101
|
Joseph SK, Sabitha M, Nair SC. Stimuli-Responsive Polymeric Nanosystem for Colon Specific Drug Delivery. Adv Pharm Bull 2020; 10:1-12. [PMID: 32002356 PMCID: PMC6983990 DOI: 10.15171/apb.2020.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
An ideal colon specific drug delivery system needs to perform multiple functions like greater bio availability, less toxicity and higher therapeutic efficacy, all of which require high degree of smartness. This article focuses on the overview of the stimuli-responsive polymers and various nanodrug delivery systems which have found applications in colon specific delivery of drugs as this system provide a link between therapeutic need and drug delivery. These polymers exhibit a non-linear response to a small stimulus leading to a macroscopic alteration in their structure/properties. Stimuli responsive polymers display a significant physio chemical change in response to small changes in their environment (temperature, pH, light etc.). Colonic drug delivery has gained increased importance in treating diseases like Crohn's disease, ulcerative colitis, colon cancer etc. The expansion in the development of polymers based system with greater flexibility, versatility and unexplored potential enables new opportunities for them in uplifting bio medicine. Applying the concepts of smartness in the context of clinically relevant therapeutic and diagnostic systems, it can prelude in a new era of 'smart' therapeutics that can improve the health care fields. In particular, due to its high sensitivity to the stimuli, this system has been identified as a sensible platform for releasing drug at suitable site and at appropriate time.
Collapse
Affiliation(s)
- Sharon Kunnath Joseph
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682041, India
| | - Mangalath Sabitha
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682041, India
| | | |
Collapse
|
102
|
Baranowska-Wójcik E, Szwajgier D. Alzheimer's disease: review of current nanotechnological therapeutic strategies. Expert Rev Neurother 2020; 20:271-279. [PMID: 31957510 DOI: 10.1080/14737175.2020.1719069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Alzheimer's Disease (AD) is a progressive neurodegenerative pathology characterized by the presence of neuritic plaques and neurofibrillary tangles. The most important markers in AD pathology include excessive accumulation of amyloid beta (Aβ42) and phosphorylated tau (P-tau) proteins. One of the possible therapeutic strategies entails the elimination of such deposits by inhibiting Aβ aggregation. For years, one of the major problems in the treatment of AD has been the limited ability to deliver drugs to the brain for reasons related to poor solubility, low bioavailability, and the impact of the blood-brain barrier (BBB).Areas covered: In recent years, the authors have observed an increasing scientific interest in nanotechnological solutions as the factors potentially capable of facilitating the treatment of neurodegenerative diseases. The authors discuss recent reports regarding the use of nanotechnology in the therapy and treatment of AD.Expert opinion: The current advances in nanotechnology promise a chance to overcome the obstacles posed by said limitations. The size and diversity of nanoparticles in terms of both composition and shape create new possibilities for a variety of therapeutic applications, also in the context of the treatment and diagnostics of neurodegenerative diseases, for instance in combination with magnetic resonance imaging.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
103
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149:192-217. [PMID: 31982574 DOI: 10.1016/j.ejpb.2020.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is vulnerable to pathologic processes that lead to the development of neurodegenerative disorders like Alzheimer's, Parkinson's and Huntington's diseases, Multiple sclerosis or Amyotrophic lateral sclerosis. These are chronic and progressive pathologies characterized by the loss of neurons and the formation of misfolded proteins. Additionally, neurodegenerative diseases are accompanied by a structural and functional dysfunction of the blood-brain barrier (BBB). Although serving as a protection for the CNS, the existence of physiological barriers, especially the BBB, limits the access of several therapeutic agents to the brain, constituting a major hindrance in neurotherapeutics advancement. In this regard, nanotechnology-based approaches have arisen as a promising strategy to not only improve drug targeting to the brain, but also to increase bioavailability. Lipid nanocarriers such as liposomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), microemulsions and nanoemulsions, have already proven their potential for enhancing brain transport, crossing more easily into the CNS and allowing the administration of medicines that could benefit the treatment of neurological pathologies. Given the socioeconomic impact of such conditions and the advent of nanotechnology that inevitably leads to more effective and superior therapeutics for their management, it is imperative to constantly update on the current knowledge of these topics. Herein, we provide insight on the BBB and the pathophysiology of the main neurodegenerative disorders. Moreover, this review seeks to highlight the several approaches that can be used to improve the delivery of therapeutic agents to the CNS, while also offering an extensive overview of the latest efforts regarding the use of lipid-based nanocarriers in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Teixeira
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - C M Lopes
- FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P C Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
104
|
Qian C, Yuan C, Li C, Liu H, Wang X. Multifunctional nano-enabled delivery systems in Alzheimer's disease management. Biomater Sci 2020; 8:5538-5554. [DOI: 10.1039/d0bm00756k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review discusses the recent advances in multifunctional nano-enabled delivery systems (NDS) for Alzheimer's disease management, including multitherapeutics, multimodal imaging-guided diagnostics, and theranostics.
Collapse
Affiliation(s)
- Chengyuan Qian
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Chengyi Yuan
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Changhong Li
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Hao Liu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Coordination Chemistry
| |
Collapse
|
105
|
Karthivashan G, Ganesan P, Park SY, Lee HW, Choi DK. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson's disease: From preclinical to translational studies. Biomaterials 2019; 232:119704. [PMID: 31901690 DOI: 10.1016/j.biomaterials.2019.119704] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
The incidence of Parkinson's disease (PD), the second most common neurodegenerative disorder, has increased exponentially as the global population continues to age. Although the etiological factors contributing to PD remain uncertain, its average incidence rate is reported to be 1% of the global population older than 60 years. PD is primarily characterized by the progressive loss of dopaminergic (DAergic) neurons and/or associated neuronal networks and the subsequent depletion of dopamine (DA) levels in the brain. Thus, DA or levodopa (l-dopa), a precursor of DA, represent cardinal targets for both idiopathic and symptomatic PD therapeutics. While several therapeutic strategies have been investigated over the past decade for their abilities to curb the progression of PD, an effective cure for PD is currently unavailable. Even DA replacement therapy, an effective PD therapeutic strategy that provides an exogenous supply of DA or l-dopa, has been hindered by severe challenges, such as a poor capacity to bypass the blood-brain barrier and inadequate bioavailability. Nevertheless, with recent advances in nanotechnology, several drug delivery systems have been developed to bypass the barriers associated with central nervous system therapeutics. In here, we sought to describe the adapted lipid-based nanodrug delivery systems used in the field of PD therapeutics and their recent advances, with a particular focus placed on DA replacement therapies. This work initially explores the background of PD; offers descriptions of the most recent molecular targets; currently available clinical medications/limitations; an overview of several lipid-based PD nanotherapeutics, functionalized nanoparticles, and technical aspects in brain delivery; and, finally, presents future perspectives to enhance the use of nanotherapeutics in PD treatment.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biomedical Chemistry, Nanotechnology Research Center, Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine and Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41404, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
106
|
Potential of Tribological Properties of Metal Nanomaterials in Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31802447 DOI: 10.1007/5584_2019_440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Metallic nanomaterials show tremendous applications in biomedical devices due to compatible integration into the most of the biological systems as they are nano- structured. Metallic nanomaterials are capable of mimicking all the three major antioxidant enzymes such as catalase (CAT), peroxidase and oxidase, to control the level of reactive oxygen species (ROS) inside the cell as an alternative strategy over conventional one which has biological toxicity and have several adverse effects, if accumulation takes places during the treatment. This anti-oxidant property of metallic nanomaterials demonstrates as a promising candidate for its biomedical application in disease conditions where the excessive level of ROS causes damage to DNA, lipids and protein in several conditions such as diabetes, cancer and neurodegenerative diseases. Tribology is the study of interacting surfaces in motion and the measurement of properties such as friction, wear-tear and abrasion. While designing nano-scale biomedical devices, the consideration of tribology is particularly important because the high surface area ratio enhances problems with friction and wear-tear which can further affects its function as well as longevity.
Collapse
|
107
|
Carro CE, Pilozzi AR, Huang X. Nanoneurotoxicity and Potential Nanotheranostics for Alzheimer's Disease. EC PHARMACOLOGY AND TOXICOLOGY 2019; 7:1-7. [PMID: 31828253 PMCID: PMC6905634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia and it is characterized by cognitive, motor and memory impairments. AD neuropathology includes toxic biomarkers, such as Aβ amyloid protein buildup between neurons disrupting connections, tau protein fibrillization and neuronal demise. These biomarkers are exacerbated with exposure to environmental borne or man-made nanoparticles or engineered nanomaterials (ENMs) as these nanoparticles are becoming more widely adopted for industrial applications. Studies suggest a link between nanoparticle exposure and neurotoxic responses, thus suggesting a contribution to AD pathology. This review summarizes research in the field of nanoparticles in terms of neurotoxic changes in the nervous system, as well as its relation to AD pathology. Studies involving silver, silica, copper oxide and iron oxide nanoparticles in mice suggest ranging neurotoxic reactions, such as disrupted neural connections, neuroinflammation, neuron cell death, redox stress, impairment of the blood-brain barrier (BBB), decrease in motor performance, demyelination of axons, decrease in long-term potentiation (LTP) and damage to DNA and brain structures. This review also examines beneficial effects of certain nanoparticles as potential therapeutic or diagnostic tools for AD.
Collapse
Affiliation(s)
- Caitlin E Carro
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Alexander R Pilozzi
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
108
|
Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A. Nanodelivery of phytobioactive compounds for treating aging-associated disorders. GeroScience 2019; 42:117-139. [PMID: 31686375 DOI: 10.1007/s11357-019-00116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine.
| |
Collapse
|
109
|
Kramer S, Svatunek D, Alberg I, Gräfen B, Schmitt S, Braun L, van Onzen AHAM, Rossin R, Koynov K, Mikula H, Zentel R. HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules 2019; 20:3786-3797. [PMID: 31535846 PMCID: PMC6794642 DOI: 10.1021/acs.biomac.9b00868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fast
and bioorthogonally reacting nanoparticles are attractive
tools for biomedical applications such as tumor pretargeting. In this
study, we designed an amphiphilic block copolymer system based on
HPMA using different strategies to introduce the highly reactive click
units 1,2,4,5-tetrazines (Tz) either at the chain end (Tz-CTA) or
statistical into the hydrophobic block. This reactive group undergoes
a rapid, bioorthogonal inverse electron-demand Diels–Alder
reaction (iEDDA) with trans-cyclooctenes (TCO). Subsequently,
this polymer platform was used for the preparation of different Tz-covered
nanoparticles, such as micelles and colloids. Thereby it was found
that the reactivity of the polymeric micelles is comparable to that
of the low molar mass tetrazines. The core-cross-linked micelles can
be successfully conjugated at rather low concentrations to large biomacromolecules
like antibodies, not only in physiological buffer, but also in human
blood plasma, which was confirmed by fluorescence correlation spectroscopy
(FCS).
Collapse
Affiliation(s)
- Stefan Kramer
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Dennis Svatunek
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Irina Alberg
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Barbara Gräfen
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Lydia Braun
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Arthur H A M van Onzen
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Hannes Mikula
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Rudolf Zentel
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
110
|
Alzheimer's disease: Key developments support promising perspectives for therapy. Pharmacol Res 2019; 146:104316. [PMID: 31260730 DOI: 10.1016/j.phrs.2019.104316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's is the neurodegenerative disease affecting the largest number of patients in the world. In spite of the intense research of the last decades, progress about its knowledge and therapy was limited. In particular, various cytotoxic processes remained debated, while the few drugs approved for therapy were of only marginal relevance. Recent studies have identified key aspects of the disease, such as the mechanisms governing the development of pathology. In order to operate the Aβ peptide, known as the key factor, requires a complex assembled by its high affinity binding to PrPc, a cell surface prion protein, and mGluR5, a metabotropic glutamate receptor. Aβ and its associates bind also phosphorylated tau transferred to the extracellular space, with final activation of intracellular cytotoxic signals. Pathology is further affected by factors (including genes, receptors and their agonists) and by glial cells governing (via vesicles, cytokines and enzymes) cell immunology, inflammation and oxidative stress. Concomitant to pathology studies, strong attempts have been made for the development of new, effective therapies. Critical for this are biomarkers, by which Alzheimer's patients are recognized even before appearance of their symptoms. The question was whether patients take advantage from drugs not yet approved. The latter, first identified in mice, were found effective also in men, however only before appearance or at early stage of the disease. In other words, the drugs not yet approved induce effective protection of patients still healthy or in a preliminary stage of the disease. In contrast, developed Alzheimer's disease is practically irreversible.
Collapse
|
111
|
Liao Y, Bae HJ, Park JH, Zhang J, Koo B, Lim MK, Han EH, Lee SH, Jung SY, Lew JH, Ryu JH. Aster glehni Extract Ameliorates Scopolamine-Induced Cognitive Impairment in Mice. J Med Food 2019; 22:685-695. [PMID: 31225769 DOI: 10.1089/jmf.2018.4302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The leaves of Aster glehni Fr. Schm. (Asteraceae) have been used to treat insomnia in Korea. Insomnia is a common adverse effect of therapeutic agents for Alzheimer's disease (AD), and the control of sleep disturbance may prevent dementia. We hypothesized that the leaves of A. glehni can attenuate cognitive dysfunctions observed in AD. We observed the ameliorating effects of the ethanolic extract of leaves of A. glehni (AG-D) on memory dysfunction through the Morris water maze test, the passive avoidance test, and the Y-maze test. We performed acetylcholinesterase (AChE) activity assay and Western blotting to determine the mechanism of action of AG-D. AG-D significantly attenuated memory dysfunction observed in the above behavior studies and inhibited the activity of AChE. AG-D also increased the levels of phosphorylation extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase 3β (GSK-3β) and the expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampi. These results suggest that AG-D ameliorates memory impairments by AChE inhibition and activation of ERK-CREB-BDNF and PI3K-Akt-GSK-3β signaling pathways. Taken together, this study suggests that AG-D could be used as a potential treatment for cognitive dysfunction.
Collapse
Affiliation(s)
- Yulan Liao
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Ho Jung Bae
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jong Hun Park
- 2 Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Jiabao Zhang
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Bokyung Koo
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Mi Kyung Lim
- 3 Department of R&D Center, Koreaeundan, Seongnam, Korea
| | - Eun Hye Han
- 3 Department of R&D Center, Koreaeundan, Seongnam, Korea
| | - Sang Ho Lee
- 3 Department of R&D Center, Koreaeundan, Seongnam, Korea
| | - Seo Yun Jung
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jae Hwan Lew
- 2 Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Jong Hoon Ryu
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea.,4 Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| |
Collapse
|
112
|
Arya M, Manoj Kumar MK, Sabitha M, Menon KN, Nair SC. Nanotechnology approaches for enhanced CNS delivery in treating Alzheimer's disease. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
113
|
Cognitive-enhancing and ameliorative effects of acanthoside B in a scopolamine-induced amnesic mouse model through regulation of oxidative/inflammatory/cholinergic systems and activation of the TrkB/CREB/BDNF pathway. Food Chem Toxicol 2019; 129:444-457. [PMID: 31077737 DOI: 10.1016/j.fct.2019.04.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022]
Abstract
Recently, our research team reported the anti-amnesic potential of desalted-hydroethanolic extracts of Salicornia europaea L. (SE-EE). In this study, we performed bioactivity-guided isolation and identification of Acanthoside B (Aca.B), from SE-EE, as the potential bioactive candidate and examined anti-amnesic activity with its potential mechanism of action using an in vivo model. S7-L3-3 purified from SE-EE showed enhanced in vitro acetylcholinesterase (AChE) inhibitory activity. The isolated S7-L3-3 was identified and characterized as Aca.B using varied spectral analyses, i.e., Nuclear magnetic resonance (NMR), Ultraviolet-visible (UV-Vis), and Electrospray ionization-mass spectrometry (ESI-MS). In the in vitro studies, Aca.B exhibited negligible toxicity and showed a dose-dependent nitric oxide inhibitory potential in Lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. In the in vivo studies, the oral administration of Aca.B to mice showed enhanced bioavailability and dose-dependent repression of the behavioral/cognitive impairment by regulating the cholinergic function, restoring the antioxidant status, attenuating the inflammatory cytokines/mediators and actively enriching neurotropic proteins in the hippocampal regions of the scopolamine-administered mice.
Collapse
|
114
|
Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, Dinarvand R. Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids Surf B Biointerfaces 2019; 179:505-516. [PMID: 31009853 DOI: 10.1016/j.colsurfb.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Bio-nano interface investigation models are mainly based on the type of proteins present on corona, bio-nano interaction responses and the evaluation of final outcomes. Due to the extensive diversity in correlative models for investigation of nanoparticles biological responses, a comprehensive model considering different aspects of bio-nano interface from nanoparticles properties to protein corona fingerprints appeared to be essential and cannot be ignored. In order to minimize divergence in studies in the era of bio-nano interface and protein corona with following therapeutic implications, a useful investigation model on the basis of RADAR concept is suggested. The contents of RADAR concept consist of five modules: 1- Reshape of our strategy for synthesis of nanoparticles (NPs), 2- Application of NPs selected based on human fluid, 3- Delivery strategy of NPs selected based on target tissue, 4- Analysis of proteins present on corona using correct procedures and 5- Risk assessment and risk reduction upon the collection and analysis of results to increase drug delivery efficiency and drug efficacy. RADAR grouping strategy for revisiting protein corona phenomenon as a key of success will be discussed with respect to the current state of knowledge.
Collapse
Affiliation(s)
- Ghassem Rezaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyed Mojtaba Daghighi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ismael Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
115
|
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111:666-675. [PMID: 30611991 DOI: 10.1016/j.biopha.2018.12.133] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the researchers and drug designers have given growing attention to new nanotechnology strategies to improve drug delivery to the central nervous system (CNS). Nanotechnology has a great potential to affect the treatment of neurological disorders, mainly Alzheimer's disease, Parkinson's disease, brain tumors, and stroke. With regard to neurodegeneration, several studies showed that nanomaterials have been successfully used for the treatments of CNS disorders. In this regard, nanocarriers have facilitated the targeted delivery of chemotherapeutics resulting in the efficient inhibition of disease progression in malignant brain tumors. Therefore, the most efficacious application of nanomaterials is the use of these substances in the treatment of CNS disease that enhances the overall effect of drug and highlights the importance of nano-therapeutics. This study was conducted to review the evidence on the applications of nanotechnology in designing drug delivery systems with the ability to cross through the blood-brain barrier (BBB) in order to transfer the therapeutic agents to the CNS.
Collapse
Affiliation(s)
- Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Masoumeh Eslamifar
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Science, Sari, Iran.
| | - Khadijeh Khezri
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran..
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
116
|
Wang C, Cai X, Hu W, Li Z, Kong F, Chen X, Wang D. Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer's disease. Int J Mol Med 2018; 43:956-966. [PMID: 30569175 PMCID: PMC6317678 DOI: 10.3892/ijmm.2018.4032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023] Open
Abstract
Due to its complex pathogenesis, the prevention and therapization of Alzheimer’s disease (AD) remains a serious challenge. Crocin, the main compound isolated from Crocus sativus L., demonstrates various pharmacological activities including anti-apoptotic properties. The present study investigated the neuroprotective effect of crocin and the underlying mechanisms. In l-glutamate-damaged HT22 cells, 3-h crocin pretreatment strongly enhanced the HT22 cell viability, reduced the apoptotic rate, mitigated mitochondrial dysfunction, suppressed intracellular reactive oxygen species (ROS) accumulation and Ca2+ overload compared with untreated cells. Additionally, crocin significantly decreased the expression levels of Bax, Bad and cleaved caspase-3 and increased the expression levels of B-cell lymphoma-extra large, phosphorylated (P-) protein kinase B and P-mammalian target of rapamycin compared with untreated cells. In mice with AD induced by d-galactose and aluminum trichloride, crocin substantially improved the cognition and memory abilities of the mice as measured by their coordination of movement in an open field test, and reduced their escape time in the Morris water maze test compared with untreated mice. Biochemical analysis confirmed that crocin was able to reduce the Aβ1-42 content in the mouse brains, increase the levels of glutathione peroxidase, superoxide dismutase, acetylcholine and choline acetyltransferase, and reduce the levels of ROS and acetylcholinesterase in the serum, cerebral cortex and hypothalamus compared with untreated mice. Immunohistochemical analysis demonstrated that crocin reduced Aβ1-42 deposition in the hippocampus of the brains of treated mice compared with untreated mice. In conclusion, crocin demonstrates good prospects in the treatment of AD through the oxidative stress-associated apoptosis signaling pathway.
Collapse
Affiliation(s)
- Chunyue Wang
- Department of Microbiology and Biochemistry, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xueying Cai
- Department of Microbiology and Biochemistry, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Wenji Hu
- Department of Microbiology and Biochemistry, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Zhiping Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130006, P.R. China
| | - Fange Kong
- Department of Microbiology and Biochemistry, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xia Chen
- Department of Microbiology and Biochemistry, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Di Wang
- Department of Microbiology and Biochemistry, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
117
|
Salles GN, Calió ML, Afewerki S, Pacheco-Soares C, Porcionatto M, Hölscher C, Lobo AO. Prolonged Drug-Releasing Fibers Attenuate Alzheimer's Disease-like Pathogenesis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36693-36702. [PMID: 30298718 DOI: 10.1021/acsami.8b12649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Delivering drugs and agents to the brain is a huge challenge, especially for chronic neurodegenerative disorders, such as Alzheimer's disease (AD). For this, prolonged and sustained release methods to increase brain uptake represent an impacting concept. The bioresorbable polymer poly-lactic acid (PLA) has high potential for medical implants; at the same time, glucagon-like peptide-1 (GLP-1) analogues have considerable neuroprotective attributes and represent a therapeutic strategy for AD. Here, a biodevice is produced by electrospinning PLA with a GLP-1 analogue (liraglutide, LG), coated with a thin layer of gelatin. The biodevice is subcutaneously implanted in a transgenic mouse model of AD and LG is released for 14 days in mice serum. After 4 weeks of implantation, crucial hallmarks of the AD are highly diminished: hippocampal senile amyloid β plaque load and neuroinflammatory markers. Furthermore, neurogenesis is enhanced in the subventricular zone, an important neurogenic niche in the brain. The designed biodevice holds great promise for being an affordable candidate to act as a prolonged drug provider, promoting LG mission through increasing its lifetime, constituting a relevant approach for old and impaired brain.
Collapse
Affiliation(s)
- Geisa Nogueira Salles
- Laboratory of Dynamics of Cellular Compartments, Instituto de Pesquisa e Desenvolvimento , Universidade do Vale do Paraiba , Sao Jose dos Campos 12244-000 , São Paulo , Brazil
- Department of Biochemistry, Neurobiology Laboratory, Escola Paulista de Medicina , Universidade Federal São Paulo , São Paulo 04021-00 , Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine , Lancaster University , Lancaster LA1 4YQ , U.K
| | - Michele Longoni Calió
- Department of Biochemistry, Neurobiology Laboratory, Escola Paulista de Medicina , Universidade Federal São Paulo , São Paulo 04021-00 , Brazil
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School , Brigham & Women's Hospital , Cambridge , Massachusetts 02139 , United States
- Harvard-MIT Division of Health Science and Technology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Cristina Pacheco-Soares
- Laboratory of Dynamics of Cellular Compartments, Instituto de Pesquisa e Desenvolvimento , Universidade do Vale do Paraiba , Sao Jose dos Campos 12244-000 , São Paulo , Brazil
| | - Marimelia Porcionatto
- Department of Biochemistry, Neurobiology Laboratory, Escola Paulista de Medicina , Universidade Federal São Paulo , São Paulo 04021-00 , Brazil
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine , Lancaster University , Lancaster LA1 4YQ , U.K
| | - Anderson O Lobo
- Institute of Science and Technology , Universidade Brasil , Itaquera 08230-030 , São Paulo , Brazil
- LIMAv-Interdisciplinary Laboratory for Advanced Materials, PPGCM-Materials Science and Engineering Graduate Program , UFPI-Federal University of Piaui , Teresina 64049-550 , Piauí , Brazil
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139-4307 , United States
| |
Collapse
|
118
|
Tattevin P, Solomon T, Brouwer MC. Understanding central nervous system efficacy of antimicrobials. Intensive Care Med 2018; 45:93-96. [PMID: 29936582 DOI: 10.1007/s00134-018-5270-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Pierre Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2, rue Henri Le Guilloux, 35033, Rennes Cedex, France. .,ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.
| | - Tom Solomon
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,National Institute for Health Research, (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection and Global Health, University of Liverpool, Walton Centre National Health Service (NHS) Foundation Trust, Liverpool, UK
| | - Matthijs C Brouwer
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
119
|
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 2018; 13:1569-1583. [PMID: 29588585 PMCID: PMC5858819 DOI: 10.2147/ijn.s155593] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| | - Prakash Ramalingam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|