microbiome for personalized health promotion. Crit Rev Food Sci Nutr 2021; 63:2509-2520. [PMID: 34515592 DOI: 10.1080/10408398.2021.1976722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistant starch (RS) is beneficial for human health through its interactions with gut microbiota. However, the alignment between RS structures with gut microbiota profile and consequentially health benefits remain elusive. This review summarizes current understanding of RS complex structures and their interactions with the gut microbiota, aiming to highlight the possibility of manipulating RS structures for a targeted and predictable gut microbiota shift for human health in a personalized way. Current definition of RS types is strongly associated with starch digestion behaviors in small intestine, which does not precisely reflect their interactions with human gut microbiota. Distinct alterations of gut microbiota could be associated with the same RS type. The principles to describe the specificity of different RS structural characteristics in terms of aligning with human gut microbiota shift was proposed in this review, which could result in new definitions of RS types from the microbial perspectives. To consider the highly variable personal features, a machine-learning algorithm to integrate different personalized factors and better understand the complex interaction between RS and gut microbiota and its effects on individual health was explained. This review contains important information to bring interactions between RS and gut microbiota to translational practice.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
118
|
Okur I, Sezer P, Oztop MH, Alpas H. Recent advances in gelatinisation and retrogradation of starch by high hydrostatic pressure. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ilhami Okur
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
- Department of Food Engineering Niğde Ömer Halisdemir University Niğde 51240 Turkey
| | - Purlen Sezer
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| | - Hami Alpas
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| |
Collapse
|
119
|
Fang C, Huang J, Pu H, Yang Q, Chen Z, Zhu Z. Cold-water solubility, oil-adsorption and enzymolysis properties of amorphous granular starches. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
120
|
Schafranski K, Ito VC, Lacerda LG. Impacts and potential applications: A review of the modification of starches by heat-moisture treatment (HMT). Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
121
|
Kumar A, Kumari P, Gupta K, Singh M, Tomer V. Recent Advances in Extraction, Techno-functional Properties, Food and Therapeutic Applications as Well as Safety Aspects of Natural and Modified Stabilizers. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ashwani Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Pooja Kumari
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Kritika Gupta
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, USA
| | - Manjot Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Vidisha Tomer
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
122
|
Castro LMG, Alexandre EMC, Saraiva JA, Pintado M. Starch Extraction and Modification by Pulsed Electric Fields. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1945620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luís M. G. Castro
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
- University of Aveiro, LAQV-REQUIMTE, Laboratório Associado, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Elisabete M. C. Alexandre
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
- University of Aveiro, LAQV-REQUIMTE, Laboratório Associado, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Jorge A. Saraiva
- University of Aveiro, LAQV-REQUIMTE, Laboratório Associado, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| |
Collapse
|
123
|
Introduction of chlorogenic acid during extrusion affects the physicochemical properties and enzymatic hydrolysis of rice flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
124
|
Lu H, Tian Y. Nanostarch: Preparation, Modification, and Application in Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6929-6942. [PMID: 34142546 DOI: 10.1021/acs.jafc.1c01244] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostarch, as a food-grade Pickering emulsion stabilizer, has attracted wide attention owing to its biodegradability, nontoxicity, small size, and large specific surface area. In this review, the preparation, modification, and application of Pickering emulsions incorporating nanostarch are described. At present, methods for nanostarch preparation mainly include acid hydrolysis, acid hydrolysis combined with other treatments, nanoprecipitation, ultrasonication, ball milling, and cross-linking. Nanostarch is a promising Pickering emulsion stabilizer, and its emulsifying ability of nanostarch is significantly improved by hydrophobic modification. The hydrophobicity, charge, size, and content of nanostarch affect the emulsion stability. Future developments in this area of research include the efficient and environmentally friendly preparation of nanostarch as well as the control of its hydrophobicity via modification. Future studies should focus on the digestibility and storage stability of Pickering emulsions stabilized by nanostarch under different conditions.
Collapse
Affiliation(s)
- Hao Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
125
|
Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int J Biol Macromol 2021; 184:218-234. [PMID: 34144062 DOI: 10.1016/j.ijbiomac.2021.06.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
Starch derivatives are versatile compounds that are widely used in the pharmaceutical industry. This article reviews the advances in the research on hydrophilic and hydrophobic starch derivatives used to develop drug delivery systems over the last ten years, specifically microparticles, nanoparticles, nanocrystals, hydrogels, and scaffolds using these materials. The fundamentals of drug delivery systems, regulatory aspects, and chemical modifications are also discussed, along with the synthesis of starch derivatives via oxidation, etherification, acid hydrolysis, esterification, and cross-linking. The chemical modification of starch as a means to overcome the challenges in obtaining solid dosage forms is also reviewed. In particular, dialdehyde starches are potential derivatives for direct drug attachment; carboxymethyl starches are used for drug encapsulation and release, giving rise to pH-sensitive devices through electrostatic interactions; and starch nanocrystals have high potential as hydrogel fillers to improve mechanical properties and control drug release through hydrophilic interactions. Starch esterification with alginate and acidic drugs could be very useful for site-specific, controlled release. Starch cross-linking with other biopolymers such as xanthan gum is promising for obtaining novel polyelectrolyte hydrogels with improved functional properties. Surface modification of starch nanoparticles by cross-linking and esterification reactions is a potential approach to obtain novel, smart solid dosages.
Collapse
|
126
|
Lee SJ, Zhang C, Lim ST, Park EY. Effect of combination of dry heating and glucose addition on pasting and gelling behavior of starches. Int J Biol Macromol 2021; 183:1302-1308. [PMID: 34000317 DOI: 10.1016/j.ijbiomac.2021.05.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Normal corn, waxy corn, potato, and tapioca starches were subjected to dry heating by adding glucose at slightly alkaline conditions to investigate the impact of the combination of dry heating and glucose addition. After dry heating, normal/waxy corn and tapioca starches showed increased peak viscosity and decreased pasting temperatures, whereas potato starch exhibited decreased peak viscosity. The increase in peak viscosity of normal/waxy corn and tapioca starches became more significant after adding glucose to the dry heating process. Moreover, the starch gels became more rigid after dry heating with the addition of glucose than native and control starch. Dry heating alone decreased the melting temperatures and enthalpy of the starches assessed. Nevertheless, dry heating with glucose addition induced no significant changes in the melting characteristics of corn and tapioca starches; however, it significantly increased the melting temperature and enthalpy of potato starch compared to those by dry heating alone. Furthermore, dry heating in combination with glucose addition reduced paste clarity and induced slight thermal browning. These results clearly indicate that the combination of dry heating and glucose addition induces more intense changes in the properties of starch than those by dry heating or glucose addition alone.
Collapse
Affiliation(s)
- Su-Jung Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou 225127, Jiangsu, People's Republic of China
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| | - Eun Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
127
|
Mhaske P, Wang Z, Farahnaky A, Kasapis S, Majzoobi M. Green and clean modification of cassava starch - effects on composition, structure, properties and digestibility. Crit Rev Food Sci Nutr 2021; 62:7801-7826. [PMID: 33966555 DOI: 10.1080/10408398.2021.1919050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is a growing need for clean and green labeling of food products among consumers globally. Therefore, development of green modified starches, to boost functionality, palatability and health benefits while reducing the negative processing impacts on the environment and reinforcing consumer safety is in high demand. Starch modification started in mid-1500s due to the inherent limitations of native starch restricting its commercial applications, with chemical modification being most common. However, with the recent push for "chemical-free" labeling, methods of physical and enzymatic modification have gained immense popularity. These methods have been successfully used in numerous studies to alter the composition, structure, functionality and digestibility of starch and in this review, studies reported on green modification of cassava starch, one of the most common utilized starches, within the last ten years have been critically reviewed. Recent research has introduced starch as an abundant, natural substrate for producing resistant starches through biophysical technologies that act as dietary fiber in the human body. It is evident that different techniques and processing parameters result in varying degrees of modification impacting the techno-functionality and digestibility of the resultant starch. This can be exploited by researchers and industrialists in order to customize starch functionality in accordance with application.
Collapse
Affiliation(s)
- Pranita Mhaske
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Ziyu Wang
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Stefan Kasapis
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
128
|
Zhou X, Chang Q, Li J, Jiang L, Xing Y, Jin Z. Preparation of V-type porous starch by amylase hydrolysis of V-type granular starch in aqueous ethanol solution. Int J Biol Macromol 2021; 183:890-897. [PMID: 33965486 DOI: 10.1016/j.ijbiomac.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
In this paper, a novel porous starch with a V-type crystalline structure and high adsorption capacity was obtained by enzymatic hydrolysis of V-type granular starch (VGS) in an aqueous ethanol solution. The effects of different starch concentrations, reaction temperatures, and ethanol concentrations on the microstructure, crystal morphology, crystallinity and adsorption properties of VGS before and after enzymatic hydrolysis were studied, and native normal corn starch (NNCS) and A-type porous starch (APS) prepared by enzymatic hydrolysis of NNCS were used as controls. The results showed that compared with NNCS, VGS was easier to hydrolyze with a higher hydrolysis degree and the corresponding V-type porous starch (VPS) had more and larger pores and thus showed better adsorption performance than APS. Under the same enzymatic hydrolysis time, temperature and rotation speed, VPS prepared with a starch concentration of 20%, reaction temperature of 140 °C and ethanol concentration of 70% showed an irregular spongelike porous structure, highest V-type relative crystallinity of 25.09%, highest oil adsorption capacity of 241.70% and water adsorption capacity of 805.59%.
Collapse
Affiliation(s)
- Xing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Chang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiaxin Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yaru Xing
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
129
|
Okonkwo VC, Kwofie EM, Mba OI, Ngadi MO. Impact of thermo-sonication on quality indices of starch-based sauces. ULTRASONICS SONOCHEMISTRY 2021; 73:105473. [PMID: 33609994 PMCID: PMC7903464 DOI: 10.1016/j.ultsonch.2021.105473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 05/25/2023]
Abstract
In this study, ultrasonication, a physical, relatively cheap, and environmentally benign technology, was investigated to characterize its effect on functional properties of rice starch and rice starch-based sauces. Temperature-assisted ultrasound treatment improved the granular swelling power, fat and water absorption capacities, and thermal properties of rice starch, signifying its suitability in the formulation of starch-based sauces. Rheological characterization of the formulated sauces revealed a shear-thinning flow behavior, well described by the Ostwald de Waele model, while viscoelastic properties showed the existence of a weak gel. Results indicated that ultrasonication significantly enhanced the pseudoplastic behavior of starch-based sauces. Additionally, textural analysis showed that textural attributes (stickiness, stringiness, and work of adhesion) were also improved with ultrasonication. Moreover, enhanced freeze/thaw stability was also achieved with ultrasound-treated starch-based sauces. Overall, the results from this study show that ultrasound-treated starches can be used in the formulation of sauces and potentially other food products, which meets the requirements for clean label and minimally processed foods.
Collapse
Affiliation(s)
- Valentine C Okonkwo
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Ebenezer M Kwofie
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Ogan I Mba
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Michael O Ngadi
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada.
| |
Collapse
|
130
|
Preparation and characterization of chemically modified high amylose maize starch-ascorbyl palmitate inclusion complexes in mild reaction condition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
131
|
Puelles‐Román J, Barroso NG, Cruz‐Tirado JP, Tapia‐Blácido DR, Angelats‐Silva L, Barraza‐Jáuregui G, Siche R. Annealing process improves the physical, functional, thermal, and rheological properties of Andean oca (
Oxalis tuberosa
) starch. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Noadia Genuario Barroso
- Department of Food Engineering, Faculty of Food Engineering (FEA) University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Jam Pier Cruz‐Tirado
- Department of Food Engineering, Faculty of Food Engineering (FEA) University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Delia Rita Tapia‐Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras Universidade de São Paulo Ribeirão Preto Sao Paulo Brazil
| | - Luis Angelats‐Silva
- Laboratorio de Investigación Multidisciplinaria Universidad Privada Antenor Orrego Trujillo Peru
| | | | - Raúl Siche
- Facultad de Ciencias Agropecuarias Universidad Nacional de Trujillo Trujillo Peru
| |
Collapse
|
132
|
Loubes MA, González LC, Tolaba MP. Modeling energy requirements in planetary ball milling of rice grain. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1906368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. A. Loubes
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L. C. González
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. P. Tolaba
- Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
133
|
Zięba T, Wilczak A, Kobryń J, Musiał W, Kapelko-Żeberska M, Gryszkin A, Meisel M. The Annealing of Acetylated Potato Starch with Various Substitution Degrees. Molecules 2021; 26:2096. [PMID: 33917516 PMCID: PMC8038830 DOI: 10.3390/molecules26072096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the effect of "annealing" acetylated potato starch with a homogenous granule size and various degrees of substitution on the thermal pasting characteristics (DSC), resistance to amylases, rheology of the prepared pastes, swelling power and dynamics of drug release. A fraction of large granules was separated from native starch with the sedimentation method and acetylated with various doses of acetic anhydride (6.5, 13.0 or 26.0 26 cm3/100 g starch). The starch acetates were then annealed at slightly lower temperatures than their pasting temperatures. The annealing process caused an almost twofold increase in the resistance to amylolysis and a threefold increase in the swelling power of the modified starch preparations. The heat of phase transition decreased almost two times and the range of starch pasting temperatures over two times, but the pasting temperature itself increased by ca. 10 °C. The 40 g/100 g addition of the modified starch preparation decreased the rate of drug release from a hydrogel by ca. one-fourth compared to the control sample.
Collapse
Affiliation(s)
- Tomasz Zięba
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (T.Z.); (A.G.); (M.M.)
| | - Aleksandra Wilczak
- Department of Physico-Chemistry of Microorganisms, University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wrocław, Poland;
| | - Justyna Kobryń
- Department and Chair of Physical Chemistry and Biophysics, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland; (J.K.); (W.M.)
| | - Witold Musiał
- Department and Chair of Physical Chemistry and Biophysics, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland; (J.K.); (W.M.)
| | - Małgorzata Kapelko-Żeberska
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (T.Z.); (A.G.); (M.M.)
| | - Artur Gryszkin
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (T.Z.); (A.G.); (M.M.)
| | - Marta Meisel
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (T.Z.); (A.G.); (M.M.)
| |
Collapse
|
134
|
Ren Y, Yuan TZ, Chigwedere CM, Ai Y. A current review of structure, functional properties, and industrial applications of pulse starches for value-added utilization. Compr Rev Food Sci Food Saf 2021; 20:3061-3092. [PMID: 33798276 DOI: 10.1111/1541-4337.12735] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022]
Abstract
Pulse crops have received growing attention from the agri-food sector because they can provide advantageous health benefits and offer a promising source of starch and protein. Pea, lentil, and faba bean are the three leading pulse crops utilized for extracting protein concentrate/isolate in food industry, which simultaneously generates a rising volume of pulse starch as a co-product. Pulse starch can be fractionated from seeds using dry and wet methods. Compared with most commercial starches, pea, lentil, and faba bean starches have relatively high amylose contents, longer amylopectin branch chains, and characteristic C-type polymorphic arrangement in the granules. The described molecular and granular structures of the pulse starches impart unique functional attributes, including high final viscosity during pasting, strong gelling property, and relatively low digestibility in a granular form. Starch isolated from wrinkled pea-a high-amylose mutant of this pulse crop-possesses an even higher amylose content and longer branch chains of amylopectin than smooth pea, lentil, and faba bean starches, which make the physicochemical properties and digestibility of the former distinctively different from those of common pulse starches. The special functional properties of pulse starches promote their applications in food, feed, bioplastic and other industrial products, which can be further expanded by modifying them through chemical, physical and/or enzymatic approaches. Future research directions to increase the fractionation efficiency, improve the physicochemical properties, and enhance the industrial utilization of pulse starches have also been proposed. The comprehensive information covered in this review will be beneficial for the pulse industry to develop effective strategies to generate value from pulse starch.
Collapse
Affiliation(s)
- Yikai Ren
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Tommy Z Yuan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
135
|
Guida C, Aguiar AC, Cunha RL. Green techniques for starch modification to stabilize Pickering emulsions: a current review and future perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
136
|
Wang Y, Chen L, Yang T, Ma Y, McClements DJ, Ren F, Tian Y, Jin Z. A review of structural transformations and properties changes in starch during thermal processing of foods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106543] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
137
|
Chen J, Hawkins E, Seung D. Towards targeted starch modification in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102013. [PMID: 33677239 DOI: 10.1016/j.pbi.2021.102013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Genetic approaches to modify starch in crops have been limited by our knowledge of starch biosynthesis. Recent advances in Arabidopsis have revealed key genetic components determining the size, shape and number of granules in a plastid. This has opened the doors to new discoveries on granule initiation in crop species. In parallel, advances in genomic resources and gene editing technologies allow targeted manipulation of starch biosynthesis genes in isogenic crop backgrounds. Such technologies have been successfully deployed to alter starch composition, and can now be used to modify other starch traits. This will allow the complex relationships between starch structure and physicochemical properties to be elucidated, which will facilitate the rational manipulation of starches in crops.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
138
|
Verma DK, Srivastav PP. Isolation, modification, and characterization of rice starch with emphasis on functional properties and industrial application: a review. Crit Rev Food Sci Nutr 2021; 62:6577-6604. [PMID: 33775191 DOI: 10.1080/10408398.2021.1903383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Starch is one of the organic compounds after cellulose found most abundantly in nature. Starch significantly varies in their different properties like physical, chemical, thermal, morphological and functional. Therefore, starch is modified to increase the beneficial characteristics and remove the shortcomings issues of native starches. The modification methods can change the extremely flexible polymer of starch with their modified physical and chemical properties. These altered structural attributes are of great technological values which have a wide industrial potential in food and non-food. Among them, the production of novel starches is mainly one that evolves with new value-added and functional properties is on high industrial demands. This paper provides an overview of the rice starch components and their effect on the technological and physicochemical properties of obtained starch. Besides, the tuned techno-functional properties of the modified starches through chemical modification means are highlighted.HighlightsNative and modified starches varies largely in physicochemical and functional traits.Modified physical and chemical properties of starch can change the extremely flexible polymer of starch.Techno-functional properties of the modified starches through chemical modification means are highlighted.Dual modification improves the starch functionality and increases the industrial applications.Production of novel starches is on high industrial demands because it mainly evolves with new value added and functional properties.
Collapse
Affiliation(s)
- Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
139
|
Zarski A, Bajer K, Kapuśniak J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers (Basel) 2021; 13:832. [PMID: 33803238 PMCID: PMC7967182 DOI: 10.3390/polym13050832] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Starch is the second most abundantly available natural polymer in the world, after cellulose. If we add its biodegradability and non-toxicity to the natural environment, it becomes a raw material very attractive for the food and non-food industries. However, in the latter case, mainly due to the high hydrophilicity of starch, it is necessary to carry out many more or less complex operations and processes. One of the fastest growing industries in the last decade is the processing of biodegradable materials for packaging purposes. This is mainly due to awareness of producers and consumers about the dangers of unlimited production and the use of non-degradable petroleum polymers. Therefore, in the present review, an attempt was made to show the possibilities and limitations of using starch as a packaging material. The most important physicochemical features of this biopolymer are discussed, and special attention is paid to more or less environmentally friendly methods of improving its processing properties.
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland;
| | - Krzysztof Bajer
- Lukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, Marii Sklodowskiej-Curie 55 Str., 87-100 Torun, Poland;
| | - Janusz Kapuśniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland;
| |
Collapse
|
140
|
Raghunathan R, Pandiselvam R, Kothakota A, Mousavi Khaneghah A. The application of emerging non-thermal technologies for the modification of cereal starches. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
141
|
Review on the physicochemical properties, modifications, and applications of starches and its common modified forms used in noodle products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106286] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
142
|
Sifuentes-Nieves I, Mendez-Montealvo G, Flores-Silva PC, Nieto-Pérez M, Neira-Velazquez G, Rodriguez-Fernandez O, Hernández-Hernández E, Velazquez G. Dielectric barrier discharge and radio-frequency plasma effect on structural properties of starches with different amylose content. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
143
|
Hernandez-Perez P, Flores-Silva PC, Velazquez G, Morales-Sanchez E, Rodríguez-Fernández O, Hernández-Hernández E, Mendez-Montealvo G, Sifuentes-Nieves I. Rheological performance of film-forming solutions made from plasma-modified starches with different amylose/amylopectin content. Carbohydr Polym 2021; 255:117349. [PMID: 33436191 DOI: 10.1016/j.carbpol.2020.117349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Normal and high amylose corn starches were modified using HMDSO plasma at different time treatments. Changes in functional properties of starch granule, film-forming solutions (FFS) and films were investigated. SEM analysis revealed HMDSO coating deposition on the granule surface, which limited the amylopectin leach out from the granules to the continuous matrix, affecting the rheological properties of the FFS. The amylopectin restriction resulted in a low reinforcement of the network decreasing the viscosity as indicated by n and k values. Also, a gel-like behavior (G' > G″) was observed when the amylose and time treatment increased, suggesting that the matrix becomes less elastic with softer entanglement. This behavior was confirmed by creep test and Burger model parameters. The plasma treatments allowed obtaining FFS with low viscosity, suitable for developing soft and hydrophobic films with low flexibility, as indicated by the decrease of the maximum stress, Hencky strain and permeance values.
Collapse
Affiliation(s)
- Pablo Hernandez-Perez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090, Santiago de Querétaro, Querétaro, Mexico
| | - Pamela C Flores-Silva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090, Santiago de Querétaro, Querétaro, Mexico
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090, Santiago de Querétaro, Querétaro, Mexico
| | - Eduardo Morales-Sanchez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090, Santiago de Querétaro, Querétaro, Mexico
| | - Oliverio Rodríguez-Fernández
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253, Saltillo, Coahuila, Mexico
| | - Ernesto Hernández-Hernández
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253, Saltillo, Coahuila, Mexico
| | - Guadalupe Mendez-Montealvo
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090, Santiago de Querétaro, Querétaro, Mexico.
| | - Israel Sifuentes-Nieves
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253, Saltillo, Coahuila, Mexico.
| |
Collapse
|
144
|
Das A, Sit N. Modification of Taro Starch and Starch Nanoparticles by Various Physical Methods and their Characterization. STARCH-STARKE 2021. [DOI: 10.1002/star.202000227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aparna Das
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| |
Collapse
|
145
|
Recent trends in the application of modified starch in the adsorption of heavy metals from water: A review. Carbohydr Polym 2021; 269:117763. [PMID: 34294282 DOI: 10.1016/j.carbpol.2021.117763] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The presence of polyfunctional ligands on the bio-macromolecules acts as an efficient adsorbent for heavy metal ions. Starch is one of the most abundant, easily available and cheap biopolymer of plant origin. However, native starch exhibits significantly low adsorption capacity due to the absence of some essential functional groups like carboxyl, amino or ester groups and is thus modified using various reaction routes like grafting, cross-linking, esterification, oxidation and irradiation for addition of functional groups to increase its adsorption capacity. The present review provides a comprehensive discussion on the above mentioned modification schemes of starch over the last 10-15 years highlighting their preparation methods, physico-chemical characteristics along with their adsorption capacities and mechanisms of heavy metal ions from water.
Collapse
|
146
|
Park S, Kim YR. Clean label starch: production, physicochemical characteristics, and industrial applications. Food Sci Biotechnol 2021; 30:1-17. [PMID: 33552613 PMCID: PMC7847421 DOI: 10.1007/s10068-020-00834-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Recently, health-conscious consumers have a tendency to avoid the use of modified starch in their food products because of reluctance regarding food additives or chemical processes. The present paper considers the characteristics and manufacturing methods of clean label starch, which is free from chemical modification. Clean label starch manufacturing is mainly dependent on starch blending, physical and enzymatic modification methods. Physical modifications include ultrasound, hydrothermal (e.g., heat-moisture treatment and annealing), pre-gelatinization (e.g., drum drying, roll drying, spray cooking, and extrusion cooking), high-pressure (high hydrostatic pressure), and pulsed electric field treatments. These physical processes allow variation of starch properties, such as morphological, thermal, rheological, and pasting properties. Enzyme treatment can change the properties of starch more dramatically. Actual use of clean label starch with such altered properties has occurred in industry and is described here. This review may provide useful information on the current status and future direction of clean label starch in the field of food science.
Collapse
Affiliation(s)
- Shinjae Park
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yong-Ro Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
147
|
|
148
|
Zhang C, Lim ST. Physical modification of various starches by partial gelatinization and freeze-thawing with xanthan gum. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
149
|
Majzoobi M, Farahnaky A. Granular cold-water swelling starch; properties, preparation and applications, a review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106393] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
150
|
Ashogbon AO. The Recent Development in the Syntheses, Properties, and Applications of Triple Modification of Various Starches. STARCH-STARKE 2021. [DOI: 10.1002/star.202000125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adeleke Omodunbi Ashogbon
- Department of Chemical Sciences Adekunle Ajasin University P.M.B 001 Akungba‐Akoko Ondo State 342111 Nigeria
| |
Collapse
|