101
|
Ahmed S, Sony SA, Chowdhury MB, Ullah MM, Paul S, Hossain T. Retention of antibiotic activity against resistant bacteria harbouring aminoglycoside-N-acetyltransferase enzyme by adjuvants: a combination of in-silico and in-vitro study. Sci Rep 2020; 10:19381. [PMID: 33168871 PMCID: PMC7653040 DOI: 10.1038/s41598-020-76355-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Interference with antibiotic activity and its inactivation by bacterial modifying enzymes is a prevailing mode of bacterial resistance to antibiotics. Aminoglycoside antibiotics become inactivated by aminoglycoside-6′-N-acetyltransferase-Ib [AAC(6′)-Ib] of gram-negative bacteria which transfers an acetyl group from acetyl-CoA to the antibiotic. The aim of the study was to disrupt the enzymatic activity of AAC(6′)-Ib by adjuvants and restore aminoglycoside activity as a result. The binding affinities of several vitamins and chemical compounds with AAC(6′)-Ib of Escherichia coli, Klebsiella pneumoniae, and Shigella sonnei were determined by molecular docking method to screen potential adjuvants. Adjuvants having higher binding affinity with target enzymes were further analyzed in-vitro to assess their impact on bacterial growth and bacterial modifying enzyme AAC(6′)-Ib activity. Four compounds—zinc pyrithione (ZnPT), vitamin D, vitamin E and vitamin K-exhibited higher binding affinity to AAC(6′)-Ib than the enzyme’s natural substrate acetyl-CoA. Combination of each of these adjuvants with three aminoglycoside antibiotics—amikacin, gentamicin and kanamycin—were found to significantly increase the antibacterial activity against the selected bacterial species as well as hampering the activity of AAC(6′)-Ib. The selection process of adjuvants and the use of those in combination with aminoglycoside antibiotics promises to be a novel area in overcoming bacterial resistance.
Collapse
Affiliation(s)
- Shamim Ahmed
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Sabrina Amita Sony
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Belal Chowdhury
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Mahib Ullah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shatabdi Paul
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
102
|
Zhang X, Li X, Wang W, Qi J, Wang D, Xu L, Liu Y, Zhang Y, Guo K. Diverse Gene Cassette Arrays Prevail in Commensal Escherichia coli From Intensive Farming Swine in Four Provinces of China. Front Microbiol 2020; 11:565349. [PMID: 33154738 PMCID: PMC7591504 DOI: 10.3389/fmicb.2020.565349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple-drug resistance bacteria containing antimicrobial resistance genes (ARGs) are a concern for public health. Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes responsible for the spread of ARGs. Few studies link genotype and phenotype of swine-related ARGs in the context of mobile gene cassette arrays among commensal Escherichia coli (E. coli) in nonclinical livestock isolates from intensive farms. In the present study, a total of 264 isolates were obtained from 330 rectal swabs to determine the prevalence and characteristics of antibiotic-resistant gene being carried by commensal E. coli in the healthy swine from four intensive farms at Anhui, Hebei, Shanxi, and Shaanxi, in China. Antimicrobial resistance phenotypes of the recovered isolates were determined for 19 antimicrobials. The E. coli isolates were commonly nonsusceptible to doxycycline (75.8%), tetracycline (73.5%), sulfamethoxazole-trimethoprim (71.6%), amoxicillin (68.2%), sulfasalazine (67.1%), ampicillin (58.0%), florfenicol (56.1%), and streptomycin (53.0%), but all isolates were susceptible to imipenem (100%). Isolates [184 (69.7%)] exhibited multiple drug resistance with 11 patterns. Moreover, 197 isolates (74.6%) were detected carrying the integron-integrase gene (intI1) of class 1 integrons. A higher incidence of antimicrobial resistance was observed in the intI1-positive E. coli isolates than in the intI1-negative E. coli isolates. Furthermore, there were 17 kinds of gene cassette arrays in the 70 integrons as detected by sequencing amplicons of variable regions, with 66 isolates (94.3%) expressing their gene cassettes encoding for multiple drug resistance phenotypes for streptomycin, neomycin, gentamicin, kanamycin, amikacin, sulfamethoxazole-trimethoprim, sulfasalazine, and florfenicol. Notably, due to harboring multiple, hybrid, and recombination cassettes, complex cassette arrays were attributed to multiple drug resistance patterns than simple arrays. In conclusion, we demonstrated that the prevalence of multiple drug resistance and the incidence of class 1 integrons were 69.7 and 74.6% in commensal E. coli isolated from healthy swine, which were lower in frequency than that previously reported in China.
Collapse
Affiliation(s)
- Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,College of Animal Science, Tarim University, Alar, China
| | - Xinxin Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weihua Wang
- Weinan Vocational and Technical College, Weinan, China
| | - Jiali Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lei Xu
- College of Life Science, Northwest A&F University, Yangling, China
| | - Yong Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
103
|
Liu Y, Jia Y, Yang K, Tong Z, Shi J, Li R, Xiao X, Ren W, Hardeland R, Reiter RJ, Wang Z. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Am J Cancer Res 2020; 10:10697-10711. [PMID: 32929375 PMCID: PMC7482817 DOI: 10.7150/thno.45951] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Emergence, prevalence and widely spread of plasmid-mediated colistin resistance in Enterobacteriaceae strongly impairs the clinical efficacy of colistin against life-threatening bacterial infections. Combinations of antibiotics and FDA-approved non-antibiotic agents represent a promising means to address the widespread emergence of antibiotic-resistant pathogens. Methods: Herein, we investigated the synergistic activity between melatonin and antibiotics against MCR (mobilized colistin resistance)-positive Gram-negative pathogens through checkerboard assay and time-killing curve. Molecular mechanisms underlying its mode of action were elucidated. Finally, we assessed the in vivo efficacy of melatonin in combination with colistin against drug-resistant Gram-negative bacteria. Results: Melatonin, which has been approved for treating sleep disturbances and circadian disorders, substantially potentiates the activity of three antibiotics, particularly colistin, against MCR-expressing pathogens without enhancing its toxicity. This is evidence that the combination of colistin with melatonin enhances bacterial outer membrane permeability, promotes oxidative damage and inhibits the effect of efflux pumps. In three animal models infected by mcr-1-carrying E. coli, melatonin dramatically rescues colistin efficacy. Conclusion: Our findings revealed that melatonin serves as a promising colistin adjuvant against MCR-positive Gram-negative pathogens.
Collapse
|
104
|
Liu Y, Yang K, Jia Y, Shi J, Tong Z, Wang Z. Cysteine Potentiates Bactericidal Antibiotics Activity Against Gram-Negative Bacterial Persisters. Infect Drug Resist 2020; 13:2593-2599. [PMID: 32801796 PMCID: PMC7397215 DOI: 10.2147/idr.s263225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Bacterial metabolism regulators offer a novel productive strategy in the eradication of antibiotic refractory bacteria, particularly bacterial persisters. However, the potential of amino acids in the fight against Gram-negative bacterial persisters has not been fully explored. The aim of this study is to investigate the potentiation of amino acids to antibiotics in combating Gram-negative bacterial persisters and to reveal the underlying mechanisms of action. Methods Bactericidal activity of antibiotics in the absence or presence of amino acids was evaluated through detecting the reduction of bacterial CFUs. The ratio of NAD+/NADH in E. coli B2 persisters was determined using assay kit with WST-8. Bacterial respiration and ROS production were measured by the reduction of iodonitrotetrazolium chloride and fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Results In this study, we found that cysteine possesses excellent synergistic bactericidal activity with ciprofloxacin against multiple Gram-negative bacterial persisters. Furthermore, the potentiation of cysteine was evaluated in exponential and stationary-phase E. coli ATCC 25922 and E. coli B2. Interestingly, cysteine significantly improves three bactericidal antibiotics killing against stationary-phase bacteria, but not exponential-phase bacteria, implying that the effect of cysteine correlates with the metabolic state of bacteria. Mechanistic studies revealed that cysteine accelerates the bacterial TCA cycle and promotes bacterial respiration and ROS production. These metabolic regulation effects of cysteine re-sensitive bacterial persisters to antibiotic killing. Conclusion Collectively, our study highlights the synergistic bactericidal activity of bacterial metabolism regulators such as cysteine with commonly used antibiotics against Gram-negative bacterial persisters.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
105
|
Zhou Y, Lv X, Chen M, Guo Y, Ding R, Liu B, Deng X, Wang J. Characterization of Corosolic Acid as a KPC-2 Inhibitor That Increases the Susceptibility of KPC-2-Positive Bacteria to Carbapenems. Front Pharmacol 2020; 11:1047. [PMID: 32733256 PMCID: PMC7363806 DOI: 10.3389/fphar.2020.01047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of KPC-producing Gram-negative bacteria in clinical practice highlights the need to search for novel antimicrobials and new anti-infection strategies. In this study, we constructed a laboratory KPC-2-positive strain, E. coli BL21(DE3) (pET28a-KPC-2) and identified the activity of KPC-2 in this strain. Using enzyme inhibition assays, checkerboard MIC assays, growth curves, time-killing assays and combined disk test, we found that the natural compound corosolic acid (CA) significantly inhibited the activity of the class A β-lactamase KPC-2, which is common among clinical isolates. CA treatment increased the antibacterial or bactericidal activity of imipenem and meropenem against E. coli BL21(DE3) (pET28a-KPC-2) in vitro (FIC index = 0.17 ± 0.03 for both carbapenems). In addition, the mouse intraperitoneal infection model confirmed that the combination therapy significantly reduced the bacterial load in the livers and spleens following subcutaneous administration. Our results showed that CA can be used to extend the life of carbapenems, providing a viable strategy for severe infections caused by KPC-2-positive bacteria.
Collapse
Affiliation(s)
- Yonglin Zhou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaohong Lv
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Meishan Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yan Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Rui Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Bin Liu
- Jilin Institute for Food Control, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
106
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
107
|
Liu Y, Jia Y, Yang K, Li R, Xiao X, Zhu K, Wang Z. Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902227. [PMID: 32596101 PMCID: PMC7312304 DOI: 10.1002/advs.201902227] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/29/2020] [Indexed: 05/22/2023]
Abstract
Highly persistent incidence of multidrug resistant (MDR) bacterial pathogens constitutes a global burden for public health. An alternative strategy to alleviate such a crisis is to identify promising compounds to restore antibiotics activity against MDR bacteria. It is reported that the antidiabetic drug metformin exhibits the potentiation effect on tetracycline antibiotics, particularly doxycycline and minocycline, against MDR S. aureus, E. faecalis, E. coli, and S. enteritidis. Mechanistic studies demonstrate that metformin promotes intracellular accumulation of doxycycline in tetracycline-resistant E. coli. In addition, metformin boosts the immune response and alleviates the inflammatory responses in vitro. Last, metformin fully restores the activity of doxycycline in three animal infection models. Collectively, these results reveal the potential of metformin as a novel tetracyclines adjuvant to circumvent MDR bacterial pathogens and to improve the treatment outcome of recalcitrant infections.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouJiangsu225009China
| | - Yuqian Jia
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
| | - Kangni Yang
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
| | - Ruichao Li
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouJiangsu225009China
| | - Xia Xiao
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouJiangsu225009China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhiqiang Wang
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouJiangsu225009China
| |
Collapse
|
108
|
Liu Y, Jia Y, Yang K, Li R, Xiao X, Wang Z. Antagonizing Vancomycin Resistance in Enterococcus by Surface Localized Antimicrobial Display-Derived Peptides. ACS Infect Dis 2020; 6:761-767. [PMID: 31505930 DOI: 10.1021/acsinfecdis.9b00164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Decreasing the therapeutic pipeline for vancomycin-resistant Enterococci (VRE) calls for novel strategies to enhance our antibacterial arsenal. Herein, we investigated the potential applications of surface localized antimicrobial display (SLAY)-derived cationic peptides in the fight against VanA operon mediated vancomycin-resistant Enterococcus. Through determining their antibacterial spectrum, we found that SLAY peptide 1/2 displayed moderate bactericidal activity against Enterococcus with minimal inhibitory concentration (MIC) values of 2-8 μg/mL. Furthermore, we observed a significant synergistic activity between SLAY-P1 and vancomycin against VRE. Mechanistic studies demonstrated that SLAY-P1 specifically inhibits transcription of the vanRS two-component system, thereby restoring vancomycin activity and resulting in the accumulation of the cell wall precursor. Meaningfully, the combination of SLAY-P1 and vancomycin prevents the emergence of vancomycin resistance. Consistent with in vitro synergistic results, the addition of SLAY-P1 significantly enhanced the survival rates of Galleria mellonella larvae compared with vancomycin monotherapy. Taken together, these results suggested that SLAY-derived cationic peptides not only display antibacterial activity against VRE but also reverse vancomycin resistance in Enterococcus, providing promising candidates for combating vancomycin-resistant pathogens.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Yuqian Jia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Kangni Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Ruichao Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Xia Xiao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Zhiqiang Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
109
|
Anti-HIV agent azidothymidine decreases Tet(X)-mediated bacterial resistance to tigecycline in Escherichia coli. Commun Biol 2020; 3:162. [PMID: 32246108 PMCID: PMC7125129 DOI: 10.1038/s42003-020-0877-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Recent emergence of high-level tigecycline resistance mediated by Tet(X3/X4) in Enterobacteriaceae undoubtably constitutes a serious threat for public health worldwide. Antibiotic adjuvant strategy makes antibiotic more effective against these resistant pathogens through interfering intrinsic resistance mechanisms or enhancing antibiotic actions. Herein, we screened a collection of drugs to identify compounds that are able to restore tigecycline activity against resistant pathogens. Encouragingly, we discovered that anti-HIV agent azidothymidine dramatically potentiates tigecycline activity against clinically resistant bacteria. Meanwhile, addition of azidothymidine prevents the evolution of tigecycline resistance in E. coli and the naturally occurring horizontal transfer of tet(X4). Evidence demonstrated that azidothymidine specifically inhibits DNA synthesis and suppresses resistance enzyme activity. Moreover, in in vivo infection models by Tet(X4)-expression E. coli, the combination of azidothymidine and tigecycline achieved remarkable treatment benefits including increased survival and decreased bacterial burden. These findings provide an effective regimen to treat infections caused by tigecycline-resistant Escherichia coli. Yuan Liu et al. demonstrate that anti-HIV agent azidothymidine restores tigecycline’s activity against pathogens resistant to this antibiotic. This study suggests the combination of azidothymidine and tigecycline as an effective regimen to treat infections caused by tigecycline-resistant Escherichia coli.
Collapse
|
110
|
Liu Y, Yang K, Jia Y, Wang Z. Repurposing Peptidomimetic as Potential Inhibitor of New Delhi Metallo-β-lactamases in Gram-Negative Bacteria. ACS Infect Dis 2019; 5:2061-2066. [PMID: 31637907 DOI: 10.1021/acsinfecdis.9b00364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence, prevalence, and rapid spread of New Delhi metallo-β-lactamases (NDMs) in Gram-negative pathogens threaten our traditional regimen to treat bacterial infectious diseases. Discovery of novel NDMs inhibitors offers an alternative approach to restore the carbapenems activity. However, thus far, no clinical inhibitor of NDMs has been approved. In this study, the potential of peptides and analogues as carbapenems adjuvant in NDMs-positive pathogens was investigated. Herein, we successfully found that peptidomimetic 4 (PEP4) is a potential inhibitor of NDM enzymes. PEP4 displayed significant synergistic activity with Meropenem against NDM-expression Gram-negative bacteria in vitro. Moreover, PEP4 effectively restored Meropenem efficacy in mice infection models infected with NDM-5-positive E. coli. These data demonstrated the high potential of PEP4 as carbapenems adjuvant to address NDMs-positive Gram-negative pathogens.
Collapse
Affiliation(s)
- Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | | | | | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
111
|
Wu SC, Liu F, Zhu K, Shen JZ. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13195-13211. [PMID: 31702908 DOI: 10.1021/acs.jafc.9b05595] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the incidence of antibiotic-resistant Staphylococcus aureus (S. aureus) associated infections necessitates the urgent development of novel therapeutic strategies and antibacterial drugs. Antivirulence strategy is an especially compelling alternative strategy due to its low selective pressure for the development of drug resistance in bacteria. Plants and microorganisms are not only important food and medicinal resources but also serve as sources for the discovery of natural products that target bacterial virulence factors. This review discusses the mechanisms of the major virulence factors of S. aureus, including the accessory gene regulator quorum-sensing system, bacterial biofilm formation, α-hemolysin, sortase A, and staphyloxanthin. We also provide an overview of natural products isolated from plants and microorganisms with activity against the major virulence factors of S. aureus and their adjuvant effects on existing antibiotics to overcome antibiotic-resistant S. aureus. Finally, the limitations and solutions of these antivirulence compounds are discussed, which will help in the development of novel antibacterial drugs against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
- College of Veterinary Medicine , Qingdao Agricultural University , No. 700 Changcheng Road , Qingdao , Shandong 266109 , People's Republic of China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|