101
|
Ranzinger J, Krippner-Heidenreich A, Haraszti T, Bock E, Tepperink J, Spatz JP, Scheurich P. Nanoscale arrangement of apoptotic ligands reveals a demand for a minimal lateral distance for efficient death receptor activation. NANO LETTERS 2009; 9:4240-5. [PMID: 19772290 PMCID: PMC2905624 DOI: 10.1021/nl902429b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cellular apoptosis, the prototype of programmed cell death, can be induced by activation of so-called death receptors. Interestingly, soluble and membrane-bound members of death receptor ligands can differentially activate their receptors. Using the death receptor ligand tumor necrosis factor (TNF) presented on a surface in a nanoscaled pattern with spacings between 58 and 290 nm, we investigated its requirements for spatial arrangement and motility to efficiently activate TNF receptor (TNFR)1 and TNFR2 as well as its chimeras TNFR1-Fas and TNFR2-Fas. We show that the mere mechanical fixation of TNF is insufficient to efficiently activate TNFR2 that is responsive to only the membrane bound form of TNF but not its soluble form. Rather, an additional stabilization of TNFR2(-Fas) by cluster formation seems to be mandatory for efficient activation. In contrast, TNFR1(-Fas) is strongly activated by TNF spaced within up to 200 nm distances, whereas larger spacings of 290 nm fails completely. Furthermore, unlike for TNFR2(-Fas) no dose-response relationship to increasing distances of nanostructured ligands could be observed for TNFR1-(Fas), suggesting that compartmentalization of the cell membrane in confinement zones of approximately 200 nm regulates TNFR1 activation.
Collapse
Affiliation(s)
- Julia Ranzinger
- Department of New Materials and Biosystems, Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Affiliation(s)
- M G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
103
|
Das R, Cairo CW, Coombs D. A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput Biol 2009; 5:e1000556. [PMID: 19893741 PMCID: PMC2768823 DOI: 10.1371/journal.pcbi.1000556] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 10/06/2009] [Indexed: 12/17/2022] Open
Abstract
The extraction of hidden information from complex trajectories is a continuing problem in single-particle and single-molecule experiments. Particle trajectories are the result of multiple phenomena, and new methods for revealing changes in molecular processes are needed. We have developed a practical technique that is capable of identifying multiple states of diffusion within experimental trajectories. We model single particle tracks for a membrane-associated protein interacting with a homogeneously distributed binding partner and show that, with certain simplifying assumptions, particle trajectories can be regarded as the outcome of a two-state hidden Markov model. Using simulated trajectories, we demonstrate that this model can be used to identify the key biophysical parameters for such a system, namely the diffusion coefficients of the underlying states, and the rates of transition between them. We use a stochastic optimization scheme to compute maximum likelihood estimates of these parameters. We have applied this analysis to single-particle trajectories of the integrin receptor lymphocyte function-associated antigen-1 (LFA-1) on live T cells. Our analysis reveals that the diffusion of LFA-1 is indeed approximately two-state, and is characterized by large changes in cytoskeletal interactions upon cellular activation.
Collapse
Affiliation(s)
- Raibatak Das
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
104
|
Pizarro-Cerdá J, Cossart P. Listeria monocytogenesMembrane Trafficking and Lifestyle: The Exception or the Rule? Annu Rev Cell Dev Biol 2009; 25:649-70. [DOI: 10.1146/annurev.cellbio.042308.113331] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F75015, France
- INSERM, U604, Paris F75015, France
- INRA, USC2020, Paris F75015, France; ,
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F75015, France
- INSERM, U604, Paris F75015, France
- INRA, USC2020, Paris F75015, France; ,
| |
Collapse
|
105
|
Charrin S, Yalaoui S, Bartosch B, Cocquerel L, Franetich JF, Boucheix C, Mazier D, Rubinstein E, Silvie O. The Ig domain protein CD9P-1 down-regulates CD81 ability to support Plasmodium yoelii infection. J Biol Chem 2009; 284:31572-8. [PMID: 19762465 DOI: 10.1074/jbc.m109.057927] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a malaria natural infection. The molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that CD81 is required on hepatocytes for infection by Plasmodium falciparum and Plasmodium yoelii sporozoites. CD81 belongs to the tetraspanin superfamily of transmembrane proteins. By interacting with each other and with other transmembrane proteins, tetraspanins may play a role in the lateral organization of membrane proteins. In this study, we investigated the role of the two major molecular partners of CD81 in hepatocytic cells, CD9P-1/EWI-F and EWI-2, two transmembrane proteins belonging to a novel subfamily of immunoglobulin proteins. We show that CD9P-1 silencing increases the host cell susceptibility to P. yoelii sporozoite infection, whereas EWI-2 knock-down has no effect. Conversely, overexpression of CD9P-1 but not EWI-2 partially inhibits infection. Using CD81 and CD9P-1 chimeric molecules, we demonstrate the role of transmembrane regions in CD81-CD9P-1 interactions. Importantly, a CD9P-1 chimera that no longer associates with CD81 does not affect infection. Based on these data, we conclude that CD9P-1 acts as a negative regulator of P. yoelii infection by interacting with CD81 and regulating its function.
Collapse
Affiliation(s)
- Stéphanie Charrin
- INSERM, U602, Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Yáñez-Mó M, Barreiro O, Gordon-Alonso M, Sala-Valdés M, Sánchez-Madrid F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 2009; 19:434-46. [DOI: 10.1016/j.tcb.2009.06.004] [Citation(s) in RCA: 439] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/14/2022]
|
107
|
Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol 2009; 83:7467-74. [PMID: 19458002 DOI: 10.1128/jvi.00163-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro propagation studies have established that human immunodeficiency virus type 1 (HIV-1) is most efficiently transmitted at the virological synapse that forms between producer and target cells. Despite the presence of the viral envelope glycoprotein (Env) and CD4 and chemokine receptors at the respective surfaces, producer and target cells usually do not fuse with each other but disengage after the viral particles have been delivered, consistent with the idea that syncytia, at least in vitro, are not required for HIV-1 spread. Here, we tested whether tetraspanins, which are well known regulators of cellular membrane fusion processes that are enriched at HIV-1 exit sites, regulate syncytium formation. We found that overexpression of tetraspanins in producer cells leads to reduced syncytium formation, while downregulation has the opposite effect. Further, we document that repression of Env-induced cell-cell fusion by tetraspanins depends on the presence of viral Gag, and we demonstrate that fusion repression requires the recruitment of Env by Gag to tetraspanin-enriched microdomains (TEMs). However, sensitivity to fusion repression by tetraspanins varied for different viral strains, despite comparable recruitment of their Envs to TEMs. Overall, these data establish tetraspanins as negative regulators of HIV-1-induced cell-cell fusion, and they start delineating the requirements for this regulation.
Collapse
|
108
|
Abstract
Despite high expression levels at the plasma membrane or in intracellular vesicles, tetraspanins remain among the most mysterious transmembrane molecules 20 years after their discovery. Several genetic studies in mammals and invertebrates have demonstrated key physiological roles for some of these tetraspanins, in particular in the immune response, sperm-egg fusion, photoreceptor function and the normal function of certain epithelia. Other studies have highlighted their ability to modulate cell migration and metastasis formation. Their role in the propagation of infectious agents has drawn recent attention, with evidence for HIV budding in tetraspanin-enriched plasma membrane domains. Infection of hepatocytic cells by two major pathogens, the hepatitis C virus and the malaria parasite, also requires the tetraspanin CD81. The function of tetraspanins is thought to be linked to their ability to associate with one another and a wealth of other integral proteins, thereby building up an interacting network or 'tetraspanin web'. On the basis of the biochemical dissection of the tetraspanin web and recent analysis of the dynamics of some of its constituents, we propose that tetraspanins tightly regulate transient interactions between a variety of molecules and as such favour the efficient assembly of specialized structures upon proper stimulation.
Collapse
|
109
|
Abstract
Fertilisation is an orchestrated, stepwise process during which the participating male and female gametes undergo irreversible changes, losing some of their structural components while contributing others to the resultant zygote. Following sperm penetration through the egg coat, the sperm plasma membrane fuses with its oocyte counterpart, the oolemma. At least two plasma membrane proteins essential for sperm–oolemma fusion – IZUMO and CD9 on the male and female gametes, respectively – have been identified recently by classical cell biology approaches and confirmed by gene deletion. Oolemma-associated tetraspanin CD81, closely related to CD9, also appears to have an essential role in fusion. Additional proteins that may have nonessential yet still facilitating roles in sperm–oolemma adhesion and fusion include oolemma-anchored integrins and oocyte-expressed retroviral envelope proteins, sperm disintegrins, and sperm-borne proteins of epididymal origin such as CRISP1 and CRISP2. This review discusses these components of the gamete fusion mechanism within the framework of gamete structure, membrane biology, cell signalling and cytoskeletal dynamics, and revisits the topic of antipolyspermy defence at the oolemma level. Harnessing the mechanisms of sperm–egg fusion is of importance to animal biotechnology and to human assisted fertilisation, wherein male patients with reduced sperm fusibility have been identified.
Collapse
|
110
|
Chapter 9 Endothelial Adhesive Platforms Organize Receptors to Promote Leukocyte Extravasation. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
111
|
Abstract
S-Palmitoylation is a reversible post-translational modification that results in the addition of a C16-carbon saturated fatty acyl chain to cytoplasmic cysteine residues. This modification is mediated by Palmitoyl-acyl Transferases that are starting to be investigated, and reversed by Protein Palmitoyl Thioesterases, which remain enigmatic. Palmitoylation of cytoplasmic proteins has been well described to regulate the interaction of these soluble proteins with specific membranes or membrane domains. Less is known about the consequences of palmitoylation in transmembrane proteins not only due to the dual difficulty of following a lipid modification and dealing with membrane proteins, but also due to the complexity of the palmitoylation-induced behavior. Moreover, possibly because the available data set is limited, the change in behavior induced by palmitoylation of a transmembrane protein is currently not predictable. We here review the various consequences reported for the palmitoylation of membrane proteins, which include improper folding in the endoplasmic reticulum, retention in the Golgi, inability to assemble into protein platforms, altered signaling capacity, premature endocytosis and missorting in the endocytic pathway. We then discuss the possible underlying mechanisms, in particular the ability of palmitoylation to control the conformation of transmembrane segments, to modify the affinity of a membrane protein for specific membrane domains and to control protein-protein interactions.
Collapse
Affiliation(s)
- Julie Charollais
- Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|