101
|
Possibilities of Improving the Clinical Value of Immune Checkpoint Inhibitor Therapies in Cancer Care by Optimizing Patient Selection. Int J Mol Sci 2020; 21:ijms21020556. [PMID: 31952311 PMCID: PMC7014370 DOI: 10.3390/ijms21020556] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies have become the most important medical therapies in many malignancies, such as melanoma, non-small-cell lung cancer, and urogenital cancers. However, due to generally low response rates of PD-(L)1 monotherapy, both PD-(L)1 combination therapies and novel therapeutics are under large-scale clinical evaluation. Thus far, clinical trials have rather suboptimally defined the patient population most likely to benefit from ICI therapy, and there is an unmet need for negative predictive markers aiming to reduce the number of non-responding patients in clinical practice. Furthermore, there is a strong need for basic tumor immunology research and innovative clinical trials to fully unleash the potential of ICI combinations for the benefit of patients.
Collapse
|
102
|
Dieu-Nosjean MC, Caux C. [The biology of PD1 and CTLA-4 as immunotherapeutic targets and the issue of biomarkers]. Med Sci (Paris) 2020; 35:957-965. [PMID: 31903900 DOI: 10.1051/medsci/2019192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The identification in the 1990's of the role of CTLA-4 and PD-1, two inhibitory receptors of T lymphocytes, in the control of the anti-tumor immune responses, led to the awarding of the Nobel Prize in Physiology or Medicine in 2018 to Dr. James Allison and Dr. Tasuku Honjo. These inhibitory receptors called immune checkpoints are essential to prevent any deleterious impact of on-going immune responses against pathogens or cancer cells on healthy tissues and, hence, guarantee the integrity of the host. These major discoveries have led James Allison and Tasuku Honjo to develop anti-CTLA-4 and anti-PD1/L-1 antibodies, respectively, in order to switch off these immune "brakes", making it possible to efficiently attack tumor cells. CTLA-4 regulates the amplitude of the early T-cell activation and inhibits the activity of CD28, a major activating co-receptor expressed by T cells. PD-1 is expressed by memory and effector T lymphocytes and is involved in the regulation of chronically activated cells, as observed during inflammatory processes. Immunotherapeutic treatments resulting from these discoveries have now a major place in the arsenal of anti-cancer therapies. This review presents firstly a synthesis of knowledge on CTLA-4, PD-1 and their ligands, their mechanisms of action and regulation and, secondly, an overview of biomarkers that have been associated with clinical response to anti-PD-1/PD-L1 and anti-CTLA-4 antibody therapies.
Collapse
Affiliation(s)
- Marie-Caroline Dieu-Nosjean
- Sorbonne Université UMRS1135, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Faculté de Médecine Sorbonne Université, Paris, France
| | - Christophe Caux
- UMR Inserm 1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
103
|
Di Liello R, Cimmino F, Simón S, Giunta EF, De Falco V, Martín-Martorell P. Role of liquid biopsy for thoracic cancers immunotherapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:183-199. [PMID: 36046196 PMCID: PMC9400760 DOI: 10.37349/etat.2020.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Immunotherapy has shifted the therapeutic landscape in thoracic cancers. However, assessment of biomarkers for patient selection and disease monitoring remain challenging, especially considering the lack of tissue sample availability for clinical and research purposes. In this scenario, liquid biopsy (LB), defined as the study and characterization of biomarkers in body fluids, represents a useful alternative strategy. In other malignancies such as colorectal cancer, breast cancer or melanoma, the potential of LB has been more extensively explored for monitoring minimal residual disease or response to treatment, and to investigate mechanisms of resistance to targeted agents. Even if various experiences have already been published about the applications of LB in immunotherapy in thoracic cancers, the standardization of methodology and assessment of its clinical utility is still pending. In this review, the authors will focus on the applications of LB in immunotherapy in non-small cell lung cancer, small cell lung cancer, and malignant pleural mesothelioma, describing available data and future perspectives.
Collapse
Affiliation(s)
- Raimondo Di Liello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy,Medical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain,Correspondence: Raimondo Di Liello, Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy.
| | | | - Soraya Simón
- Medical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Vincenzo De Falco
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Paloma Martín-Martorell
- Medical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| |
Collapse
|
104
|
Zhou K, Guo S, Li F, Sun Q, Liang G. Exosomal PD-L1: New Insights Into Tumor Immune Escape Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2020; 8:569219. [PMID: 33178688 PMCID: PMC7593554 DOI: 10.3389/fcell.2020.569219] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
As a classical immune checkpoint molecule, PD-L1 on the surface of tumor cells plays a pivotal role in tumor immunosuppression, primarily by inhibiting the antitumor activities of T cells by binding to its receptor PD-1. PD-1/PD-L1 inhibitors have demonstrated unprecedented promise in treating various human cancers with impressive efficacy. However, a significant portion of cancer patients remains less responsive. Therefore, a better understanding of PD-L1-mediated immune escape is imperative. PD-L1 can be expressed on the surface of tumor cells, but it is also found to exist in extracellular forms, such as on exosomes. Recent studies have revealed the importance of exosomal PD-L1 (ExoPD-L1). As an alternative to membrane-bound PD-L1, ExoPD-L1 produced by tumor cells also plays an important regulatory role in the antitumor immune response. We review the recent remarkable findings on the biological functions of ExoPD-L1, including the inhibition of lymphocyte activities, migration to PD-L1-negative tumor cells and immune cells, induction of both local and systemic immunosuppression, and promotion of tumor growth. We also discuss the potential implications of ExoPD-L1 as a predictor for disease progression and treatment response, sensitive methods for detection of circulating ExoPD-L1, and the novel therapeutic strategies combining the inhibition of exosome biogenesis with PD-L1 blockade in the clinic.
Collapse
Affiliation(s)
- Kaijian Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo,
| | - Fei Li
- Department of Pharmaceutical Science, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoxin Liang
- Cancer Therapy Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
105
|
Is there an Exposure-Response Relationship for Nivolumab in Real-World NSCLC Patients? Cancers (Basel) 2019; 11:cancers11111784. [PMID: 31766292 PMCID: PMC6895963 DOI: 10.3390/cancers11111784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022] Open
Abstract
Pharmacokinetic/pharmacodynamic data from real-world cohort are sparse in non small–cell lung cancer (NSCLC) patients treated with nivolumab. The aim of this prospective observational study was to explore the exposure-response relationship for effectiveness and toxicity of nivolumab in 81 outpatients with metastatic lung cancer. Nivolumab plasma trough concentrations (Cmin) were assayed at days 14, 28, and 42. Prognostic factors (including Cmin) regarding progression-free survival (PFS) and overall survival (OS) were explored using a multivariate Cox model. A Spearman’s rank test was used to investigate the relationship between Cmin and grade >2 immune-related adverse events (irAE). Mean nivolumab Cmin was 16.2 ± 6.0 µg/mL (n = 76), 25.6 ± 10.2 µg/mL (n = 64) and 33.4 ± 11.3 µg/mL (n = 53) at days 14, 28, and 42, respectively. No pharmacokinetic/pharmacodynamic (PK/PD) relationship was observed with either survival or onset of irAE. Multivariable Cox regression analysis identified Eastern Cooperative Oncology Group Performance Status (hazard ratio 1.85, 95%confidence interval 1.02–3.38, p-value = 0.043) and baseline use of corticosteroids (HR 8.08, 95%CI 1.78–36.62, p-value = 0.007) as independent risk factor for PFS and only baseline use of corticosteroids (HR 6.29, 95%CI 1.46–27.08, p-value = 0.013) for OS. No PK/PD relationship for nivolumab was observed in real-world NSCLC patients. This supports the recent use of flat dose regimens without plasma drug monitoring.
Collapse
|
106
|
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Common Solid Tumors: Focus on Lung, Breast, Prostate Cancers, and Osteosarcoma. J Clin Med 2019; 8:E1661. [PMID: 31614612 PMCID: PMC6833074 DOI: 10.3390/jcm8101661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
An early cancer diagnosis is essential to treat and manage patients, but it is difficult to achieve this goal due to the still too low specificity and sensitivity of classical methods (imaging, actual biomarkers), together with the high invasiveness of tissue biopsies. The discovery of novel, reliable, and easily collectable cancer markers is a topic of interest, with human biofluids, especially blood, as important sources of minimal invasive biomarkers such as circulating microRNAs (miRNAs), the most promising. MiRNAs are small non-coding RNAs and known epigenetic modulators of gene expression, with specific roles in cancer development/progression, which are next to be implemented in the clinical routine as biomarkers for early diagnosis and the efficient monitoring of tumor progression and treatment response. Unfortunately, several issues regarding their validation process are still to be resolved. In this review, updated findings specifically focused on the clinical relevance of circulating miRNAs as prognostic and diagnostic biomarkers for the most prevalent cancer types (breast, lung, and prostate cancers in adults, and osteosarcoma in children) are described. In addition, deep analysis of pre-analytical, analytical, and post-analytical issues still affecting the circulation of miRNAs' validation process and routine implementation is included.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, 20132 Milano, Italy.
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Dept. of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, Gdańsk, ul. Kazimierza Górskiego 1, 80-336 Pomorskie, Poland.
| |
Collapse
|
107
|
Grizzi F, Castello A, Qehajaj D, Toschi L, Rossi S, Pistillo D, Paleari V, Veronesi G, Novellis P, Monterisi S, Mineri R, Rahal D, Lopci E. Independent expression of circulating and tissue levels of PD-L1: correlation of clusters with tumor metabolism and outcome in patients with non-small cell lung cancer. Cancer Immunol Immunother 2019; 68:1537-1545. [PMID: 31482306 PMCID: PMC11028209 DOI: 10.1007/s00262-019-02387-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE To evaluate the clinical-pathological and prognostic significance of the circulating PD-L1 level in patients with surgically treated NSCLC, by combining data for PD-L1 expression with other immune-related markers and tumor metabolism. METHODS Overall, 40 patients with resected NSCLC (stage Ia-IIIa) who had preoperative blood storage and underwent staging PET/CT were enrolled for the study. In all cases, we determined plasma levels of PD-L1 (pg/ml), immune-reactive areas (IRA %) covered by CD3, CD68, CD20, CD8, PD-1, and PD-L1 in the tumor specimen, and metabolic parameters on PET, i.e., SUVmax, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Variables were statistically analyzed to establish their association with disease-free survival (DFS). RESULTS The circulating levels of PD-L1 in the bloodstream could be determined in 38/40 (95%) samples. The mean and median expression levels were 34.86 pg/ml and 24.83 pg/ml, respectively. We did not find any statistically significant correlation between circulating PD-L1 and tissue expression of PD-L1/PD-1. Some mild degree of positive correlation was determined between tissue PD-L1 and SUVmax (ρ = 0.390; p = 0.0148). Hierarchical clustering combining circulating, tissue, and metabolic parameters identified clusters with high metabolic tumor burden or high expression of plasma PD-L1 levels (Z score ≥ 2) as having a poor DFS (p = 0.033). The multivariate analysis detected stage and metabolism (i.e., SUVmax and SUVpeak) as independent prognostic factors for DFS. CONCLUSION Plasma levels of PD-L1 are independent of the expression of PD-1/PD-L1 in NSCLC tumor tissue and, when combined with other clinical-pathological parameters, allow for the identification of clusters with different outcomes.
Collapse
Affiliation(s)
- Fabio Grizzi
- Immunology and Inflammation, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy
| | - Angelo Castello
- Nuclear Medicine Department, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy
| | - Dorina Qehajaj
- Immunology and Inflammation, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy
| | - Luca Toschi
- Medical Oncology, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Sabrina Rossi
- Medical Oncology, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Daniela Pistillo
- Biobank, Humanitas Cancer Center, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Valentina Paleari
- Biobank, Humanitas Cancer Center, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Veronesi
- Thoracic Surgery, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy
| | - Pierluigi Novellis
- Thoracic Surgery, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy
| | - Simona Monterisi
- Thoracic Surgery, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy
| | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy
| | - Daoud Rahal
- Pathology, Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy
| | - Egesta Lopci
- Nuclear Medicine Department, Humanitas Clinical and Research Hospital, IRCCS, Via Manzoni 56, 20089, Rozzano, Italy.
| |
Collapse
|
108
|
Costantini A, Takam Kamga P, Dumenil C, Chinet T, Emile JF, Giroux Leprieur E. Plasma Biomarkers and Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: New Tools for Better Patient Selection? Cancers (Basel) 2019; 11:cancers11091269. [PMID: 31470546 PMCID: PMC6769436 DOI: 10.3390/cancers11091269] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for patients with non-small cell lung cancer (NSCLC). Although some patients can experience important response rates and improved survival, many others do not benefit from ICIs developing hyper-progressive disease or immune-related adverse events. This underlines the need to select biomarkers for ICIs use in order to better select patients. There is currently no universally validated robust biomarker for daily use of ICIs. Programmed death-ligand 1 (PD-L1) or tumor mutational burden (TMB) are sometimes used but still have several limitations. Plasma biomarkers are a promising approach in ICI treatment. This review will describe the development of novel plasma biomarkers such as soluble proteins, circulating tumor DNA (ctDNA), blood TMB, and blood microbiome in NSCLC patients treated with ICIs and their potential use in predicting response and toxicity.
Collapse
Affiliation(s)
- Adrien Costantini
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Paul Takam Kamga
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Jean-François Emile
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
- Department of Pathology, APHP-Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France.
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France.
| |
Collapse
|
109
|
Zhang Y, Xu J, Hua J, Liu J, Liang C, Meng Q, Wei M, Zhang B, Yu X, Shi S. A PD-L2-based immune marker signature helps to predict survival in resected pancreatic ductal adenocarcinoma. J Immunother Cancer 2019; 7:233. [PMID: 31464648 PMCID: PMC6716876 DOI: 10.1186/s40425-019-0703-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) is a key immune checkpoint that regulates peripheral tolerance and protects against autoimmunity. Programmed death ligand-2 (PD-L2) is a less studied ligand to PD-1 and has yet to be fully explored, especially in pancreatic ductal adenocarcinoma (PDAC). METHODS In this study, we performed immunohistochemistry to detect the PD-L2, CD3, CD8, transforming growth factor-β2 (TGF-β2) and FOXP3 levels in paraffin sections from 305 patients with resected PDAC as a training set. Expression levels of intratumoral and stromal immune markers were compared in relation to survival using Kaplan-Meier curves, random survival forest model and survival tree analysis. A multivariable Cox proportional-hazards model of associated markers was used to calculate the risk scores. RESULTS PD-L2 was expressed in 71.5% of PDAC samples and showed strong correlations with CD3+, CD8+ T cells and FOXP3+ regulatory T cell densities. High levels of intratumoral PD-L2 and FOXP3 were related to poor survival; only stromal FOXP3 overexpression was associated with worse prognosis. Four patterns generated from survival tree analysis demonstrated that PD-L2lowstromalFOXP3low patients had the longest survival, while PD-L2highintratumoralCD3low patients had the shortest survival (P < 0.001). The area under the curve was 0.631(95% confidence interval (CI): 0.447-0.826) for the immune marker-based signature and 0.549 (95% CI: 0.323-0.829; P < 0.001) for the clinical parameter-based signature, which was consistent with the results in the validation set including 150 patients (P < 0.001). A higher risk score indicated shorter survival and could serve as an independent prognostic factor. PD-L2 was also showed associated with TGF-β2 and other immune molecules based on bioinformatics analysis. CONCLUSIONS Our work highlighted PD-L2 as a promising immunotherapeutic target with prognostic value combined with complex tumor infiltrating cells in PDAC.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology Shanghai Medical College, Fudan University, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
| |
Collapse
|
110
|
Omar HA, El‐Serafi AT, Hersi F, Arafa EA, Zaher DM, Madkour M, Arab HH, Tolba MF. Immunomodulatory MicroRNAs in cancer: targeting immune checkpoints and the tumor microenvironment. FEBS J 2019; 286:3540-3557. [DOI: 10.1111/febs.15000] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/29/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hany A. Omar
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Pharmacology, Faculty of Pharmacy Beni‐Suef University Egypt
| | - Ahmed T. El‐Serafi
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - El‐Shaimaa A. Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences Ajman University UAE
| | - Dana M. Zaher
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Mohamed Madkour
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Hany H. Arab
- Department of Biochemistry, Faculty of Pharmacy Cairo University Egypt
- Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy Taif University Saudi Arabia
| | - Mai F. Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Ain Shams University Cairo Egypt
- Biology Department, School of Sciences and Engineering The American University in Cairo New Cairo Egypt
| |
Collapse
|
111
|
Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D’Haese JG, Schloesser H, Heinemann V, Subklewe M, Boeck S, Werner J, von Bergwelt-Baildon M. Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res 2019; 38:268. [PMID: 31217020 PMCID: PMC6585101 DOI: 10.1186/s13046-019-1266-0] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has become an established pillar of cancer treatment improving the prognosis of many patients with a broad variety of hematological and solid malignancies. The two main drivers behind this success are checkpoint inhibitors (CPIs) and chimeric antigen receptor (CAR) T cells. This review summarizes seminal findings from clinical and translational studies recently presented or published at important meetings or in top-tier journals, respectively. For checkpoint blockade, current studies focus on combinational approaches, perioperative use, new tumor entities, response prediction, toxicity management and use in special patient populations. Regarding cellular immunotherapy, recent studies confirmed safety and efficacy of CAR T cells in larger cohorts of patients with acute lymphoblastic leukemia or diffuse large B cell lymphoma. Different strategies to translate the striking success of CAR T cells in B cell malignancies to other hematological and solid cancer types are currently under clinical investigation. Regarding the regional distribution of registered clinical immunotherapy trials a shift from PD-1 / PD-L1 trials (mainly performed in the US and Europe) to CAR T cell trials (majority of trials performed in the US and China) can be noted.
Collapse
Affiliation(s)
- Stephan Kruger
- Department of Medicine III, University Hospital Munich, LMU Munich, Marchioninistr. 15, D-81377 Munich, Germany
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral, and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Bruno L. Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | | | - Gesa Schuebbe
- Department of Medicine III, University Hospital Munich, LMU Munich, Marchioninistr. 15, D-81377 Munich, Germany
| | - Bernhard W. Renz
- Department of General, Visceral, and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan G. D’Haese
- Department of General, Visceral, and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | - Volker Heinemann
- Department of Medicine III, University Hospital Munich, LMU Munich, Marchioninistr. 15, D-81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital Munich, LMU Munich, Marchioninistr. 15, D-81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Gene Center LMU, Munich, Germany
| | - Stefan Boeck
- Department of Medicine III, University Hospital Munich, LMU Munich, Marchioninistr. 15, D-81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital Munich, LMU Munich, Marchioninistr. 15, D-81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Gene Center LMU, Munich, Germany
| |
Collapse
|
112
|
Liang H, Liu Z, Cai X, Pan Z, Chen D, Li C, Chen Y, He J, Liang W. PD-(L)1 inhibitors vs. chemotherapy vs. their combination in front-line treatment for NSCLC: An indirect comparison. Int J Cancer 2019; 145:3011-3021. [PMID: 31018251 DOI: 10.1002/ijc.32366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/27/2019] [Accepted: 04/08/2019] [Indexed: 02/01/2023]
Abstract
We comprehensively compared the therapeutic effects and safety of PD-1/L1 antibodies (I), chemotherapy (C) or their combination (I + C) as first-line treatments for advanced NSCLC. Online databases were searched to identify RCTs. Survival outcomes and safety events were pooled by indirect treatment comparison. Main subgroup analyses were conducted according to PD-L1 expression. A total of 11 RCTs involving 6,731 patients were included. Overall, PD-1/L1 inhibitors showed no difference to chemotherapy in PFS (HR 0.90, 0.65-1.24) and OS (HR 0.84, 0.64-1.09), while I + C was superior to chemotherapy both in PFS (HR 0.64, 0.58-0.71) and OS (HR 0.74, 0.62-0.89). I + C also showed advantages over PD-1/L1 in PFS (HR 0.71, 0.51-0.99) but not OS (HR 0.88, 0.64-1.22). In the PD-L1 < 1% subgroup, I + C was beneficial both in OS (HR 0.78, 0.67-0.90) and PFS (HR 0.72, 0.65-0.80) than chemotherapy. In PD-L1 ≥ 50% population, PD-1/L1 had longer OS than chemotherapy (HR 0.71, 0.60-0.84); I + C also had longer OS (HR 0.61, 0.49-0.77) and PFS (HR 0.41,0.34-0.49) than chemotherapy. In indirect analysis (PD-L1 ≥ 50%), I + C was superior to PD-1/L1 in terms of PFS (HR 0.54, 0.35-0.82), but not OS (HR 0.86, 0.65-1.14). Both treatment-related and immune-mediated adverse events occurred most frequently in the combination therapy group. We suggest that a combination regimen is preferable as first-line treatment for NSCLC patients with different PD-L1 expression, in the meanwhile, in cautious of side effects.
Collapse
Affiliation(s)
- Hengrui Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhichao Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China.,Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhenkui Pan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Difei Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yingying Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China.,Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
113
|
Filipska M, Pedraz-Valdunciel C, Chaib I, Rosell R. Biological therapies in lung cancer treatment: using our immune system as an ally to defeat the malignancy. Expert Opin Biol Ther 2019; 19:457-467. [PMID: 30763126 DOI: 10.1080/14712598.2019.1582635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Biological therapies, with immunotherapy leading the field, have arisen as one of the quickest expanding areas of research for cancer treatment in the last few years. The clear benefits for patients are undeniable, satisfying the long-awaited necessity of a target-specific therapy. However, its full potential remains still unexploited due to a lack of response in a majority of patients and pending reliable biomarkers. AREAS COVERED This review provides a summarizing view of the current biological therapies for lung cancer, focusing on immunotherapy - including immune checkpoint inhibitors, adoptive cell therapy and vaccines available in clinical/pre-clinical settings or currently in development. A thorough analysis of the technical and functional differences among all therapies is provided, along with a critical discussion of prospective treatments and potential biomarkers. EXPERT OPINION The use of immunotherapy in the treatment of cancer has provided clear benefits for patients. Still, exploitation of the full potential of immune checkpoint inhibitors alone or in combination, or adoptive cell therapies is hampered by, amongst other reasons, the lack of reliable biomarkers and possible adverse immune effects. We postulate that the development of liquid biopsy-based diagnostics will help to overcome these limitations in the near future.
Collapse
Affiliation(s)
- Martyna Filipska
- a Cancer Biology and Precision Medicine , Institute for Health Science Research Germans Trias i Pujol (IGTP) , Badalona , Spain
| | - Carlos Pedraz-Valdunciel
- a Cancer Biology and Precision Medicine , Institute for Health Science Research Germans Trias i Pujol (IGTP) , Badalona , Spain
| | - Imane Chaib
- a Cancer Biology and Precision Medicine , Institute for Health Science Research Germans Trias i Pujol (IGTP) , Badalona , Spain
| | - Rafael Rosell
- a Cancer Biology and Precision Medicine , Institute for Health Science Research Germans Trias i Pujol (IGTP) , Badalona , Spain.,b Pangaea Oncology , Laboratory of Molecular Biology , Barcelona, Spain.,c Institute of Oncology Rosell (IOR) , Quiron-Dexeus University Institute , Barcelona , Spain.,d Catalan Institute of Oncology (ICO) , Hospital Germans Trias i Pujol , Badalona , Spain
| |
Collapse
|