101
|
Saito N, Araya J, Ito S, Tsubouchi K, Minagawa S, Hara H, Ito A, Nakano T, Hosaka Y, Ichikawa A, Kadota T, Yoshida M, Fujita Y, Utsumi H, Kurita Y, Kobayashi K, Hashimoto M, Wakui H, Numata T, Kaneko Y, Asano H, Odaka M, Ohtsuka T, Morikawa T, Nakayama K, Kuwano K. Involvement of Lamin B1 Reduction in Accelerated Cellular Senescence during Chronic Obstructive Pulmonary Disease Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1428-1440. [PMID: 30692212 DOI: 10.4049/jimmunol.1801293] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2023]
Abstract
Downregulation of lamin B1 has been recognized as a crucial step for development of full senescence. Accelerated cellular senescence linked to mechanistic target of rapamycin kinase (MTOR) signaling and accumulation of mitochondrial damage has been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. We hypothesized that lamin B1 protein levels are reduced in COPD lungs, contributing to the process of cigarette smoke (CS)-induced cellular senescence via dysregulation of MTOR and mitochondrial integrity. To illuminate the role of lamin B1 in COPD pathogenesis, lamin B1 protein levels, MTOR activation, mitochondrial mass, and cellular senescence were evaluated in CS extract (CSE)-treated human bronchial epithelial cells (HBEC), CS-exposed mice, and COPD lungs. We showed that lamin B1 was reduced by exposure to CSE and that autophagy was responsible for lamin B1 degradation in HBEC. Lamin B1 reduction was linked to MTOR activation through DEP domain-containing MTOR-interacting protein (DEPTOR) downregulation, resulting in accelerated cellular senescence. Aberrant MTOR activation was associated with increased mitochondrial mass, which can be attributed to peroxisome proliferator-activated receptor γ coactivator-1β-mediated mitochondrial biogenesis. CS-exposed mouse lungs and COPD lungs also showed reduced lamin B1 and DEPTOR protein levels, along with MTOR activation accompanied by increased mitochondrial mass and cellular senescence. Antidiabetic metformin prevented CSE-induced HBEC senescence and mitochondrial accumulation via increased DEPTOR expression. These findings suggest that lamin B1 reduction is not only a hallmark of lung aging but is also involved in the progression of cellular senescence during COPD pathogenesis through aberrant MTOR signaling.
Collapse
Affiliation(s)
- Nayuta Saito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Saburo Ito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazuya Tsubouchi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Akihiko Ito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takayuki Nakano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; and
| | - Yusuke Hosaka
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Akihiro Ichikawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Tsukasa Kadota
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Masahiro Yoshida
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yusuke Kurita
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kenji Kobayashi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Mitsuo Hashimoto
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takanori Numata
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yumi Kaneko
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hisatoshi Asano
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Makoto Odaka
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takashi Ohtsuka
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toshiaki Morikawa
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Katsutoshi Nakayama
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
102
|
Arai R, En A, Takauji Y, Maki K, Miki K, Fujii M, Ayusawa D. Lamin B receptor (LBR) is involved in the induction of cellular senescence in human cells. Mech Ageing Dev 2019; 178:25-32. [PMID: 30615890 DOI: 10.1016/j.mad.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a phenomenon of irreversible growth arrest in mammalian somatic cells in culture. Various stresses induce cellular senescence and indeed, we have found that excess thymidine effectively induces cellular senescence in human cells. Further, many reports indicate the implication of chromatin proteins in cellular senescence. Here we analysed the role of lamin B receptor (LBR), a nuclear envelope protein that regulates heterochromatin organization, in cellular senescence induced by excess thymidine. We then found that the LBR protein was down-regulated and showed aberrant localization in cells upon induction of cellular senescence by excess thymidine. Additionally, we also found that knock-down of LBR facilitated the induction of cellular senescence by excess thymidine in cancerous HeLa cells, and importantly, it induced cellular senescence in normal human diploid fibroblast TIG-7 cells. These results suggested that decreased LBR function is involved in the induction of cellular senescence in human cells.
Collapse
Affiliation(s)
- Rumi Arai
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yuki Takauji
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| | - Keisuke Maki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Kensuke Miki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| |
Collapse
|
103
|
Shevelyov YY, Ulianov SV. The Nuclear Lamina as an Organizer of Chromosome Architecture. Cells 2019; 8:E136. [PMID: 30744037 PMCID: PMC6406483 DOI: 10.3390/cells8020136] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/20/2023] Open
Abstract
The nuclear lamina (NL) is a meshwork of lamins and lamin-associated proteins adjoining the inner side of the nuclear envelope. In early embryonic cells, the NL mainly suppresses background transcription, whereas, in differentiated cell types, its disruption affects gene expression more severely. Normally, the NL serves as a backbone for multiple chromatin anchoring sites, thus shaping the spatial organization of chromosomes in the interphase nucleus. However, upon cell senescence, aging, or in some types of terminally differentiated cells and lamin-associated diseases, the loss of NL-chromatin tethering causes drastic alterations in chromosome architecture. Here, we provide an overview of the recent advances in the field of NL-chromatin interactions, focusing on their impact on chromatin positioning, compaction, repression, and spatial organization.
Collapse
Affiliation(s)
- Yuri Y. Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia;
| | - Sergey V. Ulianov
- Division of the Regulation of Transcription and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
104
|
Butin-Israeli V, Bui TM, Wiesolek HL, Mascarenhas L, Lee JJ, Mehl LC, Knutson KR, Adam SA, Goldman RD, Beyder A, Wiesmuller L, Hanauer SB, Sumagin R. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J Clin Invest 2019; 129:712-726. [PMID: 30640176 DOI: 10.1172/jci122085] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of tissue injury associated with inflammatory bowel diseases (IBDs). The pathological effects of PMNs are largely attributed to the release of soluble mediators and reactive oxygen species (ROS). We identified what we believe is a new, ROS-independent mechanism whereby activated tissue-infiltrating PMNs release microparticles armed with proinflammatory microRNAs (miR-23a and miR-155). Using IBD clinical samples, and in vitro and in vivo injury models, we show that PMN-derived miR-23a and miR-155 promote accumulation of double-strand breaks (DSBs) by inducing lamin B1-dependent replication fork collapse and inhibition of homologous recombination (HR) by targeting HR-regulator RAD51. DSB accumulation in injured epithelium led to impaired colonic healing and genomic instability. Targeted inhibition of miR-23a and miR-155 in cultured intestinal epithelial cells and in acutely injured mucosa decreased the detrimental effects of PMNs and enhanced tissue healing responses, suggesting that this approach can be used in therapies aimed at resolution of inflammation, in wound healing, and potentially to prevent neoplasia.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lorraine Mascarenhas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joseph J Lee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lindsey C Mehl
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kaitlyn R Knutson
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Wiesmuller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | | | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
105
|
Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells 2018; 7:cells7120268. [PMID: 30545089 PMCID: PMC6315602 DOI: 10.3390/cells7120268] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Skin undergoes continuous renewal throughout an individual’s lifetime relying on stem cell functionality. However, a decline of the skin regenerative potential occurs with age. The accumulation of senescent cells over time probably reduces tissue regeneration and contributes to skin aging. Keratinocytes and dermal fibroblasts undergo senescence in response to several intrinsic or extrinsic stresses, including telomere shortening, overproduction of reactive oxygen species, diet, and sunlight exposure. Epigenetic mechanisms directly regulate skin homeostasis and regeneration, but they also mark cell senescence and the natural and pathological aging processes. Progeroid syndromes represent a group of clinical and genetically heterogeneous pathologies characterized by the accelerated aging of various tissues and organs, including skin. Skin cells from progeroid patients display molecular hallmarks that mimic those associated with naturally occurring aging. Thus, investigations on progeroid syndromes strongly contribute to disclose the causal mechanisms that underlie the aging process. In the present review, we discuss the role of epigenetic pathways in skin cell regulation during physiologic and premature aging.
Collapse
|
106
|
Barton LJ, Duan T, Ke W, Luttinger A, Lovander KE, Soshnev AA, Geyer PK. Nuclear lamina dysfunction triggers a germline stem cell checkpoint. Nat Commun 2018; 9:3960. [PMID: 30262885 PMCID: PMC6160405 DOI: 10.1038/s41467-018-06277-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
LEM domain (LEM-D) proteins are conserved components of the nuclear lamina (NL) that contribute to stem cell maintenance through poorly understood mechanisms. The Drosophila emerin homolog Otefin (Ote) is required for maintenance of germline stem cells (GSCs) and gametogenesis. Here, we show that ote mutants carry germ cell-specific changes in nuclear architecture that are linked to GSC loss. Strikingly, we found that both GSC death and gametogenesis are rescued by inactivation of the DNA damage response (DDR) kinases, ATR and Chk2. Whereas the germline checkpoint draws from components of the DDR pathway, genetic and cytological features of the GSC checkpoint differ from the canonical pathway. Instead, structural deformation of the NL correlates with checkpoint activation. Despite remarkably normal oogenesis, rescued oocytes do not support embryogenesis. Taken together, these data suggest that NL dysfunction caused by Otefin loss triggers a GSC-specific checkpoint that contributes to maintenance of gamete quality. Otefin is a nuclear lamina protein required for survival of Drosophila germ stem cells. Here the authors show that nuclear lamina dysfunction resulting from loss of Otefin activates a DNA damage-independent germ stem cell-specific checkpoint, mediated by the ATR and Chk2 kinases, which ensures that healthy gametes are passed on to the next generation.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Cell Biology, Skirball Institute, NYU School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Wenfan Ke
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Amy Luttinger
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexey A Soshnev
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
107
|
Arbach HE, Harland-Dunaway M, Chang JK, Wills AE. Extreme nuclear branching in healthy epidermal cells of the Xenopus tail fin. J Cell Sci 2018; 131:jcs.217513. [PMID: 30131443 DOI: 10.1242/jcs.217513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023] Open
Abstract
Changes in nuclear morphology contribute to the regulation of complex cell properties, including differentiation and tissue elasticity. Perturbations of nuclear morphology are associated with pathologies that include progeria, cancer and muscular dystrophy. The mechanisms governing nuclear shape changes in healthy cells remain poorly understood, partially because there are few models of nuclear shape variation in healthy cells. Here, we introduce nuclear branching in epidermal fin cells of Xenopus tropicalis as a model for extreme variation of nuclear morphology in a diverse population of healthy cells. We found that nuclear branching arises within these cells and becomes more elaborate during embryonic development. These cells contain broadly distributed marks of transcriptionally active chromatin and heterochromatin, and have active cell cycles. We found that nuclear branches are disrupted by loss of filamentous actin and depend on epidermal expression of the nuclear lamina protein Lamin B1. Inhibition of nuclear branching disrupts fin morphology, suggesting that nuclear branching may be involved in fin development. This study introduces the nuclei of the Xenopus fin as a powerful new model for extreme nuclear morphology in healthy cells to complement studies of nuclear shape variation in pathological contexts.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hannah E Arbach
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| | | | - Jessica K Chang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| |
Collapse
|
108
|
Wang AS, Dreesen O. Biomarkers of Cellular Senescence and Skin Aging. Front Genet 2018; 9:247. [PMID: 30190724 PMCID: PMC6115505 DOI: 10.3389/fgene.2018.00247] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest that occurs as a result of different damaging stimuli, including DNA damage, telomere shortening and dysfunction or oncogenic stress. Senescent cells exert a pleotropic effect on development, tissue aging and regeneration, inflammation, wound healing and tumor suppression. Strategies to remove senescent cells from aging tissues or preneoplastic lesions can delay tissue dysfunction and lead to increased healthspan. However, a significant hurdle in the aging field has been the identification of a universal biomarker that facilitates the unequivocal detection and quantification of senescent cell types in vitro and in vivo. Mammalian skin is the largest organ of the human body and consists of different cell types and compartments. Skin provides a physical barrier against harmful microbes, toxins, and protects us from ultraviolet radiation. Increasing evidence suggests that senescent cells accumulate in chronologically aged and photoaged skin; and may contribute to age-related skin changes and pathologies. Here, we highlight current biomarkers to detect senescent cells and review their utility in the context of skin aging. In particular, we discuss the efficacy of biomarkers to detect senescence within different skin compartments and cell types, and how they may contribute to myriad manifestations of skin aging and age-related skin pathologies.
Collapse
Affiliation(s)
- Audrey S Wang
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
109
|
Wei W, Ji S. Cellular senescence: Molecular mechanisms and pathogenicity. J Cell Physiol 2018; 233:9121-9135. [PMID: 30078211 DOI: 10.1002/jcp.26956] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is the arrest of normal cell division. Oncogenic genes and oxidative stress, which cause genomic DNA damage and generation of reactive oxygen species, lead to cellular senescence. The senescence-associated secretory phenotype is a distinct feature of senescence. Senescence is normally involved in the embryonic development. Senescent cells can communicate with immune cells to invoke an immune response. Senescence emerges during the aging process in several tissues and organs. In fact, increasing evidence shows that cellular senescence is implicated in aging-related diseases, such as nonalcoholic fatty liver disease, obesity and diabetes, pulmonary hypertension, and tumorigenesis. Cellular senescence can also be induced by microbial infection. During cellular senescence, several signaling pathways, including those of p53, nuclear factor-κB (NF-κB), mammalian target of rapamycin, and transforming growth factor-beta, play important roles. Accumulation of senescent cells can trigger chronic inflammation, which may contribute to the pathological changes in the elderly. Given the variety of deleterious effects caused by cellular senescence in humans, strategies have been proposed to control senescence. In this review, we will focus on recent studies to provide a brief introduction to cellular senescence, including associated signaling pathways and pathology.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction, Basic Medical School, Henan University, Kaifeng, Henan, China.,Department of Microbiology, Basic Medical School, Henan University, Kaifeng, Henan, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Basic Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
110
|
Frankel D, Delecourt V, Harhouri K, De Sandre-Giovannoli A, Lévy N, Kaspi E, Roll P. MicroRNAs in hereditary and sporadic premature aging syndromes and other laminopathies. Aging Cell 2018; 17:e12766. [PMID: 29696758 PMCID: PMC6052405 DOI: 10.1111/acel.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary and sporadic laminopathies are caused by mutations in genes encoding lamins, their partners, or the metalloprotease ZMPSTE24/FACE1. Depending on the clinical phenotype, they are classified as tissue‐specific or systemic diseases. The latter mostly manifest with several accelerated aging features, as in Hutchinson–Gilford progeria syndrome (HGPS) and other progeroid syndromes. MicroRNAs are small noncoding RNAs described as powerful regulators of gene expression, mainly by degrading target mRNAs or by inhibiting their translation. In recent years, the role of these small RNAs has become an object of study in laminopathies using in vitro or in vivo murine models as well as cells/tissues of patients. To date, few miRNAs have been reported to exert protective effects in laminopathies, including miR‐9, which prevents progerin accumulation in HGPS neurons. The recent literature has described the potential implication of several other miRNAs in the pathophysiology of laminopathies, mostly by exerting deleterious effects. This review provides an overview of the current knowledge of the functional relevance and molecular insights of miRNAs in laminopathies. Furthermore, we discuss how these discoveries could help to better understand these diseases at the molecular level and could pave the way toward identifying new potential therapeutic targets and strategies based on miRNA modulation.
Collapse
Affiliation(s)
- Diane Frankel
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| | | | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Département de Génétique Médicale; Marseille France
| | - Nicolas Lévy
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Département de Génétique Médicale; Marseille France
| | - Elise Kaspi
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| | - Patrice Roll
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| |
Collapse
|
111
|
Malvezzi H, Viana BG, Dobo C, Filippi RZ, Podgaec S, Piccinato CA. Depleted lamin B1: a possible marker of the involvement of senescence in endometriosis? Arch Gynecol Obstet 2018; 297:977-984. [PMID: 29417283 DOI: 10.1007/s00404-018-4691-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
PROPOSE Endometriosis is a benign disease characterized by implantation and the growth of endometrial tissue outside the uterine cavity and it shares similarities with cancer. Lamin B1, p16 and p21 play a role on cell cycle regulation, development, cell repair and its activities are related to cancers. Considering the similarities between endometriosis and cancer, the aim of the present cross-sectional study is to detect p16, p21 and Lamin B1 in the ectopic endometrium of patients with endometriosis (n = 8) with eutopic (n = 8) and control endometrium (n = 8) and relate them to the maintenance and development of endometriosis. METHODS Biopsies were obtained from both eutopic and ectopic, from deep infiltrating lesions, endometrium frozen and used for immunofluorescent (p16) or immunohistochemistry procedures (p16, p21, lamin B1). RESULTS Detected higher lamin B1 in the eutopic endometrium when compared with ectopic endometrium, with no differences between endometriosis tissue with control endometrium. Similar presence of p16 in all groups of patients and no p21 detection was observed. CONCLUSION We observed reduced detection of lamin B1 in the ectopic endometrium raising the possibility that the presence of senescent cells might be contributing to the maintenance and progression of endometriosis by apoptosis resistance and peritoneal stress inherent of the disease.
Collapse
Affiliation(s)
- Helena Malvezzi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Bruno Gallani Viana
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Cristine Dobo
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Renee Zon Filippi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Sérgio Podgaec
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Carla Azevedo Piccinato
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil.
| |
Collapse
|
112
|
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol 2018; 28:436-453. [PMID: 29477613 DOI: 10.1016/j.tcb.2018.02.001] [Citation(s) in RCA: 1523] [Impact Index Per Article: 217.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that promotes tissue remodeling during development and after injury, but can also contribute to the decline of the regenerative potential and function of tissues, to inflammation, and to tumorigenesis in aged organisms. Therefore, the identification, characterization, and pharmacological elimination of senescent cells have gained attention in the field of aging research. However, the nonspecificity of current senescence markers and the existence of different senescence programs strongly limit these tasks. Here, we describe the molecular regulators of senescence phenotypes and how they are used for identifying senescent cells in vitro and in vivo. We also highlight the importance that these levels of regulations have in the development of therapeutic targets.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
113
|
Lukášová E, Kovařík A, Kozubek S. Consequences of Lamin B1 and Lamin B Receptor Downregulation in Senescence. Cells 2018; 7:cells7020011. [PMID: 29415520 PMCID: PMC5850099 DOI: 10.3390/cells7020011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 01/28/2023] Open
Abstract
Anchoring of heterochromatin to the nuclear envelope appears to be an important process ensuring the spatial organization of the chromatin structure and genome function in eukaryotic nuclei. Proteins of the inner nuclear membrane (INM) mediating these interactions are able to recognize lamina-associated heterochromatin domains (termed LAD) and simultaneously bind either lamin A/C or lamin B1. One of these proteins is the lamin B receptor (LBR) that binds lamin B1 and tethers heterochromatin to the INM in embryonic and undifferentiated cells. It is replaced by lamin A/C with specific lamin A/C binding proteins at the beginning of cell differentiation and in differentiated cells. Our functional experiments in cancer cell lines show that heterochromatin in cancer cells is tethered to the INM by LBR, which is downregulated together with lamin B1 at the onset of cell transition to senescence. The downregulation of these proteins in senescent cells leads to the detachment of centromeric repetitive sequences from INM, their relocation to the nucleoplasm, and distension. In cells, the expression of LBR and LB1 is highly coordinated as evidenced by the reduction of both proteins in LBR shRNA lines. The loss of the constitutive heterochromatin structure containing LADs results in changes in chromatin architecture and genome function and can be the reason for the permanent loss of cell proliferation in senescence.
Collapse
Affiliation(s)
- Emilie Lukášová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| |
Collapse
|
114
|
Tan S, Tan J, Tan S, Zhao S, Cao X, Chen Z, Weng Q, Zhang H, Wang K, Zhou J, Xiao X. Decreased Dp71 expression is associated with gastric adenocarcinoma prognosis. Oncotarget 2018; 7:53702-53711. [PMID: 27449096 PMCID: PMC5288215 DOI: 10.18632/oncotarget.10724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
For the first time, dramatically decreased Dp71 protein and mRNA was found in 34 pairs of resected primary gastric adenocarcinoma. Immunohistochemistry identified Dp71 expression suppressed in 72.2% of 104 gastric cancer patients. The decreased Dp71 expression was significantly correlated with cancer differentiation (P=0.001) and lymph vascular invasion (p=0.041). Decreased Dp71 expression was associated with a poor gastric adenocarcinoma prognosis (P=0.001). Significantly less Dp71 mRNA and protein were found in BGC823, SGC7901, AGS compared with GES-1. Via increasing lamin B1 mRNA and protein, enforced Dp71d and Dp71f expression resulted in SGC7901 proliferation inhibition. Co-IP proved interaction of Dp71 with lamin B1 in GES-1 cells. Further expression characterization showed reduced lamin B1 in gastric cancer tissue and cancer cells. Increasing lamin B1 expression results in the growth inhibition of SGC7901, which suggests that Dp71-lamin B1 protein complex plays an important role for the newly identified tumor suppressive function of Dp71.
Collapse
Affiliation(s)
- Sipin Tan
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jin Tan
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Sichuang Tan
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Hunan 410011, People's Republic of China
| | - Shuai Zhao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoxia Cao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Qiaocheng Weng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Huali Zhang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Kangkai Wang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jiang Zhou
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xianzhong Xiao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
115
|
Li M, Li L, Zhang X, Yan Y, Wang B. LncRNA RP11-670E13.6 Regulates Cell Cycle Progression in UVB Damaged Human Dermal Fibroblasts. Photochem Photobiol 2018; 94:589-597. [PMID: 29143326 DOI: 10.1111/php.12858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) have gained extensive attention in recent years, however, their effects on ultraviolet (UV) radiation-induced skin photodamage remain to be elucidated. In this study, we performed high-throughput RNA sequencing and comprehensive bioinformatics analyses to characterize the transcriptome profiles including lncRNAs and mRNAs in UVB-irradiated primary human dermal fibroblasts (HDFs) and to explore the roles of lncRNAs in photoaging. Quantitative reverse transcription-polymerase chain reaction amplification was performed to verify the differentially expressed genes. We subsequently found that knocking down of RP11-670E13.6, an up-regulated lncRNA in UVB-irradiated HDFs, promoted a robust senescence phenotype, including increased numbers of the senescence-associated β-galactosidase-positive cells, decreased cell proliferation, accumulation of cells in G0/G1 phase and a characteristic gene expression signature of senescent cells. In addition, Western blot analysis showed that knocking down of RP11-670E13.6 activated the p16-pRB senescence pathway independent of the p53-p21 pathway. Therefore, we propose that RP11-670E13.6 may delay cellular senescence in UVB damaged HDFs through the p16-pRB pathway.
Collapse
Affiliation(s)
- Mengna Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Zhang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoxi Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
116
|
Burke B. Interactions of Nesprin-4-Containing LINC Complexes in Outer Hair Cells Explored by BioID. Methods Mol Biol 2018; 1840:45-56. [PMID: 30141037 DOI: 10.1007/978-1-4939-8691-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As components of diverse tissues and organs, metazoan cells have to display a wide variety of specialized functions. Implementation of such functions invariably entails the establishment of tissue-specific cellular architecture (Bone and Starr, J Cell Sci 129:1951-1961, 2016). In animal cells, the nucleus is typically the largest organelle and in many respects acts as a landmark for multiple subcellular structures. For instance, in epithelial cells, the nucleus is frequently positioned close to the basal membrane via association with the cytoskeleton. Clearly such associations must be mediated by protein components of the outer nuclear membrane. One such protein is Nesprin-4, a member of the KASH domain family that is expressed in a variety of epithelial cells, including sensory outer hair cells of the inner ear. In this chapter, I describe a proximity-based biotinylation technique, BioID, that can be applied to Nesprin-4 to map its interactions at the nuclear periphery.
Collapse
Affiliation(s)
- Brian Burke
- Institute of Medical Biology, 8A Biomedical Drive, Singapore, 138648, Singapore.
| |
Collapse
|
117
|
Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Wnuk M. Downregulation of methyltransferase Dnmt2 results in condition-dependent telomere shortening and senescence or apoptosis in mouse fibroblasts. J Cell Physiol 2017; 232:3714-3726. [PMID: 28177119 DOI: 10.1002/jcp.25848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Dnmt2 is a highly conserved methyltransferase of uncertain biological function(s). As Dnmt2 was considered as a driver of fruit fly longevity and a modulator of stress response, we decided to evaluate the role of Dnmt2 during stress-induced premature senescence in NIH3T3 mouse fibroblasts. Stable knockdown of Dnmt2 resulted in hydrogen peroxide-mediated sensitivity and apoptosis, whereas in the control conditions, senescence was induced. Cellular senescence was accompanied by elevated levels of p53 and p21, decreased telomere length and telomerase activity, increased production of reactive oxygen species and protein carbonylation, and DNA damage. Dnmt2 silencing also promoted global DNA and RNA hypermethylation, and upregulation of methyltransferases, namely Dnmt1, Dnmt3a, and Dnmt3b. Taken together, we show for the first time that Dnmt2 may promote lifespan in the control conditions and survival during stress conditions in mouse fibroblasts.
Collapse
Affiliation(s)
- Anna Lewinska
- Laboratory of Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | | | - Ewa Kwasniewicz
- Laboratory of Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
| |
Collapse
|
118
|
Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep 2017; 7:15678. [PMID: 29142250 PMCID: PMC5688158 DOI: 10.1038/s41598-017-15901-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Skin ageing is an inevitable consequence of life and accelerated by exposure to ultraviolet (UV) rays. Senescence is an irreversible growth arrest and senescent cells accumulate in ageing tissues, at sites of age-related pathologies and in pre-neoplastic lesions. Conventionally, senescent cells have been detected by senescence associated-β-galactosidase (SA-β-gal) staining, a procedure that requires enzymatic activity, which is lost in fixed tissue samples. We previously demonstrated that loss of lamin B1 is a novel marker to identify senescent cells. Here, we demonstrate that loss of lamin B1 facilitates the detection and quantification of senescent cells upon UV-exposure in vitro and upon chronic UV-exposure and skin regeneration in vivo. Taken together, this marker enables the study of environmental conditions on tissue ageing and regeneration in vivo, serves as a diagnostic tool to distinguish senescent from proliferating cells in pre-neoplastic lesions, and facilitates investigating the role of senescent cells in various age-related pathologies.
Collapse
Affiliation(s)
- Audrey Shimei Wang
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Peh Fern Ong
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Alexandre Chojnowski
- Developmental and Regenerative Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Carlos Clavel
- Hair & Pigment Development, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore.
| | - Oliver Dreesen
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore.
| |
Collapse
|
119
|
Bhattacharjee P, Dasgupta D, Sengupta K. DCM associated LMNA mutations cause distortions in lamina structure and assembly. Biochim Biophys Acta Gen Subj 2017; 1861:2598-2608. [PMID: 28844980 DOI: 10.1016/j.bbagen.2017.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A and B-type lamins are integral scaffolding components of the nuclear lamina which impart rigidity and shape to all metazoan nuclei. Over 450 mutations in A-type lamins are associated with 16 human diseases including dilated cardiomyopathy (DCM). Here, we show that DCM mutants perturb the self-association of lamin A (LA) and it's binding with lamin B1 (LB1). METHODS We used confocal and superresolution microscopy (NSIM) to study the effect of LA mutants on the nuclear lamina. We further used circular dichroism, fluorescence spectroscopy and isothermal titration calorimetry (ITC) to probe the structural modulations, self-association and heteropolymeric association of mutant LA. RESULTS Transfection of mutants in cultured cell lines result in the formation of nuclear aggregates of varied size and distribution. Endogenous LB1 is sequestered into these aggregates. This is consistent with the ten-fold increase in association constant of the mutant proteins compared to the wild type. These mutants exhibit differential heterotypic interaction with LB1, along with significant secondary and tertiary structural alterations of the interacting proteins. Thermodynamic studies demonstrate that the mutants bind to LB1 with different stoichiometry, affinity and energetics. CONCLUSIONS In this report we show that increased self-association propensity of mutant LA modulates the LA-LB1 interaction and precludes the formation of an otherwise uniform laminar network. GENERAL SIGNIFICANCE Our results might highlight the role of homotypic and heterotypic interactions of LA in the pathogenesis of DCM and hence laminopathies in the broader sense.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
120
|
Serebryannyy L, Misteli T. Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. J Cell Biol 2017; 217:21-37. [PMID: 29051264 PMCID: PMC5748986 DOI: 10.1083/jcb.201706061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Serebryannyy and Misteli provide a perspective on how protein sequestration at the inner nuclear membrane and nuclear lamina might influence aging. Despite the extensive description of numerous molecular changes associated with aging, insights into the driver mechanisms of this fundamental biological process are limited. Based on observations in the premature aging syndrome Hutchinson–Gilford progeria, we explore the possibility that protein regulation at the inner nuclear membrane and the nuclear lamina contributes to the aging process. In support, sequestration of nucleoplasmic proteins to the periphery impacts cell stemness, the response to cytotoxicity, proliferation, changes in chromatin state, and telomere stability. These observations point to the nuclear periphery as a central regulator of the aging phenotype.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
121
|
Martinez EC, Lilyanna S, Wang P, Vardy LA, Jiang X, Armugam A, Jeyaseelan K, Richards AM. MicroRNA-31 promotes adverse cardiac remodeling and dysfunction in ischemic heart disease. J Mol Cell Cardiol 2017; 112:27-39. [PMID: 28865712 DOI: 10.1016/j.yjmcc.2017.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
RATIONALE Myocardial infarction (MI) triggers a dynamic microRNA response with the potential of yielding therapeutic targets. OBJECTIVE We aimed to identify novel aberrantly expressed cardiac microRNAs post-MI with potential roles in adverse remodeling in a rat model, and to provide post-ischemic therapeutic inhibition of a candidate pathological microRNA in vivo. METHODS AND RESULTS Following microRNA array profiling in rat hearts 2 and 14days post-MI, we identified a time-dependent up-regulation of miR-31 compared to sham-operated rats. A progressive increase of miR-31 (up to 91.4±11.3 fold) was detected in the infarcted myocardium by quantitative real-time PCR. Following target prediction analysis, reporter gene assays confirmed that miR-31 targets the 3´UTR of cardiac troponin-T (Tnnt2), E2F transcription factor 6 (E2f6), mineralocorticoid receptor (Nr3c2) and metalloproteinase inhibitor 4 (Timp4) mRNAs. In vitro, hypoxia and oxidative stress up-regulated miR-31 and suppressed target genes in cardiac cell cultures, whereas LNA-based oligonucleotide inhibition of miR-31 (miR-31i) reversed its repressive effect on target mRNAs. Therapeutic post-ischemic administration of miR-31i in rats silenced cardiac miR-31 and enhanced expression of target genes, while preserving cardiac structure and function at 2 and 4weeks post-MI. Left ventricular ejection fraction (EF) improved by 10% (from day 2 to 30 post-MI) in miR-31i-treated rats, whereas controls receiving scrambled LNA inhibitor or placebo incurred a 17% deterioration in EF. miR-31i decreased end-diastolic pressure and infarct size; attenuated interstitial fibrosis in the remote myocardium and enhanced cardiac output. CONCLUSION miR-31 induction after MI is deleterious to cardiac function while its therapeutic inhibition in vivo ameliorates cardiac dysfunction and prevents the development of post-ischemic adverse remodeling.
Collapse
Affiliation(s)
- Eliana C Martinez
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Interdisciplinary Stem Cell Institute, Department of Pediatrics, Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Shera Lilyanna
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Leah A Vardy
- A*STAR Institute of Medical Biology, Singapore; Department of Biological Sciences, Nanyang Technological University, Singapore
| | - Xiaofei Jiang
- Cardiovascular Research Institute, National University Health System, Singapore
| | - Arunmozhiarasi Armugam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kandiah Jeyaseelan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiac Department, National University Health System, Singapore; Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| |
Collapse
|
122
|
Li S, Koe CT, Tay ST, Tan ALK, Zhang S, Zhang Y, Tan P, Sung WK, Wang H. An intrinsic mechanism controls reactivation of neural stem cells by spindle matrix proteins. Nat Commun 2017; 8:122. [PMID: 28744001 PMCID: PMC5526931 DOI: 10.1038/s41467-017-00172-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
The switch between quiescence and proliferation is central for neurogenesis and its alteration is linked to neurodevelopmental disorders such as microcephaly. However, intrinsic mechanisms that reactivate Drosophila larval neural stem cells (NSCs) to exit from quiescence are not well established. Here we show that the spindle matrix complex containing Chromator (Chro) functions as a key intrinsic regulator of NSC reactivation downstream of extrinsic insulin/insulin-like growth factor signalling. Chro also prevents NSCs from re-entering quiescence at later stages. NSC-specific in vivo profiling has identified many downstream targets of Chro, including a temporal transcription factor Grainy head (Grh) and a neural stem cell quiescence-inducing factor Prospero (Pros). We show that spindle matrix proteins promote the expression of Grh and repress that of Pros in NSCs to govern their reactivation. Our data demonstrate that nuclear Chro critically regulates gene expression in NSCs at the transition from quiescence to proliferation. The spindle matrix proteins, including Chro, are known to regulate mitotic spindle assembly in the cytoplasm. Here the authors show that in Drosophila larval brain, Chro promotes neural stem cell (NSC) reactivation and prevents activated NSCs from entering quiescence, and that Chro carries out such a role by regulating the expression of key transcription factors in the nucleus.
Collapse
Affiliation(s)
- Song Li
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Chwee Tat Koe
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Su Ting Tay
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Angie Lay Keng Tan
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shenli Zhang
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yingjie Zhang
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Patrick Tan
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119074, Singapore.,Genome Institute of Singapore, 60 Biopolis Street, Genome 02-01, Singapore, 138672, Singapore
| | - Wing-Kin Sung
- Genome Institute of Singapore, 60 Biopolis Street, Genome 02-01, Singapore, 138672, Singapore.,Department of Computer Science, National University of Singapore, Singapore, 117417, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioural Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
123
|
Mahajani S, Giacomini C, Marinaro F, De Pietri Tonelli D, Contestabile A, Gasparini L. Lamin B1 levels modulate differentiation into neurons during embryonic corticogenesis. Sci Rep 2017; 7:4897. [PMID: 28687747 PMCID: PMC5501862 DOI: 10.1038/s41598-017-05078-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/24/2017] [Indexed: 01/10/2023] Open
Abstract
Lamin B1, a key component of the nuclear lamina, plays an important role in brain development. Ablation of endogenous Lamin B1 (Lmnb1) in the mouse strongly impairs embryonic brain development and corticogenesis. However, the mechanisms underlying these neurodevelopmental effects are unknown. Here, we report that Lamin B1 levels modulate the differentiation of murine neural stem cells (NSCs) into neurons and astroglial-like cells. In vitro, endogenous Lmnb1 depletion favors NSC differentiation into glial fibrillar acidic protein (GFAP)-immunoreactive cells over neurons, while overexpression of human Lamin B1 (LMNB1) increases the proportion of neurons. In Lmnb1-null embryos, neurogenesis is reduced, while in vivo Lmnb1 silencing in mouse embryonic brain by in utero electroporation of a specific Lmnb1 sh-RNA results in aberrant cortical positioning of neurons and increased expression of the astrocytic marker GFAP in the cortex of 7-day old pups. Together, these results indicate that finely tuned levels of Lamin B1 are required for NSC differentiation into neurons, proper expression of the astrocytic marker GFAP and corticogenesis.
Collapse
Affiliation(s)
- Sameehan Mahajani
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Universitaetsmedizin Goettingen, Waldweg 33, Goettingen, 37073, Germany
| | - Caterina Giacomini
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Division of Cancer Studies, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Federica Marinaro
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Andrea Contestabile
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Laura Gasparini
- Dept. of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.
- Abbvie Deutschland GmbH & Co, Knollstr, Ludwigshafen, 67061, Germany.
| |
Collapse
|
124
|
Yang X, Zhang W, Zhao Z, Li N, Mou Z, Sun D, Cai Y, Wang W, Lin Y. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J Inorg Biochem 2017; 167:36-48. [DOI: 10.1016/j.jinorgbio.2016.11.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
|
125
|
Lukášová E, Kovarˇík A, Bacˇíková A, Falk M, Kozubek S. Loss of lamin B receptor is necessary to induce cellular senescence. Biochem J 2017; 474:281-300. [PMID: 27760841 DOI: 10.1042/bcj20160459] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2023]
Abstract
Cellular transition to senescence is associated with extensive chromatin reorganization and changes in gene expression. Recent studies appear to imply an association of lamin B1 (LB1) reduction with chromatin rearrangement in human fibroblasts promoted to senescence, while the mechanisms and structural features of these relationships have not yet been clarified. In this work, we examined the functions of LB1 and the lamin B receptor (LBR) in human cancer cells. We found that both LB1 and LBR tend to deplete during cancer cell transfer to senescence by γ-irradiation. A functional study employing silencing of LBR by small hairpin ribonucleic acid (shRNA) constructs revealed reduced LB1 levels suggesting that the regulation of both proteins is interrelated. The reduced expression of LBR resulted in the relocation of centromeric heterochromatin (CSH) from the inner nuclear membrane (INM) to the nucleoplasm and is associated with its unfolding. This indicates that LBR tethers heterochromatin to INM in cycling cancer cells and that LB1 is an integral part of this tethering. Down-regulation of LBR and LB1 at the onset of senescence are thus necessary for the release of heterochromatin binding to lamina, resulting in changes in chromatin architecture and gene expression. However, the senescence phenotype was not manifested in cell lines with reduced LBR and LB1 expression suggesting that other factors, such as deoxyribonucleic acid (DNA) damage, are needed to trigger senescence. We conclude that the primary response of cells to various stresses leading to senescence consists of the down-regulation of LBR and LB1 to attain reversal of the chromatin architecture.
Collapse
Affiliation(s)
- Emilie Lukášová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic
| | - Aleš Kovarˇík
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic
| | - Alena Bacˇíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic
| |
Collapse
|
126
|
Graziano S, Gonzalo S. Mechanisms of oncogene-induced genomic instability. Biophys Chem 2016; 225:49-57. [PMID: 28073589 DOI: 10.1016/j.bpc.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Abstract
Activating mutations in oncogenes promote uncontrolled proliferation and malignant transformation. Approximately 30% of human cancers carry mutations in the RAS oncogene. Paradoxically, expression of mutant constitutively active Ras protein in primary human cells results in a premature proliferation arrest known as oncogene-induced senescence (OIS). This is more commonly observed in human pre-neoplasia than in neoplastic lesions, and is considered a tumor suppressor mechanism. Senescent cells are still metabolically active but in a status of cell cycle arrest characterized by specific morphological and physiological features that distinguish them from both proliferating cells, and cells growth-arrested by other means. Although the molecular mechanisms by which OIS is established are not totally understood, the current view is that OIS in human cells is tightly linked to persistent activation of the DNA damage response (DDR) pathway, as a consequence of replication stress. Here we will highlight recent advances in our understanding of molecular mechanisms leading to hyper-replication stress in response to oncogene activation, and of the crosstalk between replication stress and persistent activation of the DDR. We will also discuss new evidence for DNA repair deficiencies during OIS, which might increase the genomic instability that drives senescence bypass and malignant transformation.
Collapse
Affiliation(s)
- Simona Graziano
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
127
|
Abstract
PURPOSE OF REVIEW Cell senescence is a major process regulating tissue mass, architecture and function, and underlies many diseases of ageing. Recent studies have elucidated some of the regulatory pathways leading to cell senescence, and senescence has also been found in the vasculature. However, assessment of cell senescence is problematic, and the effects of vascular cell senescence are in most cases unproven. The present article will review how senescence is assessed, how it is regulated, where senescence has been described, and the role of cell senescence in atherosclerosis. RECENT FINDINGS Senescence results in expression of multiple proteins, both intracellular and secreted. However, to date, none of these are specific for senescence, and multiple markers must be used together for positive identification. Despite these shortfalls, cell senescence is detectable in the vasculature in ageing and in human atherosclerosis, and recent studies in mice have indicated that cell senescence promotes both atherogenesis and multiple features of 'vulnerable' lesions in advanced atherosclerotic plaques. SUMMARY The almost ubiquitous presence of cell senescence in atherosclerosis and the fundamental role of senescence in regulating plaque development and stability suggest that prevention or amelioration of senescence in atherosclerosis is a viable therapeutic target.
Collapse
Affiliation(s)
- Abel Martin Garrido
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
128
|
Criscione SW, Teo YV, Neretti N. The Chromatin Landscape of Cellular Senescence. Trends Genet 2016; 32:751-761. [PMID: 27692431 DOI: 10.1016/j.tig.2016.09.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible growth arrest triggered by a variety of stressors, plays important roles in normal physiology and tumor suppression, but accumulation of senescent cells with age contributes to the functional decline of tissues. Senescent cells undergo dramatic alterations to their chromatin landscape that affect genome accessibility and their transcriptional program. These include the loss of DNA-nuclear lamina interactions, the distension of centromeres, and changes in chromatin composition that can lead to the activation of retrotransposons. Here we discuss these findings, as well as recent advances in microscopy and genomics that have revealed the importance of the higher-order spatial organization of the genome in defining and maintaining the senescent state.
Collapse
Affiliation(s)
- Steven W Criscione
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
129
|
Bouley J, Saad L, Grall R, Schellenbauer A, Biard D, Paget V, Morel-Altmeyer S, Guipaud O, Chambon C, Salles B, Maloum K, Merle-Béral H, Chevillard S, Delic J. A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful DNA repair in cancer cell lines. Oncotarget 2016; 6:27980-8000. [PMID: 26337656 PMCID: PMC4695039 DOI: 10.18632/oncotarget.4735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation occurs in a heterodimer Ku70/Ku80 complex within minutes of genotoxic stress, necessitating its interaction with DNA damage-induced kinase pS2056-DNA-PKcs and/or pS1981-ATM. The mutagenic effects of phospho-Ku70 are documented by a defective S/G2 checkpoint, accelerated disappearance of γ-H2AX foci and kinetics of DNA repair resulting in an increased level of genotoxic stress-induced chromosomal aberrations. Together, these data unveil an involvement of phospho-Ku70 in fast but inaccurate DNA repair; a new paradigm linked to both the deregulation of c-NHEJ and the resistance of malignant cells.
Collapse
Affiliation(s)
- Julien Bouley
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France.,Laboratoire de Spectrométrie de Masse, Stallergens, 92160 Antony, France
| | - Lina Saad
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Denis Biard
- Institut de Maladies Emergentes et des Thérapies Innovantes (iMETI), Service d'Etude des Prions et des Infections Atypiques (SEPIA), CEA, 92265 Fontenay aux Roses, France
| | - Vincent Paget
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Sandrine Morel-Altmeyer
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Olivier Guipaud
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France.,Laboratoire de Radiopathologie et de Thérapies Expérimentales, Institut de Radioprotection et de Sureté Nucléaire (IRSN), 92265 Fontenay aux Roses, France
| | - Christophe Chambon
- Service de Spectrométrie de Masse, INRA Theix, 63122 St Genès Champanelle, France
| | - Bernard Salles
- UMR 1331 TOXALIM, INRA/INP/UPS, F-31027 Toulouse, France
| | - Karim Maloum
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, 75000 Paris, France
| | - Hélène Merle-Béral
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, 75000 Paris, France.,Université Pierre et Marie Curie, Paris VI, INSERM, UMR-S 872, Programmed Cell Death and Physiopathology of Tumor Cells, Centre de Recherche des Cordeliers 75000 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Jozo Delic
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| |
Collapse
|
130
|
Parry AJ, Narita M. Old cells, new tricks: chromatin structure in senescence. Mamm Genome 2016; 27:320-31. [PMID: 27021489 PMCID: PMC4935760 DOI: 10.1007/s00335-016-9628-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
Cellular senescence is a stable form of cell cycle arrest with roles in many pathophysiological processes including development, tissue repair, cancer, and aging. Senescence does not represent a single entity but rather a heterogeneous phenotype that depends on the trigger and cell type of origin. Such heterogeneous features include alterations to chromatin structure and epigenetic states. New technologies are beginning to unravel the distinct mechanisms regulating chromatin structure during senescence. Here, we describe the multiple levels of chromatin organization associated with senescence: global and focal, linear, and higher order.
Collapse
Affiliation(s)
- Aled John Parry
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE UK
| | - Masashi Narita
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE UK
| |
Collapse
|
131
|
Chen H, Zheng X, Xiao D, Zheng Y. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell 2016; 15:542-52. [PMID: 27072046 PMCID: PMC4854910 DOI: 10.1111/acel.12465] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2016] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic genomes contain transposable elements (TE) that can move into new locations upon activation. Since uncontrolled transposition of TEs, including the retrotransposons and DNA transposons, can lead to DNA breaks and genomic instability, multiple mechanisms, including heterochromatin‐mediated repression, have evolved to repress TE activation. Studies in model organisms have shown that TEs become activated upon aging as a result of age‐associated deregulation of heterochromatin. Considering that different organisms or cell types may undergo distinct heterochromatin changes upon aging, it is important to identify pathways that lead to TE activation in specific tissues and cell types. Through deep sequencing of isolated RNAs, we report an increased expression of many retrotransposons in the old Drosophila fat body, an organ equivalent to the mammalian liver and adipose tissue. This de‐repression correlates with an increased number of DNA damage foci and decreased level of Drosophila lamin‐B in the old fat body cells. Depletion of the Drosophila lamin‐B in the young or larval fat body results in a reduction of heterochromatin and a corresponding increase in retrotransposon expression and DNA damage. Further manipulations of lamin‐B and retrotransposon expression suggest a role of the nuclear lamina in maintaining the genome integrity of the Drosophila fat body by repressing retrotransposons.
Collapse
Affiliation(s)
- Haiyang Chen
- Key Laboratory of Gene Engineering of the Ministry of Education State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
- Department of Embryology Carnegie Institution for Science Baltimore MD 21218 USA
| | - Xiaobin Zheng
- Department of Embryology Carnegie Institution for Science Baltimore MD 21218 USA
| | - Danqing Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Yixian Zheng
- Department of Embryology Carnegie Institution for Science Baltimore MD 21218 USA
| |
Collapse
|
132
|
Anwar T, Khosla S, Ramakrishna G. Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status. Cell Cycle 2016; 15:1883-97. [PMID: 27229617 DOI: 10.1080/15384101.2016.1189041] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sirtuins (SIRT) belonging to the NAD+ dependent histone deacetylase III class of enzymes have emerged as master regulators of metabolism and longevity. However, their role in prevention of organismal aging and cellular senescence still remains controversial. In the present study, we now report upregulation of SIRT2 as a specific feature associated with stress induced premature senescence but not with either quiescence or cell death. Additionally, increase in SIRT2 expression was noted in different types of senescent conditions such as replicative and oncogene induced senescence using multiple cell lines. Induction of SIRT2 expression during senescence was dependent on p53 status as depletion of p53 by shRNA prevented its accumulation. Chromatin immunoprecipitation revealed the presence of p53 binding sites on the SIRT2 promoter suggesting its regulation by p53, which was also corroborated by the SEAP reporter assay. Overexpression or knockdown of SIRT2 had no effect on stress induced premature senescence, thereby indicating that SIRT2 increase is not a cause of senescence; rather it is an effect linked to senescence-associated changes. Overall, our results suggest SIRT2 as a promising marker of cellular senescence at least in cells with wild type p53 status.
Collapse
Affiliation(s)
- Tarique Anwar
- a Centre for DNA Fingerprinting and Diagnostics , Laboratory Block , Tuljaguda Complex , Nampally, Hyderabad , Telangana , India.,b Graduate Studies , Manipal University , Manipal , Karnataka , India.,c Institute of Liver and Biliary Sciences , D1 Block, Vasant Kunj, Delhi , India
| | - Sanjeev Khosla
- a Centre for DNA Fingerprinting and Diagnostics , Laboratory Block , Tuljaguda Complex , Nampally, Hyderabad , Telangana , India
| | - Gayatri Ramakrishna
- c Institute of Liver and Biliary Sciences , D1 Block, Vasant Kunj, Delhi , India
| |
Collapse
|
133
|
Arai R, En A, Ukekawa R, Miki K, Fujii M, Ayusawa D. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells. Biochem Biophys Res Commun 2016; 473:1078-1083. [PMID: 27059139 DOI: 10.1016/j.bbrc.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/08/2023]
Abstract
5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.
Collapse
Affiliation(s)
- Rumi Arai
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Ryo Ukekawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kensuke Miki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048, Japan
| |
Collapse
|
134
|
Abstract
The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a “nucleoplasmic reticulum,” into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination.
Collapse
Affiliation(s)
- Bess Frost
- a Barshop Institute for Longevity and Aging Studies , Department of Cellular and Structural Biology , University of Texas Health Science Center San Antonio , San Antonio , Texas , USA
| |
Collapse
|
135
|
Mytych J, Wnuk M, Rattan SIS. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture. CHEMOSPHERE 2016; 148:307-315. [PMID: 26814705 DOI: 10.1016/j.chemosphere.2016.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Nanodiamonds (ND) and silica nanoparticles (SiO2-NP) have been much investigated for their toxicity at high doses, little is known about their biological activity at low concentrations. Here we report the biphasic dose response of ND and SiO2-NP in modulating normal human facial skin fibroblasts (FSF1) in culture. ND and SiO2-NP at low concentration (up to 0.5 μg/ml) had beneficial effects on FSF1 in terms of increasing their proliferation and metabolic activity. Exposure of FSF1 cells to low levels of NP enhanced their wound healing ability in vitro and slowed down aging during serial passaging as measured by maintenance of youthful morphology, reduction in the rate of loss of telomeres, and the over all proliferative characteristics. Furthermore, NP treatment induced the activation of Nrf2- and FOXO3A-mediated cellular stress responses, including an increased expression of heme oxygenease (HO-1), sirtuin (SIRT1), and DNA methyltransferase II (DNMT2). These results imply that ND and SiO2-NP at low doses are potential hormetins, which exert mild stress-induced beneficial hormetic effects through improved survival, longevity, maintenance, repair and function of human cells.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Genetics, University of Rzeszow, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rzeszow, Poland.
| | - Suresh I S Rattan
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
136
|
Tran JR, Chen H, Zheng X, Zheng Y. Lamin in inflammation and aging. Curr Opin Cell Biol 2016; 40:124-130. [PMID: 27023494 DOI: 10.1016/j.ceb.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 12/16/2022]
Abstract
Aging is characterized by a progressive loss of tissue function and an increased susceptibility to injury and disease. Many age-associated pathologies manifest an inflammatory component, and this has led to the speculation that aging is at least in part caused by some form of inflammation. However, whether or not inflammation is truly a cause of aging, or is a consequence of the aging process is unknown. Recent work using Drosophila has uncovered a mechanism where the progressive loss of lamin-B in the fat body upon aging triggers systemic inflammation. This inflammatory response perturbs the local immune response of the neighboring gut tissue and leads to hyperplasia. Here, we will discuss the literature connecting lamins to aging and inflammation.
Collapse
Affiliation(s)
- Joseph R Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Haiyang Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States.
| |
Collapse
|
137
|
Abstract
Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.
Collapse
Affiliation(s)
- Richik N Mukherjee
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Pan Chen
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Daniel L Levy
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| |
Collapse
|
138
|
Fonseca ACS, Bonaldi A, Fonseca SAS, Otto PA, Kok F, Bak M, Tommerup N, Vianna-Morgante AM. The segregation of different submicroscopic imbalances underlying the clinical variability associated with a familial karyotypically balanced translocation. Mol Cytogenet 2015; 8:106. [PMID: 26719771 PMCID: PMC4696321 DOI: 10.1186/s13039-015-0205-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background About 7 % of karyotypically balanced chromosomal rearrangements (BCRs) are associated with congenital anomalies due to gene or regulatory element disruption, and cryptic imbalances on rearranged chromosomes. Rare familial BCRs segregating with clinical features are a powerful source for the identifying of causative genes due to the presence of several affected carriers. Case presentation We report on a karyotypically balanced translocation t(2;22)(p13;q12.2) associated with variable learning disabilities, and craniofacial and hand dysmorphisms, detected in six individuals in a three-generation family. Combined a-CGH, FISH and mate-pair sequencing revealed a ten-break complex rearrangement, also involving chromosome 5. As the consequence of the segregation of the derivative chromosomes der(2), der(5) and der(22), different imbalances were present in affected and clinically normal family members, thus contributing to the clinical variability. A 6.64 Mb duplication of a 5q23.2-23.3 segment was the imbalance common to all affected individuals. Although LMNB1, implicated in adult-onset autosomal dominant leukodystrophy (ADLD) when overexpressed, was among the 18 duplicated genes, none of the adult carriers manifested ADLD, and LMNB1 overexpression was not detected in the two tested individuals, after qRT-PCR. The ectopic location of the extra copy of the LMBN1 gene on chromosome 22 might have negatively impacted its expression. In addition, two individuals presenting with more severe learning disabilities carried a 1.42 Mb 2p14 microdeletion, with three genes (CEP68, RAB1A and ACTR2),which are candidates for the intellectual impairment observed in the previously described 2p14p15 microdeletion syndrome, mapping to the minimal overlapping deleted segment. A 5p15.1 deletion, encompassing 1.47 Mb, also detected in the family, did not segregate with the clinical phenotype. Conclusion The disclosing of the complexity of an apparently simple two-break familial rearrangement illustrates the importance of reconstructing the precise structure of derivative chromosomes for establishing genotype-phenotype correlations. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0205-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Carolina S Fonseca
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090 São Paulo, SP Brazil ; Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Adriano Bonaldi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090 São Paulo, SP Brazil
| | - Simone A S Fonseca
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090 São Paulo, SP Brazil
| | - Paulo A Otto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090 São Paulo, SP Brazil
| | - Fernando Kok
- Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Angela M Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, 05508-090 São Paulo, SP Brazil
| |
Collapse
|
139
|
Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface. Stem Cells Int 2015; 2016:2809192. [PMID: 27057169 PMCID: PMC4709773 DOI: 10.1155/2016/2809192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/07/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cells in vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth.
Collapse
|
140
|
Tan S, Tan S, Chen Z, Cheng K, Chen Z, Wang W, Wen Q, Zhang W. Knocking down Dp71 expression in A549 cells reduces its malignancy in vivo and in vitro. Cancer Invest 2015; 34:16-25. [PMID: 26691328 DOI: 10.3109/07357907.2015.1084002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dp71 is one of the most ubiquitously expressed isoforms of dystrophin, the pathological genes of DMD. In order to find whether the alteration of Dp71 can affect the phenotypes of cell other than PC12, an A549 cell line with stably transfected Dp71 siRNA plasmids was set up and named A549-Dp71AS cell. It is demonstrated for the first time that the A549-Dp71AS cell line displayed decreased invasion capabilities, reduced migration ability, decreased proliferation rate, and lessened clonogenic formation. Cisplatin-induced apoptosis was also increased in A549-Dp71AS cell line via enhancing the Caspase 3, Caspase 8, and Caspase 9 activities. Knocking down Dp71 expression can significantly inhibit the A549 xenograft tumor growth in nude mice. The A549-Dp71AS cells and xenograft tumor tissues displayed reduced lamin B1, Bcl-2, and MMP2 protein expression, which accounts for the reduced malignancy of A549-Dp71AS cells in vivo and in vitro.
Collapse
Affiliation(s)
- Sichuang Tan
- a Department of Thoracic Surgery, Second Xiangya Hospital , Central South University , Changsha , Hunan , China
| | - Sipin Tan
- b Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine , Central South University , Hunan , China
- c Molecular and Cell Experimental Center, Xiangya School of Medicine , Central South University , Changsha , Hunan , China
| | - Zhikang Chen
- d Department of General Surgery, Xiangya Hospital , Central South University , Hunan , China
| | - Ke Cheng
- e Center of Transplant Surgery, Third Xiangya Hospital , Central South University , Hunan , China
| | - Zhicao Chen
- e Center of Transplant Surgery, Third Xiangya Hospital , Central South University , Hunan , China
| | - Wenmei Wang
- b Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine , Central South University , Hunan , China
| | - Qiaocheng Wen
- d Department of General Surgery, Xiangya Hospital , Central South University , Hunan , China
| | - Weilin Zhang
- d Department of General Surgery, Xiangya Hospital , Central South University , Hunan , China
| |
Collapse
|
141
|
Bhattacharjee P, Dasgupta D, Sengupta K. Molecular Events in Lamin B1 Homopolymerization: A Biophysical Characterization. J Phys Chem B 2015; 119:14014-21. [PMID: 26465373 DOI: 10.1021/acs.jpcb.5b07320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lamin B1 is one of the major constituents of the nuclear lamina, a filamentous network underlying the nucleoplasmic side of the inner nuclear membrane. Homopolymerization of lamin B1, coupled to the homotypic and heterotypic association of other lamin types, is central to building the higher order network pattern inside the nucleus. This in turn maintains the mechanical and functional integrity of the lamina. We have characterized the molecular basis of the self-association of lamin B1 using spectroscopic and calorimetric methods. We report that concentration dependent lamin B1 oligomerization involves significant alterations in secondary and tertiary structures of the protein resulting in fairly observable compaction in size. Comparison of the energetics of the homotypic association of lamin B1 with that of lamin A reported earlier led to the finding that lamin A oligomers had higher thermodynamic stability. This leads us to conjecture that lamin B1 has less stress bearing ability compared to lamin A.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics , 1/AF Bidhannagar, Kolkata-700064, India
| | - Dipak Dasgupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics , 1/AF Bidhannagar, Kolkata-700064, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics , 1/AF Bidhannagar, Kolkata-700064, India
| |
Collapse
|
142
|
Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP, Catanzaro JM, Ricketts MD, Lamark T, Adam SA, Marmorstein R, Zong WX, Johansen T, Goldman RD, Adams PD, Berger SL. Autophagy mediates degradation of nuclear lamina. Nature 2015; 527:105-9. [PMID: 26524528 PMCID: PMC4824414 DOI: 10.1038/nature15548] [Citation(s) in RCA: 473] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022]
Abstract
Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.
Collapse
Affiliation(s)
- Zhixun Dou
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caiyue Xu
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Greg Donahue
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ji-An Pan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jiajun Zhu
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrejs Ivanov
- Institute of Cancer Sciences, University of Glasgow, Cancer Research UK Beatson Labs, Glasgow G61 1BD, United Kingdom
| | - Brian C. Capell
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Adam M. Drake
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Parisha P. Shah
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph M. Catanzaro
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - M. Daniel Ricketts
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Trond Lamark
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Stephen A. Adam
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ronen Marmorstein
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Peter D. Adams
- Institute of Cancer Sciences, University of Glasgow, Cancer Research UK Beatson Labs, Glasgow G61 1BD, United Kingdom
| | - Shelley L. Berger
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
143
|
Ling L, Camilleri ET, Helledie T, Samsonraj RM, Titmarsh DM, Chua RJ, Dreesen O, Dombrowski C, Rider DA, Galindo M, Lee I, Hong W, Hui JH, Nurcombe V, van Wijnen AJ, Cool SM. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells. Gene 2015; 576:292-303. [PMID: 26484394 DOI: 10.1016/j.gene.2015.10.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023]
Abstract
Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (<200 ng/ml), serial passaging with heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Emily T Camilleri
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Torben Helledie
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Rebekah M Samsonraj
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Drew M Titmarsh
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Ren Jie Chua
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Oliver Dreesen
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Christian Dombrowski
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - David A Rider
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70061, Correo 7, Santiago, Chile
| | - Ian Lee
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - James H Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
144
|
Abstract
A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications.
Collapse
Affiliation(s)
- Aaron A Mehus
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Ruthellen H Anderson
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
145
|
Lenain C, Gusyatiner O, Douma S, van den Broek B, Peeper DS. Autophagy-mediated degradation of nuclear envelope proteins during oncogene-induced senescence. Carcinogenesis 2015; 36:1263-74. [DOI: 10.1093/carcin/bgv124] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/16/2015] [Indexed: 01/12/2023] Open
|
146
|
Sadaie M, Dillon C, Narita M, Young ARJ, Cairney CJ, Godwin LS, Torrance CJ, Bennett DC, Keith WN, Narita M. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell 2015; 26:2971-85. [PMID: 26133385 PMCID: PMC4551313 DOI: 10.1091/mbc.e15-01-0003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.
Collapse
Affiliation(s)
- Mahito Sadaie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Christian Dillon
- Cancer Research Technology Discovery Laboratories, Wolfson Institute for Biomedical Research, London WC1E 6BT, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Andrew R. J. Young
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Claire J. Cairney
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lauren S. Godwin
- St. George's, University of London, London SW17 0RE, United Kingdom
| | | | | | - W. Nicol Keith
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
147
|
Chojnowski A, Ong PF, Wong ESM, Lim JSY, Mutalif RA, Navasankari R, Dutta B, Yang H, Liow YY, Sze SK, Boudier T, Wright GD, Colman A, Burke B, Stewart CL, Dreesen O. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. eLife 2015; 4. [PMID: 26312502 PMCID: PMC4565980 DOI: 10.7554/elife.07759] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/23/2015] [Indexed: 12/12/2022] Open
Abstract
Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization. DOI:http://dx.doi.org/10.7554/eLife.07759.001 Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disease in which individuals age prematurely. Newborns appear normal at birth, but start ageing rapidly when they are around a year old. Symptoms of the disease include stunted growth and joint stiffness, and individuals often die of heart failure during their teens. A mutated version of a protein called lamin A causes HGPS; this mutant is known as progerin. In cells that produce progerin, the ‘telomeres’ that protect the ends of chromosomes (the structures that contain most of the cell's DNA) from damage, are unusually short. Every time a cell divides, the telomeres get shorter. If they get too short, the DNA is damaged and the cell stops dividing and enters a state known as senescence. HGPS affects some of the tissues in the body more severely than others, and these tissues tend to produce high levels of progerin. By gradually raising the levels of progerin in human cells, Chojnowski et al. found that DNA damage and cell senescence only occur when the amount of progerin in a cell exceeds a particular threshold. Moreover, the expression of telomerase—a complex that can elongate telomeres—prevented progerin-induced DNA damage and premature senescence. To find out how progerin affects cells, Chojnowski et al. compared how lamin A and progerin interact with other proteins. This revealed that progerin interacts with a protein called LAP2α more weakly than lamin A. LAP2α normally associates with telomeres, but using super-high resolution microscopy, Chojnowski et al. observed that this association is less likely to occur in the cells of people with HGPS. Importantly, increasing the amount of LAP2α in progerin-expressing cells prevented DNA damage and senescence and enabled these cells to continue dividing. Chojnowski et al. propose that in HGPS, the weak interaction between LAP2α and progerin disrupts how LAP2α interacts with telomeres, which prevents cells from dividing. Understanding this process may help to design new ways of treating HGPS, and may also help us to understand other diseases that are caused by mutations in lamin proteins. DOI:http://dx.doi.org/10.7554/eLife.07759.002
Collapse
Affiliation(s)
- Alexandre Chojnowski
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Peh Fern Ong
- Cellular Ageing, Institute of Medical Biology, Singapore, Singapore
| | - Esther S M Wong
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - John S Y Lim
- Microscopy Unit, Institute of Medical Biology, Singapore, Singapore
| | - Rafidah A Mutalif
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Raju Navasankari
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Henry Yang
- Bioinformatics Core, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yi Y Liow
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Siu K Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas Boudier
- Bioinformatics Institute, IPAL UMI 2955, Singapore, Singapore
| | - Graham D Wright
- Microscopy Unit, Institute of Medical Biology, Singapore, Singapore
| | - Alan Colman
- Stem Cell Disease Models, Institute of Medical Biology, Singapore, Singapore
| | - Brian Burke
- Nuclear Dynamics and Architecture, Institute of Medical Biology, Singapore, Singapore
| | - Colin L Stewart
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Oliver Dreesen
- Cellular Ageing, Institute of Medical Biology, Singapore, Singapore
| |
Collapse
|
148
|
Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 2015; 61:290-8. [DOI: 10.1016/j.biomaterials.2015.05.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
|
149
|
Skin Disease in Laminopathy-Associated Premature Aging. J Invest Dermatol 2015; 135:2577-2583. [PMID: 26290387 DOI: 10.1038/jid.2015.295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
The nuclear lamina, a protein network located under the nuclear membrane, has during the past decade found increasing interest due to its significant involvement in a range of genetic diseases, including the segmental premature aging syndromes Hutchinson-Gilford progeria syndrome, restrictive dermopathy, and atypical Werner syndrome. In this review we examine these diseases, some caused by mutations in the LMNA gene, and their skin disease features. Advances within this area might also provide novel insights into the biology of skin aging, as recent data suggest that low levels of progerin are expressed in unaffected individuals and these levels increase with aging.
Collapse
|
150
|
Piva R, Lambertini E, Manferdini C, Capanni C, Penolazzi L, Gabusi E, Paolella F, Lolli A, Angelozzi M, Lattanzi G, Lisignoli G. Slug transcription factor and nuclear Lamin B1 are upregulated in osteoarthritic chondrocytes. Osteoarthritis Cartilage 2015; 23:1226-30. [PMID: 25797039 DOI: 10.1016/j.joca.2015.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To contribute to clarify molecular mechanisms supporting senescence and de-differentiation of chondrocytes in chondrocyte pathologies such as osteoarthritis (OA). Specifically, we investigated the relationship between the nuclear lamina protein Lamin B1 and the negative regulator of chondrogenesis Slug transcription factor in osteoarthritic chondrocytes. METHODS Lamin B1 and Slug proteins were analyzed in cartilage explants from normal subjects and OA patients by immunohistochemical technique. Their expression was confirmed on isolated chondrocytes both at passage 0 and passage 2 (de-differentiated chondrocytes) by immunofluorescence and western blot. Subsequently, we explored the "in vivo" binding of Slug on LMNB1 promoter by chromatin immunoprecipitation assay (ChIP). RESULTS In this study we demonstrated that nuclear lamina protein Lamin B1 and anti-chondrogenic Slug transcription factor are upregulated in cartilage and OA chondrocytes. Furthermore, we found that Slug is "in vivo" recruited by LMNB1 gene promoter mostly when chondrocytes undergo de-differentiation or OA degeneration. CONCLUSIONS We described for the first time a potential regulatory role of Slug on the LMNB1 gene expression in OA chondrocytes. These findings may have important implications for the study of premature senescence, and degeneration of cartilage, and may contribute to develop effective therapeutic strategies against signals supporting cartilage damage in different subsets of patients.
Collapse
Affiliation(s)
- R Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| | - E Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - C Manferdini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IOR, Bologna, Italy; Laboratorio RAMSES, IOR, Bologna, Italy
| | - C Capanni
- Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, and CNR Institute for Molecular Genetics, Bologna, Italy
| | - L Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - E Gabusi
- Laboratorio RAMSES, IOR, Bologna, Italy
| | | | - A Lolli
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - M Angelozzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - G Lattanzi
- Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, and CNR Institute for Molecular Genetics, Bologna, Italy
| | - G Lisignoli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IOR, Bologna, Italy; Laboratorio RAMSES, IOR, Bologna, Italy
| |
Collapse
|