101
|
Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T. SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 2001; 21:5591-604. [PMID: 11463840 PMCID: PMC87280 DOI: 10.1128/mcb.21.16.5591-5604.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SATB1 is expressed primarily in thymocytes and orchestrates temporal and spatial expression of a large number of genes in the T-cell lineage. SATB1 binds to the bases of chromatin loop domains in vivo, recognizing a special DNA context with strong base-unpairing propensity. The majority of thymocytes are eliminated by apoptosis due to selection processes in the thymus. We investigated the fate of SATB1 during thymocyte and T-cell apoptosis. Here we show that SATB1 is specifically cleaved by a caspase 6-like protease at amino acid position 254 to produce a 65-kDa major fragment containing both a base-unpairing region (BUR)-binding domain and a homeodomain. We found that this cleavage separates the DNA-binding domains from amino acids 90 to 204, a region which we show to be a dimerization domain. The resulting SATB1 monomer loses its BUR-binding activity, despite containing both its DNA-binding domains, and rapidly dissociates from chromatin in vivo. We found this dimerization region to have sequence similarity to PDZ domains, which have been previously shown to be involved in signaling by conferring protein-protein interactions. SATB1 cleavage during Jurkat T-cell apoptosis induced by an anti-Fas antibody occurs concomitantly with the high-molecular-weight fragmentation of chromatin of ~50-kb fragments. Our results suggest that mechanisms of nuclear degradation early in apoptotic T cells involve efficient removal of SATB1 by disrupting its dimerization and cleavage of genomic DNA into loop domains to ensure rapid and efficient disassembly of higher-order chromatin structure.
Collapse
Affiliation(s)
- S Galande
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
102
|
Abstract
Nuclei are intricately structured, and nuclear metabolism has an elaborate spatial organization. The architecture of the nucleus includes two overlapping and nucleic-acid-containing structures - chromatin and a nuclear matrix. The nuclear matrix is observed by microscopy in live, fixed and extracted cells. Its ultrastructure and composition show it to be, in large part, the ribonucleoprotein (RNP) network first seen in unfractionated cells more than 30 years ago. At that time, the discovery of this RNP structure explained surprising observations that RNA, packaged in proteins, is attached to an intranuclear, non-chromatin structure. Periodic and specific attachments of chromatin fibers to the nuclear matrix create the chromatin loop domains that can be directly observed by microscopy or inferred from biochemical experiments. The ultrastructure of the nuclear matrix is well characterized and consists of a nuclear lamina and an internal nuclear network of subassemblies linked together by highly structured fibers. These complex fibers are built on an underlying scaffolding of branched 10-nm filaments that connect to the nuclear lamina. The structural proteins of the nuclear lamina have been well characterized, but the structural biochemistry of the internal nuclear matrix has received less attention. Many internal matrix proteins have been identified, but far less is known about how these proteins assemble to make the fibers, filaments and other assemblies of the internal nuclear matrix. Correcting this imbalance will require the combined application of biochemistry and electron microscopy. The central problem in trying to define nuclear matrix structure is to identify the proteins that assemble into the 10-nm filaments upon which the interior architecture of the nucleus is constructed. Only by achieving a biochemical characterization of the nuclear matrix will we advance beyond simple microscopic observations of structure to a better understanding of nuclear matrix function, regulation and post-mitotic assembly.
Collapse
Affiliation(s)
- J Nickerson
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
103
|
|
104
|
Tolstonog GV, Wang X, Shoeman R, Traub P. Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments. DNA Cell Biol 2000; 19:647-77. [PMID: 11098216 DOI: 10.1089/10445490050199054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Employing the whole-genome PCR technique, intermediate filaments (IFs) reconstituted from vimentin, desmin, and glial fibrillary acidic protein were shown to select repetitive and mobile DNA sequence elements from a mixture of mouse genomic DNA fragments. The bound fragments included major and minor satellite DNA, telomere DNA, minisatellites, microsatellites, short and long interspersed nucleotide elements (SINEs and LINEs), A-type particle elements, members of the mammalian retrotransposon-like (MaLR) family, and a series of repeats not assignable to major repetitive DNA families. The latter sequences were either similar to flanking regions of genes; possessed recombinogenic elements such as polypurine/polypyrimidine stretches, GT-rich arrays, or GGNNGG signals; or were characterized by the distribution of oligopurine and pyrimidine motifs whose sequential and vertical alignment resulted in patterns indicative of high recombination potentials of the respective sequences. The different IF species exhibited distinct quantitative differences in DNA selectivities. Complexes consisting of vimentin IFs and DNA fragments containing LINE, (GT)(n) microsatellite, and major satellite DNA sequences were saturable and dynamic and were formed with high efficiency only when the DNAs were partially denatured. The major-groove binder methyl green exerted a stronger inhibitory effect on the binding reaction than did the minor-groove binder distamycin A; the effects of the two compounds were additive. In addition, DNA footprinting studies revealed significant configurational changes in the DNA fragments on interaction with vimentin IFs. In the case of major satellite DNA, vimentin IFs provided protection of the T-rich strand from cleavage by DNase I, whereas the A-rich strand was totally degraded. Taken together, these observations suggest that IF protein(s) bind to double-stranded DNAs at existing single-stranded sites and, taking advantage of their helix-destabilizing potential, further unwind them via a cooperative effort of their N-terminal DNA-binding regions. A comparison of the present results with literature data, as well as a search in the NCBI database, showed that IF proteins are related to nuclear matrix attachment region (MAR)-binding proteins, and the DNA sequences they interact with are very similar or even identical to those involved in a plethora of DNA recombination and related repair events. On the basis of these comparisons, IF proteins are proposed to contribute in a global fashion, not only to genetic diversity, but also to genomic integrity, in addition to their role in gene expression.
Collapse
Affiliation(s)
- G V Tolstonog
- Max-Planck-Institut für Zellbiologie, 68526 Ladenburg, Germany
| | | | | | | |
Collapse
|
105
|
Davie JR, Spencer VA. Signal transduction pathways and the modification of chromatin structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:299-340. [PMID: 11008491 DOI: 10.1016/s0079-6603(00)65008-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Mechanical and chemical signaling pathways are involved in transmitting information from the exterior of a cell to its chromatin. The mechanical signaling pathway consists of a tissue matrix system that links together the three-dimensional skeletal networks, the extracellular matrix, cytoskeleton, and karyoskeleton. The tissue matrix system governs cell and nuclear shape and forms a structural and functional connection between the cell periphery and chromatin. Further, this mechanical signaling pathway has a role in controlling cell cycle progression and gene expression. Chemical signaling pathways such as the Ras/mitogen-activated protein kinase (MAPK) pathway can stimulate the activity of kinases that modify transcription factors, nonhistone chromosomal proteins, and histones. Activation of the Ras/MAPK pathway results in the alteration of chromatin structure and gene expression. The tissue matrix and chemical signaling pathways are not independent and one signaling pathway can affect the other. In this chapter, we will review chromatin organization, histone variants and modifications, and the impact that signaling pathways have on chromatin structure and function.
Collapse
Affiliation(s)
- J R Davie
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
106
|
Morisawa G, Han-Yama A, Moda I, Tamai A, Iwabuchi M, Meshi T. AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domain-homologous region. THE PLANT CELL 2000; 12:1903-16. [PMID: 11041885 PMCID: PMC149128 DOI: 10.1105/tpc.12.10.1903] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2000] [Accepted: 07/20/2000] [Indexed: 05/18/2023]
Abstract
Interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) have been implicated in various nuclear functions. We have identified a novel protein from wheat, AT hook-containing MAR binding protein1 (AHM1), that binds preferentially to MARs. A multidomain protein, AHM1 has the special combination of a J domain-homologous region and a Zn finger-like motif (a J-Z array) and an AT hook. For MAR binding, the AT hook at the C terminus was essential, and an internal portion containing the Zn finger-like motif was additionally required in vivo. AHM1 was found in the nuclear matrix fraction and was localized in the nucleoplasm. AHM1 fused to green fluorescent protein had a speckled distribution pattern inside the nucleus. AHM1 is most likely a nuclear matrix component that functions between intranuclear framework and MARs. J-Z arrays can be found in a group of (hypothetical) proteins in plants, which may share some functions, presumably to recruit specific Hsp70 partners as co-chaperones.
Collapse
Affiliation(s)
- G Morisawa
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
107
|
Schmiesing JA, Gregson HC, Zhou S, Yokomori K. A human condensin complex containing hCAP-C-hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation. Mol Cell Biol 2000; 20:6996-7006. [PMID: 10958694 PMCID: PMC88774 DOI: 10.1128/mcb.20.18.6996-7006.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) family proteins play critical roles in structural changes of chromosomes. Previously, we identified two human SMC family proteins, hCAP-C and hCAP-E, which form a heterodimeric complex (hCAP-C-hCAP-E) in the cell. Based on the sequence conservation and mitotic chromosome localization, hCAP-C-hCAP-E was determined to be the human ortholog of the Xenopus SMC complex, XCAP-C-XCAP-E. XCAP-C-XCAP-E is a component of the multiprotein complex termed condensin, required for mitotic chromosome condensation in vitro. However, presence of such a complex has not been demonstrated in mammalian cells. Coimmunoprecipitation of the endogenous hCAP-C-hCAP-E complex from HeLa extracts identified a 155-kDa protein interacting with hCAP-C-hCAP-E, termed condensation-related SMC-associated protein 1 (CNAP1). CNAP1 associates with mitotic chromosomes and is homologous to Xenopus condensin component XCAP-D2, indicating the presence of a condensin complex in human cells. Chromosome association of human condensin is mitosis specific, and the majority of condensin dissociates from chromosomes and is sequestered in the cytoplasm throughout interphase. However, a subpopulation of the complex was found to remain on chromosomes as foci in the interphase nucleus. During late G(2)/early prophase, the larger nuclear condensin foci colocalize with phosphorylated histone H3 clusters on partially condensed regions of chromosomes. These results suggest that mitosis-specific function of human condensin may be regulated by cell cycle-specific subcellular localization of the complex, and the nuclear condensin that associates with interphase chromosomes is involved in the reinitiation of mitotic chromosome condensation in conjunction with phosphorylation of histone H3.
Collapse
Affiliation(s)
- J A Schmiesing
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92697-1700, USA
| | | | | | | |
Collapse
|
108
|
Gotzmann J, Meissner M, Gerner C. The fate of the nuclear matrix-associated-region-binding protein SATB1 during apoptosis. Cell Death Differ 2000; 7:425-38. [PMID: 10800076 DOI: 10.1038/sj.cdd.4400668] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Special AT-rich sequence-binding protein 1 (SATB1), predominantly expressed in thymocytes, was identified as a component of the nuclear matrix protein fraction. Programmed cell death of Jurkat T-cells was induced by various stimuli in Fas-dependent and -independent fashion. During apoptosis, but not during necrosis, SATB1 was cleaved, as rapidly as was lamin B, in a caspase-dependent way yielding a stable 70 kDa fragment. The same result was obtained for apoptotic HL60-cells. We constructed various deletion constructs of SATB1, expressing protein chimeras tagged with green fluorescent protein (GFP). Transient transfection of these into Jurkat or HeLa cells followed by initiation of apoptosis allowed us to map the potential caspase-6 cleavage site VEMD to the N-terminal third of SATB1, leaving an intact DNA-binding domain in the C-terminal part of the protein. Our results suggest that apoptosis-specific breakdown of SATB1, a transcriptional activator of the CD8a gene, might be of physiological relevance during thymic clonal deletion and apoptosis of peripheral T-lymphoid cells.
Collapse
Affiliation(s)
- J Gotzmann
- Institute of Tumor Biology - Cancer Research, University of Vienna, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
109
|
Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 2000. [PMID: 10716941 DOI: 10.1101/gad.14.5.521] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in the T-cell lineage. SATB1-null mice are small in size, have disproportionately small thymi and spleens, and die at 3 weeks of age. At the cellular level, multiple defects in T-cell development were observed. Immature CD3(-)CD4(-)CD8(-) triple negative (TN) thymocytes were greatly reduced in number, and thymocyte development was blocked mainly at the DP stage. The few peripheral CD4(+) single positive (SP) cells underwent apoptosis and failed to proliferate in response to activating stimuli. At the molecular level, among 589 genes examined, at least 2% of genes including a proto-oncogene, cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of T-cell development in SATB1-null mice. For example, IL-2Ralpha and IL-7Ralpha genes were ectopically transcribed in CD4(+)CD8(+) double positive (DP) thymocytes. SATB1 appears to orchestrate the temporal and spatial expression of genes during T-cell development, thereby ensuring the proper development of this lineage. Our data provide the first evidence that MAR-binding proteins can act as global regulators of cell function in specific cell lineages.
Collapse
Affiliation(s)
- J D Alvarez
- Nippon Roche Research Center, Kamakura 247, Japan
| | | | | | | | | | | |
Collapse
|
110
|
Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 2000; 14:521-35. [PMID: 10716941 PMCID: PMC316425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in the T-cell lineage. SATB1-null mice are small in size, have disproportionately small thymi and spleens, and die at 3 weeks of age. At the cellular level, multiple defects in T-cell development were observed. Immature CD3(-)CD4(-)CD8(-) triple negative (TN) thymocytes were greatly reduced in number, and thymocyte development was blocked mainly at the DP stage. The few peripheral CD4(+) single positive (SP) cells underwent apoptosis and failed to proliferate in response to activating stimuli. At the molecular level, among 589 genes examined, at least 2% of genes including a proto-oncogene, cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of T-cell development in SATB1-null mice. For example, IL-2Ralpha and IL-7Ralpha genes were ectopically transcribed in CD4(+)CD8(+) double positive (DP) thymocytes. SATB1 appears to orchestrate the temporal and spatial expression of genes during T-cell development, thereby ensuring the proper development of this lineage. Our data provide the first evidence that MAR-binding proteins can act as global regulators of cell function in specific cell lineages.
Collapse
Affiliation(s)
- J D Alvarez
- Nippon Roche Research Center, Kamakura 247, Japan
| | | | | | | | | | | |
Collapse
|
111
|
Ramakrishnan M, Liu WM, DiCroce PA, Posner A, Zheng J, Kohwi-Shigematsu T, Krontiris TG. Modulated binding of SATB1, a matrix attachment region protein, to the AT-rich sequence flanking the major breakpoint region of BCL2. Mol Cell Biol 2000; 20:868-77. [PMID: 10629043 PMCID: PMC85203 DOI: 10.1128/mcb.20.3.868-877.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/1999] [Accepted: 10/22/1999] [Indexed: 11/20/2022] Open
Abstract
The t(14,18) chromosomal translocation that occurs in human follicular lymphoma constitutively activates the BCL2 gene and disrupts control of apoptosis. Interestingly, 70% of the t(14,18) translocations are confined to three 15-bp clusters positioned within a 150-bp region (major breakpoint region or [MBR]) in the untranslated portion of terminal exon 3. We analyzed DNA-protein interactions in the MBR, as these may play some role in targeting the translocation to this region. An 87-bp segment (87MBR) immediately 3' to breakpoint cluster 3 was essential for DNA-protein interaction monitored with mobility shift assays. We further delineated a core binding region within 87MBR: a 33-bp, very AT-rich sequence highly conserved between the human and mouse BCL2 gene (37MBR). We have purified and identified one of the core factors as the matrix attachment region (MAR) binding protein, SATB1, which is known to bind to AT-rich sequences with a high propensity to unwind. Additional factors in nuclear extracts, which we have not yet characterized further, increased SATB1 affinity for the 37MBR target four- to fivefold. Specific binding activity within 37MBR displayed cell cycle regulation in Jurkat T cells, while levels of SATB1 remained constant throughout the cell cycle. Finally, we demonstrated in vivo binding of SATB1 to the MBR, strongly suggesting the BCL2 major breakpoint region is a MAR. We discuss the potential consequences of our observations for both MBR fragility and regulatory function.
Collapse
Affiliation(s)
- M Ramakrishnan
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Khodarev NN, Bennett T, Shearing N, Sokolova I, Koudelik J, Walter S, Villalobos M, Vaughan ATM. LINE L1 retrotransposable element is targeted during the initial stages of apoptotic DNA fragmentation. J Cell Biochem 2000. [DOI: 10.1002/1097-4644(20001201)79:3<486::aid-jcb130>3.0.co;2-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
113
|
Cai S, Kohwi-Shigematsu T. Intranuclear relocalization of matrix binding sites during T cell activation detected by amplified fluorescence in situ hybridization. Methods 1999; 19:394-402. [PMID: 10579934 DOI: 10.1006/meth.1999.0875] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe a method for analyzing the nuclear localization of specific DNA sequences, with special emphasis on their binding status to the nuclear matrix, depending on the developmental stage of the cells. This method employs high-resolution fluorescence in situ hybridization procedures. For our studies, it was important to examine the nuclear localization of a particular gene locus. Previously, however, it was not possible to detect a single-copy genomic sequence using a DNA probe less than several kilobases in size. We describe here a signal amplification technique based on tyramide which makes such a task possible. Using this method, we monitored single-copy loci using a short, 509-bp DNA sequence that binds in vivo to the T cell factor SATB1 within T cell nuclei, high-salt-extracted nuclei (histone-depleted nuclei generating "halos" with distended chromatin loops), and the nuclear matrix, before and after T cell activation. We found that these loci were anchored onto the nuclear matrix, creating new bases of chromatin loops, only after T cell activation. This experimental strategy, therefore, enabled us to detect the changes in higher order chromatin structure upon activation and study gene regulation at a new dimension: the loop domain structure. The methods shown here can be widely applied to explore other functions involving chromatin, including recombination and replication.
Collapse
Affiliation(s)
- S Cai
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, California 94720, USA
| | | |
Collapse
|
114
|
Mishra RK, Karch F. Boundaries that demarcate structural and functional domains of chromatin. J Biosci 1999. [DOI: 10.1007/bf02941252] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
115
|
Davie JR, Samuel SK, Spencer VA, Holth LT, Chadee DN, Peltier CP, Sun JM, Chen HY, Wright JA. Organization of chromatin in cancer cells: role of signalling pathways. Biochem Cell Biol 1999. [DOI: 10.1139/o99-044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The role of mechanical and chemical signalling pathways in the organization and function of chromatin is the subject of this review. The mechanical signalling pathway consists of the tissue matrix system that links together the three-dimensional skeletal networks, the extracellular matrix, cytoskeleton, and nuclear matrix. Intermediate filament proteins are associated with nuclear DNA, suggesting that intermediate filaments may have a role in the organization of chromatin. In human hormone-dependent breast cancer cells, the interaction between cytokeratins and chromatin is regulated by estrogens. Transcription factors, histone acetyltransferases, and histone deacetylases, which are associated with the nuclear matrix, are components of the mechanical signalling pathway. Recently, we reported that nuclear matrix-bound human and chicken histone deacetylase 1 is associated with nuclear DNA in situ, suggesting that histone deacetylase has a role in the organization of nuclear DNA. Chemical signalling pathways such as the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway stimulate the activity of kinases that modify transcription factors, nonhistone chromosomal proteins, and histones. The levels of phosphorylated histones are increased in mouse fibroblasts transformed with oncogenes, the products of which stimulate the Ras/MAPK pathway. Histone phosphorylation may lead to decondensation of chromatin, resulting in aberrant gene expression.Key words: histone acetylation, histone phosphorylation, nuclear matrix, cytoskeleton, histone deacetylase, cancer.
Collapse
|
116
|
Ma H, Siegel AJ, Berezney R. Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J Cell Biol 1999; 146:531-42. [PMID: 10444063 PMCID: PMC2150557 DOI: 10.1083/jcb.146.3.531] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1998] [Accepted: 07/02/1999] [Indexed: 11/27/2022] Open
Abstract
To study the possible role of the nuclear matrix in chromosome territory organization, normal human fibroblast cells are treated in situ via classic isolation procedures for nuclear matrix in the absence of nuclease (e.g., DNase I) digestion, followed by chromosome painting. We report for the first time that chromosome territories are maintained intact on the nuclear matrix. In contrast, complete extraction of the internal nuclear matrix components with RNase treatment followed by 2 M NaCl results in the disruption of higher order chromosome territory architecture. Correlative with territorial disruption is the formation of a faint DNA halo surrounding the nuclear lamina and a dispersive effect on the characteristically discrete DNA replication sites in the nuclear interior. Identical results were obtained using eight different human chromosome paints. Based on these findings, we developed a fractionation strategy to release the bulk of nuclear matrix proteins under conditions where the chromosome territories are maintained intact. A second treatment results in disruption of the chromosome territories in conjunction with the release of a small subset of acidic proteins. These proteins are distinct from the major nuclear matrix proteins and may be involved in mediating chromosome territory organization.
Collapse
Affiliation(s)
- Hong Ma
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Alan J. Siegel
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
117
|
Galande S, Kohwi-Shigematsu T. Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J Biol Chem 1999; 274:20521-8. [PMID: 10400681 DOI: 10.1074/jbc.274.29.20521] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic sequences with a cluster of ATC sequence stretches where one strand consists exclusively of well mixed As, Ts, and Cs confer high base unpairing propensity under negative superhelical strain. Such base unpairing regions (BURs) are typically found in scaffold or matrix attachment regions (SARs/MARs) that are thought to contribute to the formation of the loop domain structure of chromatin. Several proteins, including cell type-specific proteins, have been identified that bind specifically to double-stranded BURs either in vitro or in vivo. By using BUR-affinity chromatography to isolate BUR-binding proteins from breast cancer SK-BR-3 cells, we almost exclusively obtained a complex of poly(ADP-ribose) polymerase (PARP) and DNA-dependent protein kinase (DNA-PK). Both PARP and DNA-PK are activated by DNA strand breaks and are implicated in DNA repair, recombination, DNA replication, and transcription. In contrast to the previous notion that PARP and Ku autoantigen, the DNA-binding subunit of DNA-PK, mainly bind to free ends of DNA, here we show that both proteins individually bind BURs with high affinity and specificity in an end-independent manner using closed circular BUR-containing DNA substrates. We further demonstrate that PARP and Ku autoantigen form a molecular complex in vivo and in vitro in the absence of DNA, and as a functional consequence, their affinity to the BURs are synergistically enhanced. ADP-ribosylation of the nuclear extract abrogated the BUR binding activity of this complex. These results provide a mechanistic link toward understanding the functional overlap of PARP and DNA-PK and suggest a novel role for these proteins in the regulation of chromatin structure and function.
Collapse
Affiliation(s)
- S Galande
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
118
|
Fernández LA, Winkler M, Forrester W, Jenuwein T, Grosschedl R. Nuclear matrix attachment regions confer long-range function upon the immunoglobulin mu enhancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:515-24. [PMID: 10384316 DOI: 10.1101/sqb.1998.63.515] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L A Fernández
- Howard Hughes Medical Institute, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
119
|
Sun JM, Chen HY, Moniwa M, Samuel S, Davie JR. Purification and characterization of chicken erythrocyte histone deacetylase 1. Biochemistry 1999; 38:5939-47. [PMID: 10231548 DOI: 10.1021/bi982633k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone acetylation is involved in nuclear processes requiring chromatin remodeling. In chicken erythrocytes, DNA replication has ceased, and active reversible histone acetylation is restricted to transcriptionally active/competent chromatin domains. In this study, we set out to identify and purify the erythroid histone deacetylase responsible for catalyzing dynamic acetylation of transcriptionally active chromatin. Histone deacetylase purified from chicken erythrocytes had a molecular mass of 66 kDa. Complementary DNA encoding the chicken histone deacetylase was cloned from erythrocytes, and analysis of the derived amino acid sequence showed the chicken histone deacetylase to be the chicken homologue of mammalian HDAC1. Purified chicken erythrocyte HDAC1 deacetylated the four core histones, with a preference for H3. We present evidence that chicken HDAC1 is a metalloenzyme, the activity of which is lost when incubated with zinc chelators. In Western blot analysis with anti-HDAC1 antibodies, we found that most erythrocyte HDAC1 is associated with the low-salt insoluble chromatin fraction and, to a lesser extent, with 150 mM NaCl-soluble oligo- and polynucleosomes. The distribution of HDAC1 in erythrocyte chromatin parallels that of dynamically acetylated class 1 histones. Further, we show that HDAC1 is associated with the erythroid nuclear matrix and that the enzyme is bound to nuclear DNA in situ. We propose that in addition to catalyzing dynamic acetylation of transcribed chromatin, the enzyme has a role in the organization of nuclear DNA.
Collapse
Affiliation(s)
- J M Sun
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
120
|
Escalier D, Allenet B, Badrichani A, Garchon HJ. High Level Expression of the Xlr Nuclear Protein in Immature Thymocytes and Colocalization with the Matrix-Associated Region-Binding SATB1 Protein. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The X-linked lymphocyte-regulated (Xlr) protein is a 30,000 Mr nuclear protein bearing homology with meiosis-specific proteins and expressed in late stage B lymphoid cell lines. In the present study we investigated its expression in the T lymphoid lineage. In adults, a high level of expression was detected in CD4−CD8− thymocytes. Most remarkably, the peak of Xlr expression occurred early during thymus cell ontogeny, precisely on days 14–15 of gestation, and was associated with the first wave of pre-T cell differentiation. Its onset preceded the rearrangement of TCR genes, as Xlr expression was conserved in thymus cells from RAG10/0 mice. The lower expression of Xlr on day 13 of fetal development, the bright Thy1+ phenotype of Xlr-positive cells, their large size, and their absence from subcapsular areas suggest that Xlr expression must be turned on within the thymus and not in prethymic precursors. From day 16 of gestation, Xlr expression decreased markedly. At birth and later, Xlrhigh cells were mostly large cells scattered throughout the cortical area. As shown by confocal microscopy, expression of Xlr closely overlapped that of SATB1, which binds special AT-rich DNA sequences associated with the nuclear matrix and plays an important regulatory role for many genes. The remarkably regulated expression of Xlr in the lymphoid cell lineage and of its homologue Xmr in the germ cell lineage suggests that they might play an important role in chromatin metabolism at critical stages of differentiation during which the genome undergoes irreversible rearrangements.
Collapse
Affiliation(s)
- Denise Escalier
- Institut National de la Santé et de la Recherche Médicale, Unit 25, Paris, France
| | - Bénédicte Allenet
- Institut National de la Santé et de la Recherche Médicale, Unit 25, Paris, France
| | - Anne Badrichani
- Institut National de la Santé et de la Recherche Médicale, Unit 25, Paris, France
| | - Henri-Jean Garchon
- Institut National de la Santé et de la Recherche Médicale, Unit 25, Paris, France
| |
Collapse
|
121
|
Kohwi-Shigematsu T, deBelle I, Dickinson LA, Galande S, Kohwi Y. Identification of base-unpairing region-binding proteins and characterization of their in vivo binding sequences. Methods Cell Biol 1997; 53:323-54. [PMID: 9348515 DOI: 10.1016/s0091-679x(08)60885-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|