101
|
Clappaert EJ, Murgaski A, Van Damme H, Kiss M, Laoui D. Diamonds in the Rough: Harnessing Tumor-Associated Myeloid Cells for Cancer Therapy. Front Immunol 2018; 9:2250. [PMID: 30349530 PMCID: PMC6186813 DOI: 10.3389/fimmu.2018.02250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Therapeutic approaches that engage immune cells to treat cancer are becoming increasingly utilized in the clinics and demonstrated durable clinical benefit in several solid tumor types. Most of the current immunotherapies focus on manipulating T cells, however, the tumor microenvironment (TME) is abundantly infiltrated by a heterogeneous population of tumor-associated myeloid cells, including tumor-associated macrophages (TAMs), tumor-associated dendritic cells (TADCs), tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). Educated by signals perceived in the TME, these cells often acquire tumor-promoting properties ultimately favoring disease progression. Upon appropriate stimuli, myeloid cells can exhibit cytoxic, phagocytic, and antigen-presenting activities thereby bolstering antitumor immune responses. Thus, depletion, reprogramming or reactivation of myeloid cells to either directly eradicate malignant cells or promote antitumor T-cell responses is an emerging field of interest. In this review, we briefly discuss the tumor-promoting and tumor-suppressive roles of myeloid cells in the TME, and describe potential therapeutic strategies in preclinical and clinical development that aim to target them to further expand the range of current treatment options.
Collapse
Affiliation(s)
- Emile J. Clappaert
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aleksandar Murgaski
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mate Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
102
|
Niu Z, Tang W, Liu T, Xu P, Zhu D, Ji M, Huang W, Ren L, Wei Y, Xu J. Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1007-1017. [PMID: 30239551 DOI: 10.1093/abbs/gmy104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Indexed: 12/20/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) has become a potential diagnostic and prognostic biomarker for colorectal cancer (CRC). In non-cancerous diseases, it has been confirmed that cfDNA can be recognized by Toll-like receptor 9 (TLR9), leading to a significant biological change. Nevertheless, the biological significance of cfDNA and its relationship with TLR9 in tumor malignancy is still unclear. Therefore, the purpose of this study is to explore the biological role of cfDNA in colorectal cancer (CRC). The expression of TLR9 was measured in different CRC cell lines and cancerous samples by RT-PCR or immunohistochemistry, which showed that high expression of TLR9 was significantly correlated with the tumor metastasis, advanced TNM stage and poor prognosis of patients. Then, cfDNA was obtained from fluorouracil (5FU)-induced apoptotic cancer cells in vitro and transfection techniques were used to transfect siRNA and cDNA plasmid for TLR9. Cancer cells were stimulated using isolated cfDNA fragments, and results showed that cfDNA could promote colorectal cancer cell proliferation via TLR9. Meanwhile, we demonstrated that the cfDNA binding to TLR9 could facilitate cell migration and invasion. Finally, we demonstrated that cfDNA initiated downstream TLR9-MyD88 signaling and induced robust release of chemokine interleukin 8 (IL-8), which helped to elucidate the mechanisms underlying these phenomena. Our data suggest that cancer cell-derived cfDNA contributes to cancer progression through activation of TLR9-MyD88 signaling and IL-8 secretion in CRC. These findings provide a novel perspective for understanding of tumor progression and provoke a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Zhengchuan Niu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Wentao Tang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Tianyu Liu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Pingping Xu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Meiling Ji
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Wenbai Huang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Li Ren
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
103
|
Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018; 48:364-379.e8. [PMID: 29466759 DOI: 10.1016/j.immuni.2018.02.002] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 01/04/2023]
Abstract
Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.
Collapse
|
104
|
Cullis J, Das S, Bar-Sagi D. Kras and Tumor Immunity: Friend or Foe? Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031849. [PMID: 29229670 DOI: 10.1101/cshperspect.a031849] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent breakthroughs in immunotherapy as curative treatments in certain tumor types, there has been renewed interest in the relationship between immunity and tumor growth. Although we are gaining a greater understanding of the complex interplay of immune modulating components in the tumor microenvironment, the specific role that tumor cells play in shaping the immune milieu is still not well characterized. In this review, we focus on how mutant Kras tumor cells contribute to tumor immunity, with a specific focus on processes induced directly or indirectly by the oncogene.
Collapse
Affiliation(s)
- Jane Cullis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Shipra Das
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
105
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2018; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
106
|
Abstract
Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon 97201, USA;
| |
Collapse
|
107
|
Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. Interaction between human osteosarcoma and mesenchymal stem cells via an interleukin-8 signaling loop in the tumor microenvironment. Cell Commun Signal 2018; 16:13. [PMID: 29625612 PMCID: PMC5889532 DOI: 10.1186/s12964-018-0225-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/02/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the representative primary malignant bone tumor with the highest incidence. It is known that malignant phenotypes of OS, such as proliferation, invasion, and metastasis, are significantly influenced not only by characteristics of the tumor itself, but also by the surrounding microenvironment. In other words, OS is considered to utilize cells in the vicinity of the tumor by changing the characteristics of these cells. Direct intercellular contact is believed to be important for this phenomenon. In the present study, we hypothesized that an interaction mediated by a humoral factor, requiring no cellular contact, might play a significant role in the progression of OS. METHODS We developed a new co-culture model, using OS cells and mesenchymal stem cells (MSCs) without cellular contact, and found that both cell types expressed IL-8 at a high level, and FAK in OS cells was phosphorylated leading to an increase in the metastatic potential of the tumor in the co-culture condition. RESULTS It was revealed that OS cells formed a loop of signal cross-talk in which they released IL-8 as a paracrine factor, stimulating MSCs to express IL-8, and received IL-8 released by MSCs to accelerate IL-8 expression in OS cells. Administration of anti-IL-8 antibody resulted in the inhibition of FAK expression, its downstream signaling, and the invasive potential of the OS cells, resulting in decrease in metastatic lesions. CONCLUSION The present study might lead not only to the clarification of a new molecular mechanism of invasion and metastasis of OS, but also to the development of a new therapeutic strategy of blocking IL-8 in OS.
Collapse
Affiliation(s)
- Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan.
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| |
Collapse
|
108
|
Zhang D, Li L, Jiang H, Li Q, Wang-Gillam A, Yu J, Head R, Liu J, Ruzinova MB, Lim KH. Tumor-Stroma IL1β-IRAK4 Feedforward Circuitry Drives Tumor Fibrosis, Chemoresistance, and Poor Prognosis in Pancreatic Cancer. Cancer Res 2018; 78:1700-1712. [PMID: 29363544 PMCID: PMC5890818 DOI: 10.1158/0008-5472.can-17-1366] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/13/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Abstract
Targeting the desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) holds promise to augment the effect of chemotherapy, but success in the clinic has thus far been limited. Preclinical mouse models suggest that near-depletion of cancer-associated fibroblasts (CAF) carries a risk of accelerating PDAC progression, underscoring the need to concurrently target key signaling mechanisms that drive the malignant attributes of both CAF and PDAC cells. We previously reported that inhibition of IL1 receptor-associated kinase 4 (IRAK4) suppresses NFκB activity and promotes response to chemotherapy in PDAC cells. In this study, we report that CAF in PDAC tumors robustly express activated IRAK4 and NFκB. IRAK4 expression in CAF promoted NFκB activity, drove tumor fibrosis, and supported PDAC cell proliferation, survival, and chemoresistance. Cytokine array analysis of CAF and microarray analysis of PDAC cells identified IL1β as a key cytokine that activated IRAK4 in CAF. Targeting IRAK4 or IL1β rendered PDAC tumors less fibrotic and more sensitive to gemcitabine. In clinical specimens of human PDAC, high stromal IL1β expression associated strongly with poor overall survival. Together, our studies establish a tumor-stroma IL1β-IRAK4 feedforward signal that can be therapeutically disrupted to increase chemotherapeutic efficacy in PDAC.Significance: Targeting the IL1β-IRAK4 signaling pathway potentiates the effect of chemotherapy in pancreatic cancer. Cancer Res; 78(7); 1700-12. ©2018 AACR.
Collapse
Affiliation(s)
- Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Qiong Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jinsheng Yu
- Department of Genetics, Genome Technology Access Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Richard Head
- Department of Genetics, Genome Technology Access Center, Washington University School of Medicine, Saint Louis, Missouri
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
109
|
Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE, Werba G, Zhang K, Guo Y, Li Q, Akkad N, Lall S, Wadowski B, Gutierrez J, Kochen Rossi JA, Herzog JW, Diskin B, Torres-Hernandez A, Leinwand J, Wang W, Taunk PS, Savadkar S, Janal M, Saxena A, Li X, Cohen D, Sartor RB, Saxena D, Miller G. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov 2018; 8:403-416. [PMID: 29567829 PMCID: PMC6225783 DOI: 10.1158/2159-8290.cd-17-1134] [Citation(s) in RCA: 842] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 02/07/2018] [Indexed: 12/17/2022]
Abstract
We found that the cancerous pancreas harbors a markedly more abundant microbiome compared with normal pancreas in both mice and humans, and select bacteria are differentially increased in the tumorous pancreas compared with gut. Ablation of the microbiome protects against preinvasive and invasive pancreatic ductal adenocarcinoma (PDA), whereas transfer of bacteria from PDA-bearing hosts, but not controls, reverses tumor protection. Bacterial ablation was associated with immunogenic reprogramming of the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor cells and an increase in M1 macrophage differentiation, promoting TH1 differentiation of CD4+ T cells and CD8+ T-cell activation. Bacterial ablation also enabled efficacy for checkpoint-targeted immunotherapy by upregulating PD-1 expression. Mechanistically, the PDA microbiome generated a tolerogenic immune program by differentially activating select Toll-like receptors in monocytic cells. These data suggest that endogenous microbiota promote the crippling immune-suppression characteristic of PDA and that the microbiome has potential as a therapeutic target in the modulation of disease progression.Significance: We found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy. Targeting the microbiome protects against oncogenesis, reverses intratumoral immune tolerance, and enables efficacy for checkpoint-based immunotherapy. These data have implications for understanding immune suppression in pancreatic cancer and its reversal in the clinic. Cancer Discov; 8(4); 403-16. ©2018 AACR.See related commentary by Riquelme et al., p. 386This article is highlighted in the In This Issue feature, p. 371.
Collapse
Affiliation(s)
- Smruti Pushalkar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Mautin Hundeyin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Donnele Daley
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Constantinos P Zambirinis
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Emma Kurz
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Ankita Mishra
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Navyatha Mohan
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Berk Aykut
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Mykhaylo Usyk
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Luisana E Torres
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Gregor Werba
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Kevin Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Qianhao Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Neha Akkad
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Sarah Lall
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Benjamin Wadowski
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Johana Gutierrez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Juan Andres Kochen Rossi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Jeremy W Herzog
- National Gnotobiotic Rodent Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Alejandro Torres-Hernandez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Josh Leinwand
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Pardeep S Taunk
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Shivraj Savadkar
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Malvin Janal
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Anjana Saxena
- Department of Epidemiology and Health Promotion, NYU College of Dentistry, New York, New York
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Deirdre Cohen
- Department of Biology, Brooklyn College and the Graduate Center (CUNY), Brooklyn, New York, New York
| | - R Balfour Sartor
- National Gnotobiotic Rodent Research Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Deepak Saxena
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York.
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York.
- Department of Medicine, Microbiology, and Immunology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
110
|
Cordelier P. Keep Quiet and Stay in Line! Smart Polymers to Keep an Eye on Pancreatic Tumors. Mol Ther 2018; 26:940-941. [PMID: 29567313 DOI: 10.1016/j.ymthe.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France.
| |
Collapse
|
111
|
Shao X, Wu B, Cheng L, Li F, Zhan Y, Liu C, Ji L, Min Z, Ke Y, Sun L, Chen H, Cheng Y. Distinct alterations of CD68 +CD163 + M2-like macrophages and myeloid-derived suppressor cells in newly diagnosed primary immune thrombocytopenia with or without CR after high-dose dexamethasone treatment. J Transl Med 2018; 16:48. [PMID: 29499727 PMCID: PMC5833082 DOI: 10.1186/s12967-018-1424-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background Although impaired myeloid-derived suppressor cells (MDSCs) recently have been studied in immune thrombocytopenia (ITP), another myeloid-derived cell population signified as M2 macrophages has not been investigated properly in ITP patients. In the present study, we intended to determine the features of circulating M2-like macrophages, to examine its relationship with MDSCs, and to explore their prognostic values in ITP. Methods Peripheral blood mononuclear cells from healthy controls and primary ITP patients were isolated to test the circulating M2-like macrophages and MDSCs. The circulating M2-like macrophage population defined as CD68+CD163+ and circulating MDSC population as CD11b+CD33+HLA-DR− were determined by flow cytometry. Plasma inflammatory cytokines were measured by multiplex ELISA. Results The percentages of MDSCs were found to be expanded in newly diagnosed patients of ITP, especially among those of the complete response (CR) group (p < 0.0001). Positive linear correlation was verified between percentages of M2-like macrophages and MDSCs. The same correlation was also determined in the CR group. After treatment, the percentages of M2-like macrophages and MDSCs were both increased significantly in CR group, while those patients among the PR + NR group manifested a significant numeric decrease of MDSCs but only a moderate decrease in M2-like macrophages. MIP-1α/CCL3 was negatively correlated with M2-like macrophages while MCP-1 possessed a positive correlation with M2-like macrophages, eotaxin-1/CCL11 was negatively correlated with MDSCs and interleukin-1β (IL-1β) was found to be negatively correlated with both M2-like macrophages and MDSCs. Conclusions The present findings indicated critical roles of both circulating M2-like macrophages and MDSCs in ITP. The positive correlation between them might be related to inflammatory factors-mediated bidirectional interactions or partially due to their similar background patterns during differentiation. MIP-1α/CCL3, MCP-1, eotaxin-1/CCL11 and IL-1β might play a critical role in the expansion of both M2 macrophages and MDSCs population in ITP patients, which deserves further investigation. Electronic supplementary material The online version of this article (10.1186/s12967-018-1424-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xia Shao
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Chanjuan Liu
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Zhihui Min
- Institute of Clinical Science, Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.,Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, 200032, China
| | - Yang Ke
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai, 200032, China. .,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China. .,Institute of Clinical Science, Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China. .,Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, 200032, China.
| |
Collapse
|
112
|
Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Mol Ther 2018; 26:1020-1031. [PMID: 29550075 DOI: 10.1016/j.ymthe.2018.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid binding polymers (NABPs) have been extensively used as vehicles for DNA and RNA delivery. More recently, we discovered that a subset of these NABPs can also serve as anti-inflammatory agents by capturing pro-inflammatory extracellular nucleic acids and associated protein complexes that promote activation of toll-like receptors (TLRs) in diseases such as lupus erythematosus. Nucleic-acid-mediated TLR signaling also facilitates tumor progression and metastasis in several cancers, including pancreatic cancer (PC). In addition, extracellular DNA and RNA circulate on or within lipid microvesicles, such as microparticles or exosomes, which also promote metastasis by inducing pro-tumorigenic signaling in cancer cells and pre-conditioning secondary sites for metastatic establishment. Here, we explore the use of an NABP, the 3rd generation polyamidoamine dendrimer (PAMAM-G3), as an anti-metastatic agent. We show that PAMAM-G3 not only inhibits nucleic-acid-mediated activation of TLRs and invasion of PC tumor cells in vitro, but can also directly bind extracellular microvesicles to neutralize their pro-invasive effects as well. Moreover, we demonstrate that PAMAM-G3 dramatically reduces liver metastases in a syngeneic murine model of PC. Our findings identify a promising therapeutic application of NABPs for combating metastatic disease in PC and potentially other malignancies.
Collapse
|
113
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
114
|
Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, Ravel J, Hayes RB, Ahn J. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018; 67:120-127. [PMID: 27742762 PMCID: PMC5607064 DOI: 10.1136/gutjnl-2016-312580] [Citation(s) in RCA: 507] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A history of periodontal disease and the presence of circulating antibodies to selected oral pathogens have been associated with increased risk of pancreatic cancer; however, direct relationships of oral microbes with pancreatic cancer have not been evaluated in prospective studies. We examine the relationship of oral microbiota with subsequent risk of pancreatic cancer in a large nested case-control study. DESIGN We selected 361 incident adenocarcinoma of pancreas and 371 matched controls from two prospective cohort studies, the American Cancer Society Cancer Prevention Study II and the National Cancer Institute Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. From pre-diagnostic oral wash samples, we characterised the composition of the oral microbiota using bacterial 16S ribosomal RNA (16S rRNA) gene sequencing. The associations between oral microbiota and risk of pancreatic cancer, controlling for the random effect of cohorts and other covariates, were examined using traditional and L1-penalised least absolute shrinkage and selection operator logistic regression. RESULTS Carriage of oral pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were associated with higher risk of pancreatic cancer (adjusted OR for presence vs absence=1.60 and 95% CI 1.15 to 2.22; OR=2.20 and 95% CI 1.16 to 4.18, respectively). Phylum Fusobacteria and its genus Leptotrichia were associated with decreased pancreatic cancer risk (OR per per cent increase of relative abundance=0.94 and 95% CI 0.89 to 0.99; OR=0.87 and 95% CI 0.79 to 0.95, respectively). Risks related to these phylotypes remained after exclusion of cases that developed within 2 years of sample collection, reducing the likelihood of reverse causation in this prospective study. CONCLUSIONS This study provides supportive evidence that oral microbiota may play a role in the aetiology of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaozhou Fan
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Alexander V. Alekseyenko
- Biomedical Informatics Center, Departments of Public Health Sciences and Oral Health Sciences, Program for Human Microbiome Research, Medical University of South Carolina, Charleston, SC, USA
| | - Jing Wu
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Brandilyn A. Peters
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Eric J. Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Susan M. Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rachael Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George Miller
- Department of Surgery, New York University School of Medicine, New York, NY, USA,Department of Cell Biology, New York University School of Medicine, New York, NY, USA,NYU Perlmutter Cancer Center, New York, NY, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard B. Hayes
- Department of Population Health, New York University School of Medicine, New York, NY, USA,NYU Perlmutter Cancer Center, New York, NY, USA
| | - Jiyoung Ahn
- Department of Population Health, New York University School of Medicine, New York, NY, USA,NYU Perlmutter Cancer Center, New York, NY, USA
| |
Collapse
|
115
|
Hangai S, Kimura Y, Taniguchi T, Yanai H. Innate Immune Receptors in the Regulation of Tumor Immunity. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
116
|
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
117
|
Genetic status of KRAS modulates the role of Neuropilin-1 in tumorigenesis. Sci Rep 2017; 7:12877. [PMID: 29018205 PMCID: PMC5635066 DOI: 10.1038/s41598-017-12992-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropilin-1 (NRP1), a non-tyrosine kinase receptor, is overexpressed in many cancers including pancreatic and lung cancers. Inhibition of NRP1 expression, however, has differing pro-tumor vs. anti-tumor effects, depending on the cancer types. To understand the differential role of NRP1 in tumorigenesis process, we utilized cells from two different cancer types, pancreatic and lung, each containing either wild type KRAS (KRAS wt) or mutant KRAS (KRAS mt). Inhibition of NRP1 expression by shRNA in both pancreatic and lung cancer cells containing dominant active KRAS mt caused increased cell viability and tumor growth. On the contrary, inhibition of NRP1, in the tumor cells containing KRAS wt showed decreased tumor growth. Importantly, concurrent inhibition of KRAS mt and NRP1 in the tumor cells reverses the increased viability and leads to tumor inhibition. We found that NRP1 shRNA expressing KRAS mt tumor cells caused increased cell viability by decreasing SMAD2 phosphorylation. Our findings demonstrate that the effects of NRP1 knockdown in cancer cells are dependent on the genetic status of KRAS.
Collapse
|
118
|
Abstract
PURPOSE OF REVIEW Pancreatic stellate cells (PSCs) play an integral role in the pathogenesis of pancreatitis and pancreatic cancer. With the developing knowledge of this important cell type, we are at the cusp of developing effective therapies for the above diseases based upon targeting the PSC and modulating its function. RECENT FINDINGS The major themes of the recent PSC literature include: PSC interactions with the extracellular matrix and other stromal components; intracellular calcium physiology as drivers of mechanical interactions and necrosis; the relationship between proinflammatory, protumoural, angiogenic, and metabolic pathways in pancreatic necrosis, fibrosis, and carcinogenesis; and targeting of the stroma for antitumoural and antifibrotic effects. SUMMARY Traditionally, there have been few treatment options for pancreatitis and pancreatic cancer. The elucidation of the wide-ranging functions of PSCs provide an opportunity for treatments based on stromal reprogramming.
Collapse
|
119
|
Daley D, Mani VR, Mohan N, Akkad N, Pandian GSDB, Savadkar S, Lee KB, Torres-Hernandez A, Aykut B, Diskin B, Wang W, Farooq MS, Mahmud AI, Werba G, Morales EJ, Lall S, Wadowski BJ, Rubin AG, Berman ME, Narayanan R, Hundeyin M, Miller G. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med 2017; 214:1711-1724. [PMID: 28442553 PMCID: PMC5461004 DOI: 10.1084/jem.20161707] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance, which enables disease to progress unabated by adaptive immunity. However, the drivers of this tolerogenic program are incompletely defined. In this study, we found that NLRP3 promotes expansion of immune-suppressive macrophages in PDA. NLRP3 signaling in macrophages drives the differentiation of CD4+ T cells into tumor-promoting T helper type 2 cell (Th2 cell), Th17 cell, and regulatory T cell populations while suppressing Th1 cell polarization and cytotoxic CD8+ T cell activation. The suppressive effects of NLRP3 signaling were IL-10 dependent. Pharmacological inhibition or deletion of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD complex), or caspase-1 protected against PDA and was associated with immunogenic reprogramming of innate and adaptive immunity within the TME. Similarly, transfer of PDA-entrained macrophages or T cells from NLRP3-/- hosts was protective. These data suggest that targeting NLRP3 holds the promise for the immunotherapy of PDA.
Collapse
Affiliation(s)
- Donnele Daley
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Vishnu R Mani
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Navyatha Mohan
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Neha Akkad
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | | | - Shivraj Savadkar
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Ki Buom Lee
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Alejandro Torres-Hernandez
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Berk Aykut
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Brian Diskin
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Wei Wang
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Mohammad S Farooq
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Arif I Mahmud
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Gregor Werba
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Eduardo J Morales
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Sarah Lall
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Benjamin J Wadowski
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Amanda G Rubin
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Matthew E Berman
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Rajkishen Narayanan
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Mautin Hundeyin
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - George Miller
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
120
|
Sen S, Mandal P, Bhattacharya A, Kundu S, Roy Chowdhury R, Mondal NR, Chatterjee T, Chakravarty B, Roy S, Sengupta S. Impact of viral and host DNA methylations on HPV16-related cervical cancer pathogenesis. Tumour Biol 2017; 39:1010428317699799. [PMID: 28459195 DOI: 10.1177/1010428317699799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic alterations within human papillomavirus (HPV) and host cellular genomes are known to occur during cervical carcinogenesis. Our objective was to analyse the influence of (1) methylation within two immunostimulatory CpG motifs within HPV16 E6 and E7 genes around the viral late promoter and their correlation, if any, with expression deregulation of host receptor (TLR9) and DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and (2) global DNA methylation levels within CpGs of the repetitive Alu sequences, on cervical cancer (CaCx) pathogenesis. Significantly higher proportions of CaCx samples portrayed methylation in immunostimulatory CpG motifs, compared to HPV16-positive non-malignant samples, with cases harbouring episomal HPV16 showing decreased methylation compared to those with viral integration. A significant linear trend of TLR9 upregulation was recorded in the order of HPV-negative controls < HPV16-positive non-malignant samples < HPV16-positive CaCx cases. TLR9 upregulation in cases with episomal HPV16 was again higher among those with non-methylated immunostimulatory CpG motifs. Comparison of cases with HPV-negative controls revealed that DNMT3A was significantly downregulated only among integrated cases, DNMT3B was significantly overexpressed among both categories of cases, although at variable levels, while DNMT1 failed to show any deregulated expression among the cases. Global host DNA hypomethylation, also showed a significant linear increasing trend through the progressive CaCx development stages mentioned above and was most prominently higher among cases with episomal HPV16 as opposed to viral integration. Thus, HPV16 and host methylations appear to influence CaCx pathogenesis, with differential molecular signatures among CaCx cases with episomal and integrated HPV16.
Collapse
Affiliation(s)
- Shrinka Sen
- 1 National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Paramita Mandal
- 1 National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- 2 Department of Zoology, University of Burdwan, Burdwan, West Bengal, India
| | | | - Sudip Kundu
- 1 National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Rahul Roy Chowdhury
- 3 Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Nidhu Ranjan Mondal
- 3 Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Tanmay Chatterjee
- 3 Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Biman Chakravarty
- 3 Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Sudipta Roy
- 4 Sri Aurobindo Seva Kendra, Kolkata, West Bengal, India
| | - Sharmila Sengupta
- 1 National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
121
|
Daley D, Mani VR, Mohan N, Akkad N, Ochi A, Heindel DW, Lee KB, Zambirinis CP, Pandian GSB, Savadkar S, Torres-Hernandez A, Nayak S, Wang D, Hundeyin M, Diskin B, Aykut B, Werba G, Barilla RM, Rodriguez R, Chang S, Gardner L, Mahal LK, Ueberheide B, Miller G. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med 2017; 23:556-567. [PMID: 28394331 PMCID: PMC5419876 DOI: 10.1038/nm.4314] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.
Collapse
Affiliation(s)
- Donnele Daley
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Vishnu R. Mani
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Navyatha Mohan
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Neha Akkad
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Atsuo Ochi
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Daniel W. Heindel
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003
| | - Ki Buom Lee
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Constantinos P. Zambirinis
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | | | - Shivraj Savadkar
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Alejandro Torres-Hernandez
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Shruti Nayak
- S.A. Localio Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Ding Wang
- S.A. Localio Laboratory, Department of Medicine, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Mautin Hundeyin
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Brian Diskin
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Berk Aykut
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Gregor Werba
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Rocky M. Barilla
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Robert Rodriguez
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Steven Chang
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Lawrence Gardner
- S.A. Localio Laboratory, Department of Medicine, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - Lara K. Mahal
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003
| | - Beatrix Ueberheide
- S.A. Localio Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| | - George Miller
- S.A. Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
- S.A. Localio Laboratory, Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
| |
Collapse
|
122
|
Zambirinis CP, Miller G. Cancer Manipulation of Host Physiology: Lessons from Pancreatic Cancer. Trends Mol Med 2017; 23:465-481. [PMID: 28400243 DOI: 10.1016/j.molmed.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022]
Abstract
Homeostasis is a fundamental property of living organisms enabling the human body to withstand internal and external insults. In several chronic diseases, and especially in cancer, many homeostatic mechanisms are deranged. Pancreatic cancer in particular is notorious for its ability to invoke an intense fibroinflammatory stromal reaction facilitating its progression and resistance to treatment. In the past decade, several seminal discoveries have elucidated previously unrecognized modes of commandeering the host's defense systems. Here we review novel discoveries in pancreatic cancer immunobiology and attempt to integrate the notion of deranged homeostasis in the pathogenesis of this disease. We also highlight areas of controversy and obstacles that need to be overcome, hoping to further our mechanistic insight into this malignancy.
Collapse
Affiliation(s)
- Constantinos P Zambirinis
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Surgery, Harlem Hospital, Columbia University Medical Center, New York, NY 10037, USA
| | - George Miller
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
123
|
Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Res 2017; 27:916-932. [PMID: 28374746 PMCID: PMC5518983 DOI: 10.1038/cr.2017.51] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) driven by oncogenic K-Ras remains among the most lethal human cancers despite recent advances in modern medicine. The pathogenesis of PDAC is partly attributable to intrinsic chromosome instability and extrinsic inflammation activation. However, the molecular link between these two events in pancreatic tumorigenesis has not yet been fully established. Here, we show that intracellular high mobility group box 1 (HMGB1) remarkably suppresses oncogenic K-Ras-driven pancreatic tumorigenesis by inhibiting chromosome instability-mediated pro-inflammatory nucleosome release. Conditional genetic ablation of either single or both alleles of HMGB1 in the pancreas renders mice extremely sensitive to oncogenic K-Ras-driven initiation of precursor lesions at birth, including pancreatic intraepithelial neoplasms, intraductal papillary mucinous neoplasms, and mucinous cystic neoplasms. Loss of HMGB1 in the pancreas is associated with oxidative DNA damage and chromosomal instability characterized by chromosome rearrangements and telomere abnormalities. These lead to inflammatory nucleosome release and propagate K-Ras-driven pancreatic tumorigenesis. Extracellular nucleosomes promote interleukin 6 (IL-6) secretion by infiltrating macrophages/neutrophils and enhance oncogenic K-Ras signaling activation in pancreatic lesions. Neutralizing antibodies to IL-6 or histone H3 or knockout of the receptor for advanced glycation end products all limit K-Ras signaling activation, prevent cancer development and metastasis/invasion, and prolong animal survival in Pdx1-Cre;K-RasG12D/+;Hmgb1−/− mice. Pharmacological inhibition of HMGB1 loss by glycyrrhizin limits oncogenic K-Ras-driven tumorigenesis in mice under inflammatory conditions. Diminished nuclear and total cellular expression of HMGB1 in PDAC patients correlates with poor overall survival, supporting intracellular HMGB1 as a novel tumor suppressor with prognostic and therapeutic relevance in PDAC.
Collapse
|
124
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari KM, Lehenkari P, Saarnio J, Karttunen TJ. High toll-like receptor (TLR) 9 expression is associated with better prognosis in surgically treated pancreatic cancer patients. Virchows Arch 2017; 470:401-410. [PMID: 28191612 DOI: 10.1007/s00428-017-2087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer remains one of the deadliest malignancies in the world. Inflammatory response and tumor environment are thought to play a major role in its pathogenesis. Knowledge on TLR expression and impact on patient survival in pancreatic cancer is limited. The study's aim was to clarify the role of different TLRs in pancreatic cancer. TLR2, TLR4, and TLR9 expression was investigated in 65 surgically resected pancreatic ductal adenocarcinoma specimens by immunohistochemistry. The association between TLR expression, clinical parameters, and local inflammatory response to the tumor was assessed using chi-square test. Relation between patient survival and TLR expression was calculated with multivariable Cox regression, adjusted for age, sex, and tumor stage. We found TLR2, TLR4, and TLR9 to be expressed in pancreatic cancer. There was no association between TLR expression and tumor stage, tumor size, lymph node metastasis, or tumor necrosis. Contrary to our initial hypothesis, high cytoplasmic TLR9 expression was associated with longer patient survival, and multivariate analysis identified low TLR9 expression as an independent risk factor for cancer-specific death (HR 3.090, 95% CI 1.673-5.706). The results suggest that high TLR9 expression in pancreatic ductal adenocarcinoma indicates improved prognosis. The prognostic effect of TLR9 might be associated with bacterial exposure, but this needs further evidence.
Collapse
Affiliation(s)
- Joni Leppänen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland.
| | - Olli Helminen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Heikki Huhta
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Joonas H Kauppila
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Joel Isohookana
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Petri Lehenkari
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
- Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - Juha Saarnio
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| |
Collapse
|
125
|
Qian D, Lu Z, Xu Q, Wu P, Tian L, Zhao L, Cai B, Yin J, Wu Y, Staveley-O'Carroll KF, Jiang K, Miao Y, Li G. Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis. Cancer Lett 2017; 397:43-51. [PMID: 28336327 DOI: 10.1016/j.canlet.2017.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
Galectin-1, mainly expressed in activated pancreatic stellate cells (PSCs), is involved in many important cancer-related processes. However, very little is known how Galectin-1 modulates PSCs and subsequently impacts pancreatic cancer cells (PCCs). Our chemokine antibody array and in vitro studies demonstrates that Galectin-1 induces secretion of stromal cell-derived factor-1(SDF-1) in PSCs by activating NF-κB signaling. The secreted SDF-1 increases migration and invasion of PCCs. Knockdown of Galectin-1 and inhibitor-mediated blockade of SDF-1 as well as its ligand CXCR4 and NF-κB verifies the findings. In vivo experiment by knockdown of Galectin-1 in PSCs further demonstrates the conclusion. Collectively, the present studies demonstrate that Galectin-1-driven production of SDF-1 in PSCs through activation of NF-κB promotes metastasis in PDAC, offering a potential target in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dong Qian
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China; Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing 210029, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Qingcheng Xu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China; Department of Gastroenterology, Subei People's Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou 225000, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Lei Tian
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Liangtao Zhao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Baobao Cai
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Jie Yin
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, China.
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
126
|
Seifert L, Miller G. Molecular Pathways: The Necrosome-A Target for Cancer Therapy. Clin Cancer Res 2016; 23:1132-1136. [PMID: 27932417 DOI: 10.1158/1078-0432.ccr-16-0968] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/03/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
Abstract
Necroptosis is a caspase-8-independent cell death that requires coactivation of receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3) kinases. The necrosome is a complex consisting of RIP1, RIP3, and Fas-associated protein with death domain leading to activation of the pseudokinase mixed lineage kinase like followed by a rapid plasma membrane rupture and inflammatory response through the release of damage-associated molecular patterns and cytokines. The necrosome has been shown to be relevant in multiple tumor types, including pancreatic adenocarcinoma, melanoma, and several hematologic malignancies. Preclinical data suggest that targeting this complex can have differential impact on tumor progression and that the effect of necroptosis on oncogenesis is cell-type and context dependent. The emerging data suggest that targeting the necrosome may lead to immunogenic reprogramming in the tumor microenvironment in multiple tumors and that combining therapies targeting the necrosome with either conventional chemotherapy or immunotherapy may have beneficial effects. Thus, understanding the interplay of necroptotic cell death, transformed cells, and the immune system may enable the development of novel therapeutic approaches. Clin Cancer Res; 23(5); 1132-6. ©2016 AACR.
Collapse
Affiliation(s)
- Lena Seifert
- Department of General, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, University of Dresden, Dresden, Germany
| | - George Miller
- Department of Surgery, S. Arthur Localio Laboratory, New York University School of Medicine, New York, New York. .,Department of Cell Biology, S. Arthur Localio Laboratory, New York University School of Medicine, New York, New York
| |
Collapse
|
127
|
Johnson CH, Spilker ME, Goetz L, Peterson SN, Siuzdak G. Metabolite and Microbiome Interplay in Cancer Immunotherapy. Cancer Res 2016; 76:6146-6152. [PMID: 27729325 DOI: 10.1158/0008-5472.can-16-0309] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
The role of the host microbiome has come to the forefront as a potential modulator of cancer metabolism and could be a future target for precision medicine. A recent study revealed that in colon cancer, bacteria form polysaccharide matrices called biofilms at a high frequency in the proximal colon. Comprehensive untargeted and stable isotope-assisted metabolomic analysis revealed that the bacteria utilize polyamine metabolites produced from colon adenomas/carcinomas to build these protective biofilms and may contribute to inflammation and proliferation observed in colon cancer. This study highlighted the importance of finding the biological origin of a metabolite and assessing its metabolism and mechanism of action. This led to a better understanding of host and microbial interactions, thereby aiding therapeutic design for cancer. In this review, we will discuss methodologies for identifying the biological origin and roles of metabolites in cancer progression and discuss the interactions of the microbiome and metabolites in immunity and cancer treatment, focusing on the flourishing field of cancer immunotherapy. Cancer Res; 76(21); 6146-52. ©2016 AACR.
Collapse
Affiliation(s)
- Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut.
| | - Mary E Spilker
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, San Diego, California
| | - Laura Goetz
- Department of Surgery, Scripps Clinic Medical Group, La Jolla, California
| | - Scott N Peterson
- Sanford Burnham Medical Research Institute, La Jolla, California
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
128
|
Zhang D, Li L, Jiang H, Knolhoff BL, Lockhart AC, Wang-Gillam A, DeNardo DG, Ruzinova MB, Lim KH. Constitutive IRAK4 Activation Underlies Poor Prognosis and Chemoresistance in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2016; 23:1748-1759. [PMID: 27702822 DOI: 10.1158/1078-0432.ccr-16-1121] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022]
Abstract
Purpose: Aberrant activation of the NF-κB transcription factors underlies the aggressive behavior and poor outcome of pancreatic ductal adenocarcinoma (PDAC). However, clinically effective and safe NF-κB inhibitors are not yet available. Because NF-κB transcription factors can be activated by the interleukin-1 receptor-associated kinases (IRAKs) downstream of the Toll-like receptors (TLRs), but has not been explored in PDAC, we sought to investigate the role of IRAKs in the pathobiology of PDAC.Experimental Design: We examined the phosphorylation status of IRAK4 (p-IRAK4), the master regulator of TLR signaling, in PDAC cell lines, in surgical samples and commercial tissue microarray. We then performed functional studies using small-molecule IRAK1/4 inhibitor, RNA-interference, and CRISPR/Cas9n techniques to delineate the role of IRAK4 in NF-κB activity, chemoresistance, cytokine production, and growth of PDAC cells in vitro and in vivoResults: p-IRAK4 staining was detectable in the majority of PDAC lines and about 60% of human PDAC samples. The presence of p-IRAK4 strongly correlated with phospho-NF-κB/p65 staining in PDAC samples and is predictive of postoperative relapse and poor overall survival. Inhibition of IRAK4 potently reduced NF-κB activity, anchorage-independent growth, chemoresistance, and secretion of proinflammatory cytokines from PDAC cells. Both pharmacologic suppression and genetic ablation of IRAK4 greatly abolished PDAC growth in mice and augmented the therapeutic effect of gemcitabine by promoting apoptosis, reducing tumor cell proliferation and tumor fibrosis.Conclusions: Our data established IRAK4 as a novel therapeutic target for PDAC treatment. Development of potent IRAK4 inhibitors is needed for clinical testing. Clin Cancer Res; 23(7); 1748-59. ©2016 AACR.
Collapse
Affiliation(s)
- Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Brett L Knolhoff
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Albert C Lockhart
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - David G DeNardo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
129
|
Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N, Werba G, Barilla R, Torres-Hernandez A, Hundeyin M, Mani VRK, Avanzi A, Tippens D, Narayanan R, Jang JE, Newman E, Pillarisetty VG, Dustin ML, Bar-Sagi D, Hajdu C, Miller G. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation. Cell 2016; 166:1485-1499.e15. [PMID: 27569912 PMCID: PMC5017923 DOI: 10.1016/j.cell.2016.07.046] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/16/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.
Collapse
Affiliation(s)
- Donnele Daley
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Constantinos Pantelis Zambirinis
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Lena Seifert
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Neha Akkad
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Navyatha Mohan
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Gregor Werba
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Rocky Barilla
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Alejandro Torres-Hernandez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Mautin Hundeyin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Vishnu Raj Kumar Mani
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Antonina Avanzi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Daniel Tippens
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Rajkishen Narayanan
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Jung-Eun Jang
- Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Elliot Newman
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Venu Gopal Pillarisetty
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Michael Loran Dustin
- Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington Oxford OX3 7FY, UK
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Cristina Hajdu
- Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA.
| |
Collapse
|
130
|
Parroche P, Roblot G, Le Calvez-Kelm F, Tout I, Marotel M, Malfroy M, Durand G, McKay J, Ainouze M, Carreira C, Allatif O, Traverse-Glehen A, Mendiola M, Pozo-Kreilinger JJ, Caux C, Tommasino M, Goutagny N, Hasan UA. TLR9 re-expression in cancer cells extends the S-phase and stabilizes p16(INK4a) protein expression. Oncogenesis 2016; 5:e244. [PMID: 27454079 PMCID: PMC4972902 DOI: 10.1038/oncsis.2016.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral or cell damage-associated DNA, which initiates innate immune responses. We have previously shown that TLR9 expression is downregulated in several viral induced cancers including HPV16-induced cervical neoplasia. Findings supported that downregulation of TLR9 expression is involved in loss of anti-viral innate immunity allowing an efficient viral replication. Here we investigated the role of TLR9 in altering the growth of transformed epithelial cells. Re-introducing TLR9 under the control of an exogenous promoter in cervical or head and neck cancer patient-derived cells reduced cell proliferation, colony formation and prevented independent growth of cells under soft agar. Neither TLR3, 7, nor the TLR adapter protein MyD88 expression had any effect on cell proliferation, indicating that TLR9 has a unique role in controlling cell growth. The reduction of cell growth was not due to apoptosis or necrosis, yet we observed that cells expressing TLR9 were slower in entering the S-phase of the cell cycle. Microarray-based gene expression profiling analysis highlighted a strong interferon (IFN) signature in TLR9-expressing head and neck cancer cells, with an increase in IFN-type I and IL-29 expression (IFN-type III), yet neither IFN-type I nor IL-29 production was responsible for the block in cell growth. We observed that the protein half-life of p16(INK4a) was increased in TLR9-expressing cells. Taken together, these data show for the first time that TLR9 affects the cell cycle by regulating p16(INK4a) post-translational modifications and highlights the role of TLR9 in the events that lead to carcinogenesis.
Collapse
Affiliation(s)
- P Parroche
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - G Roblot
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - F Le Calvez-Kelm
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - I Tout
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - M Marotel
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - M Malfroy
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - G Durand
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - J McKay
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - M Ainouze
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | - C Carreira
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - O Allatif
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| | | | - M Mendiola
- Molecular Pathology and Therapeutic Targets Group, Research Insitute (IdiPAZ), La Paz University Hospital, Madrid, Spain and Molecular Pathology Diagnostics Unit, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | | | - C Caux
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - M Tommasino
- IARC-International Agency for Research on Cancer 150 Cours Albert Thomas, Lyon, France
| | - N Goutagny
- CRCL, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Lyon France
| | - U A Hasan
- CIRI, INSERM U1111, Ecole Normale Supérieure, Université de Lyon, Lyon, France
| |
Collapse
|
131
|
Delitto D, Wallet SM, Hughes SJ. Targeting tumor tolerance: A new hope for pancreatic cancer therapy? Pharmacol Ther 2016; 166:9-29. [PMID: 27343757 DOI: 10.1016/j.pharmthera.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023]
Abstract
With a 5-year survival rate of just 8%, pancreatic cancer (PC) is projected to be the second leading cause of cancer deaths by 2030. Most PC patients are not eligible for surgery with curative intent upon diagnosis, emphasizing a need for more effective therapies. However, PC is notoriously resistant to chemoradiation regimens. As an alternative, immune modulating strategies have recently achieved success in melanoma, prompting their application to other solid tumors. For such therapeutic approaches to succeed, a state of immunologic tolerance must be reversed in the tumor microenvironment and that has been especially challenging in PC. Nonetheless, knowledge of the PC immune microenvironment has advanced considerably over the past decade, yielding new insights and perspectives to guide multimodal therapies. In this review, we catalog the historical groundwork and discuss the evolution of the cancer immunology field to its present state with a specific focus on PC. Strategies currently employing immune modulation in PC are reviewed, specifically highlighting 66 clinical trials across the United States and Europe.
Collapse
Affiliation(s)
- Daniel Delitto
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
132
|
Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 2016; 222:89-100. [PMID: 27349597 DOI: 10.1016/j.imbio.2016.06.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 02/09/2023]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane receptors that recognize various pathogen- and damage-associated molecular pattern molecules playing an important role in inflammation by activating NF-кB. TLRs, mainly expressed by innate immune cells, are involved in inducing and regulating adaptive immune responses. However, the expression of TLRs has also been observed in many tumors, and their stimulation results in tumor progression or regression, depending on the TLR and tumor type. Here we review the role of TLRs in conferring anti- or pro-tumoral effects. The anti-tumoral effects can result from direct induction of tumor cell death and/or activation of efficient anti-tumoral immune responses, and the pro-tumoral effects may be due to inducing tumor cell survival and proliferation or by acting on suppressive or inflammatory immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Marion Dajon
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France
| | - Kristina Iribarren
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France.
| |
Collapse
|
133
|
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP. Pancreatic cancer. Nat Rev Dis Primers 2016; 2:16022. [PMID: 27158978 DOI: 10.1038/nrdp.2016.22] [Citation(s) in RCA: 1239] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality, with a dismal overall prognosis that has remained virtually unchanged for many decades. Currently, prevention or early diagnosis at a curable stage is exceedingly difficult; patients rarely exhibit symptoms and tumours do not display sensitive and specific markers to aid detection. Pancreatic cancers also have few prevalent genetic mutations; the most commonly mutated genes are KRAS, CDKN2A (encoding p16), TP53 and SMAD4 - none of which are currently druggable. Indeed, therapeutic options are limited and progress in drug development is impeded because most pancreatic cancers are complex at the genomic, epigenetic and metabolic levels, with multiple activated pathways and crosstalk evident. Furthermore, the multilayered interplay between neoplastic and stromal cells in the tumour microenvironment challenges medical treatment. Fewer than 20% of patients have surgically resectable disease; however, neoadjuvant therapies might shift tumours towards resectability. Although newer drug combinations and multimodal regimens in this setting, as well as the adjuvant setting, appreciably extend survival, ∼80% of patients will relapse after surgery and ultimately die of their disease. Thus, consideration of quality of life and overall survival is important. In this Primer, we summarize the current understanding of the salient pathophysiological, molecular, translational and clinical aspects of this disease. In addition, we present an outline of potential future directions for pancreatic cancer research and patient management.
Collapse
Affiliation(s)
- Jorg Kleeff
- NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
- Department of General, Visceral and Pediatric Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Murray Korc
- Departments of Medicine, and Biochemistry and Molecular Biology, Indiana University School of Medicine, the Melvin and Bren Simon Cancer Center, and the Pancreatic Cancer Signature Center, Indianapolis, Indiana, USA
| | - Minoti Apte
- SWS Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Colin D Johnson
- University Surgical Unit, University Hospital Southampton, Southampton, UK
| | - Andrew V Biankin
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Bearsden, Glasgow, Scotland, UK
| | - Rachel E Neale
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Margaret Tempero
- UCSF Pancreas Center, University of California San Francisco - Mission Bay Campus/Mission Hall, San Francisco, California, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, USA
| | - Ralph H Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John P Neoptolemos
- NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| |
Collapse
|
134
|
Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S, Alqunaibit D, Avanzi A, Barilla R, Daley D, Greco SH, Torres-Hernandez A, Pergamo M, Ochi A, Zambirinis CP, Pansari M, Rendon M, Tippens D, Hundeyin M, Mani VR, Hajdu C, Engle D, Miller G. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 2016; 532:245-9. [PMID: 27049944 PMCID: PMC4833566 DOI: 10.1038/nature17403] [Citation(s) in RCA: 454] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.
Collapse
Affiliation(s)
- Lena Seifert
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Gregor Werba
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Shaun Tiwari
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Nancy Ngoc Giao Ly
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Sara Alothman
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Dalia Alqunaibit
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Antonina Avanzi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Rocky Barilla
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Donnele Daley
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Stephanie H. Greco
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Alejandro Torres-Hernandez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Matthew Pergamo
- S. Arthur Localio Laboratory, Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Atsuo Ochi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Constantinos P. Zambirinis
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Mridul Pansari
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Mauricio Rendon
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Daniel Tippens
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Mautin Hundeyin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Vishnu R. Mani
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Cristina Hajdu
- S. Arthur Localio Laboratory, Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Dannielle Engle
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
- S. Arthur Localio Laboratory, Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
135
|
TCR-engineered T cells to treat tumors: Seeing but not touching? Semin Immunol 2016; 28:10-21. [PMID: 26997556 DOI: 10.1016/j.smim.2016.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Adoptive transfer of T cells gene-engineered with T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to accurately select TCRs that demonstrate antigen-selective responses that are restricted to tumor cells and, at the same time, include strategies that restore or enhance the entry, migration and local accumulation of T cells in tumor tissues. Here, we present the current standing of TCR-engineered T cell therapy, discuss and propose procedures to select TCRs as well as strategies to sensitize the tumor to T cell trafficking, and provide a rationale for combination therapies with TCR-engineered T cells.
Collapse
|
136
|
Mazur PK, Sage J. Pancreatic cancer takes its Toll. J Exp Med 2015; 212:1988. [PMID: 26573583 PMCID: PMC4647270 DOI: 10.1084/jem.21212insight1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
137
|
Zambirinis CP, Levie E, Nguy S, Avanzi A, Barilla R, Xu Y, Seifert L, Daley D, Greco SH, Deutsch M, Jonnadula S, Torres-Hernandez A, Tippens D, Pushalkar S, Eisenthal A, Saxena D, Ahn J, Hajdu C, Engle DD, Tuveson D, Miller G. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Biophys Biochem Cytol 2015. [DOI: 10.1083/jcb.2112oia232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|