101
|
Siebers JV, Keall PJ, Kim JO, Mohan R. A method for photon beam Monte Carlo multileaf collimator particle transport. Phys Med Biol 2002; 47:3225-49. [PMID: 12361220 DOI: 10.1088/0031-9155/47/17/312] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/- 1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/- 1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/- 1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.
Collapse
Affiliation(s)
- Jeffrey V Siebers
- Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, USA.
| | | | | | | |
Collapse
|
102
|
Rhein B, Häring P, Debus J, Schlegel W. [Dosimetric verification of IMRT treatment plans at the German Cancer Research Center (DKFZ)]. Z Med Phys 2002; 12:122-32. [PMID: 12145909 DOI: 10.1016/s0939-3889(15)70455-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present paper describes a method for the individual dosimetric verification of IMRT treatment plans. The German Cancer Research Center (Deutsches Krebsforschungszentrum; DKFZ) has implemented the intensity modulated radiotherapy (IMRT) since 1997. So far, 246 patients with head and neck cancer, cancer of the prostate, breast, and vertebral column, as well as mesothelioma of the pleura have been treated. Every IMRT plan is transferred into a special IMRT verification phantom, recalculated, and dosimetrically verified. Absolute dose distributions are measured with Kodak EDR films and compared with the results of the dose calculation. After correction of the optical density in relationship to the dose, EDR films are able to measure the absolute dose with an accuracy of +/- 2% compared to an ionization chamber. A visual C++ software tool has been developed to correlate and evaluate the film dose distributions with the corresponding slices of the 3D dose cube. Beside the overlay of absolute or relative isodoses and dose profiles, the median dose within correlated regions of interest (ROIs) is also included in the quantitative dose evaluation. The deviation between EDR film dosimetry and dose calculation is delta D = -0.3% +/- 2.3%. After introduction of the verification software, the total verification time (including handling, correlation, evaluation, and documentation of the data), could be reduced to less than 2 hours.
Collapse
|
103
|
Abstract
This article describes photon beam Monte Carlo simulation for multi leaf collimator (MLC)-based intensity-modulated radiotherapy (IMRT). We present the general aspects of the Monte Carlo method for the non-Monte Carloist with an emphasis given to patient-specific radiotherapy application. Patient-specific application of the Monte Carlo method can be used for IMRT dose verification, inverse planning, and forward planning in conventional conformal radiotherapy. Because it is difficult to measure IMRT dose distributions in heterogeneous phantoms that approximate a patient, Monte Carlo methods can be used to verify IMRT dose distributions that are calculated using conventional methods. Furthermore, using Monte Carlo as the dose calculation method for inverse planning results in better-optimized treatment plans. We describe both aspects and present our recent results to illustrate the discussion. Finally, we present current issues related to clinical implementation of Monte Carlo dose calculation. Monte Carlo is the most recent, and most accurate, method of radiotherapy dose calculation. It is currently in the process of being implemented by various treatment planning vendors and will be available for clinical use in the immediate future.
Collapse
Affiliation(s)
- T Pawlicki
- Department of Radiation Oncology, Stanford University School of Medicine, CA 94305-5304, USA.
| | | |
Collapse
|
104
|
Ma CM, Li JS, Pawlicki T, Jiang SB, Deng J, Lee MC, Koumrian T, Luxton M, Brain S. A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 2002; 47:1671-89. [PMID: 12069086 DOI: 10.1088/0031-9155/47/10/305] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ.
Collapse
Affiliation(s)
- C M Ma
- Radiation Oncology Department, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Jeraj R, Keall PJ, Siebers JV. The effect of dose calculation accuracy on inverse treatment planning. Phys Med Biol 2002; 47:391-407. [PMID: 11848119 DOI: 10.1088/0031-9155/47/3/303] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of dose calculation accuracy during inverse treatment planning for intensity modulated radiotherapy (IMRT) was studied in this work. Three dose calculation methods were compared: Monte Carlo, superposition and pencil beam. These algorithms were used to calculate beamlets. which were subsequently used by a simulated annealing algorithm to determine beamlet weights which comprised the optimal solution to the objective function. Three different cases (lung, prostate and head and neck) were investigated and several different objective functions were tested for their effect on inverse treatment planning. It is shown that the use of inaccurate dose calculation introduces two errors in a treatment plan, a systematic error and a convergence error. The systematic error is present because of the inaccuracy of the dose calculation algorithm. The convergence error appears because the optimal intensity distribution for inaccurate beamlets differs from the optimal solution for the accurate beamlets. While the systematic error for superposition was found to be approximately 1% of Dmax in the tumour and slightly larger outside, the error for the pencil beam method is typically approximately 5% of Dmax and is rather insensitive to the given objectives. On the other hand, the convergence error was found to be very sensitive to the objective function, is only slightly correlated to the systematic error and should be determined for each case individually. Our results suggest that because of the large systematic and convergence errors, inverse treatment planning systems based on pencil beam algorithms alone should be upgraded either to superposition or Monte Carlo based dose calculations.
Collapse
|
106
|
Li JS, Boyer AL, Ma CM. Verification of IMRT dose distributions using a water beam imaging system. Med Phys 2001; 28:2466-74. [PMID: 11797950 DOI: 10.1118/1.1413519] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A water beam imaging system (WBIS) has been developed and used to verify dose distributions for intensity modulated radiotherapy using dynamic multileaf collimator. This system consisted of a water container, a scintillator screen, a charge-coupled device camera, and a portable personal computer. The scintillation image was captured by the camera. The pixel value in this image indicated the dose value in the scintillation screen. Images of radiation fields of known spatial distributions were used to calibrate the device. The verification was performed by comparing the image acquired from the measurement with a dose distribution from the IMRT plan. Because of light scattering in the scintillator screen, the image was blurred. A correction for this was developed by recognizing that the blur function could be fitted to a multiple Gaussian. The blur function was computed using the measured image of a 10 cm x 10 cm x-ray beam and the result of the dose distribution calculated using the Monte Carlo method. Based on the blur function derived using this method, an iterative reconstruction algorithm was applied to recover the dose distribution for an IMRT plan from the measured WBIS image. The reconstructed dose distribution was compared with Monte Carlo simulation result. Reasonable agreement was obtained from the comparison. The proposed approach makes it possible to carry out a real-time comparison of the dose distribution in a transverse plane between the measurement and the reference when we do an IMRT dose verification.
Collapse
Affiliation(s)
- J S Li
- Department of Radiation Oncology, Stanford University School of Medicine, California 94305-5304, USA.
| | | | | |
Collapse
|
107
|
Kim JO, Siebers JV, Keall PJ, Arnfield MR, Mohan R. A Monte Carlo study of radiation transport through multileaf collimators. Med Phys 2001; 28:2497-506. [PMID: 11797953 DOI: 10.1118/1.1420734] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Due to the significant increase in the number of monitor units used to deliver a dynamic IMRT treatment, the total MLC leakage (transmission plus scatter) can exceed 10% of the maximum in-field dose. To avoid dosimetric errors, this leakage must be accurately accounted for in the dose calculation and conversion of optimized intensity patterns to MLC trajectories used for treatment delivery. In this study, we characterized the leaf end transmission and leakage radiation for Varian 80- and 120-leaf MLCs using Monte Carlo simulations. The complex geometry of the MLC, including the rounded leaf end, leaf edges (tongue-and-groove and offset notch), mounting slots, and holes was modeled using MCNP4b. Studies were undertaken to determine the leakage as a function of field size, components of the leakage, electron contamination, beam hardening and leaf tip effects. The leakage radiation with the MLC configured to fully block the field was determined. Dose for 6 and 18 MV beams was calculated at 5 cm depth in a water phantom located at 95 cm SSD, and normalized to the dose for an open field. Dose components were scored separately for radiation transmitted through and scattered from the MLC. For the 80-leaf MLC at 6 MV, the average leakage dose is 1.6%, 1.7%, 1.8%, and 1.9% for 5 x 5, 10 x 10, 15 x 15, and 20 x 20cm2 fields, respectively. For the 120-leaf MLC at 6 MV, the average leakage dose is 1.6%, 1.6%, 1.7%, and 1.9% for the same field sizes. Measured leakage values for the 120-leaf MLC agreed with calculated values to within 0.1% of the open field dose. The increased leakage with field size is attributed to MLC scattered radiation. The fractional electron contamination for a blocked MLC field is greater than that for an open field. The MLC attenuation significantly affects the photon spectrum, resulting in an increase in percent depth dose at 6 MV, however, little effect is observed at 18 MV. Both phantom scatter and the finite source size contribute to the leaf tip profile observed in phantom. The results of this paper can be applied to fluence-to-trajectory and trajectory-to-fluence calculations for IMRT.
Collapse
Affiliation(s)
- J O Kim
- Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond 23298-0058, USA.
| | | | | | | | | |
Collapse
|
108
|
Abstract
PURPOSE To develop and disseminate a report aimed primarily at practicing radiation oncology physicians and medical physicists that describes the current state-of-the-art of intensity-modulated radiotherapy (IMRT). Those areas needing further research and development are identified by category and recommendations are given, which should also be of interest to IMRT equipment manufacturers and research funding agencies. METHODS AND MATERIALS The National Cancer Institute formed a Collaborative Working Group of experts in IMRT to develop consensus guidelines and recommendations for implementation of IMRT and for further research through a critical analysis of the published data supplemented by clinical experience. A glossary of the words and phrases currently used in IMRT is given in the. Recommendations for new terminology are given where clarification is needed. RESULTS IMRT, an advanced form of external beam irradiation, is a type of three-dimensional conformal radiotherapy (3D-CRT). It represents one of the most important technical advances in RT since the advent of the medical linear accelerator. 3D-CRT/IMRT is not just an add-on to the current radiation oncology process; it represents a radical change in practice, particularly for the radiation oncologist. For example, 3D-CRT/IMRT requires the use of 3D treatment planning capabilities, such as defining target volumes and organs at risk in three dimensions by drawing contours on cross-sectional images (i.e., CT, MRI) on a slice-by-slice basis as opposed to drawing beam portals on a simulator radiograph. In addition, IMRT requires that the physician clearly and quantitatively define the treatment objectives. Currently, most IMRT approaches will increase the time and effort required by physicians, medical physicists, dosimetrists, and radiation therapists, because IMRT planning and delivery systems are not yet robust enough to provide totally automated solutions for all disease sites. Considerable research is needed to model the clinical outcomes to allow truly automated solutions. Current IMRT delivery systems are essentially first-generation systems, and no single method stands out as the ultimate technique. The instrumentation and methods used for IMRT quality assurance procedures and testing are not yet well established. In addition, many fundamental questions regarding IMRT are still unanswered. For example, the radiobiologic consequences of altered time-dose fractionation are not completely understood. Also, because there may be a much greater ability to trade off dose heterogeneity in the target vs. avoidance of normal critical structures with IMRT compared with traditional RT techniques, conventional radiation oncology planning principles are challenged. All in all, this new process of planning and treatment delivery has significant potential for improving the therapeutic ratio and reducing toxicity. Also, although inefficient currently, it is expected that IMRT, when fully developed, will improve the overall efficiency with which external beam RT can be planned and delivered, and thus will potentially lower costs. CONCLUSION Recommendations in the areas pertinent to IMRT, including dose-calculation algorithms, acceptance testing, commissioning and quality assurance, facility planning and radiation safety, and target volume and dose specification, are presented. Several of the areas in which future research and development are needed are also indicated. These broad recommendations are intended to be both technical and advisory in nature, but the ultimate responsibility for clinical decisions pertaining to the implementation and use of IMRT rests with the radiation oncologist and radiation oncology physicist. This is an evolving field, and modifications of these recommendations are expected as new technology and data become available.
Collapse
|
109
|
Li XA, Ma L, Naqvi S, Shih R, Yu C. Monte Carlo dose verification for intensity-modulated arc therapy. Phys Med Biol 2001; 46:2269-82. [PMID: 11580168 DOI: 10.1088/0031-9155/46/9/301] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intensity-modulated arc therapy (IMAT), a technique which combines beam rotation and dynamic multileaf collimation, has been implemented in our clinic. Dosimetric errors can be created by the inability of the planning system to accurately account for the effects of tissue inhomogeneities and physical characteristics of the multileaf collimator (MLC). The objective of this study is to explore the use of Monte Carlo (MC) simulation for IMAT dose verification. The BEAM/DOSXYZ Monte Carlo system was implemented to perform dose verification for the IMAT treatment. The implementation includes the simulation of the linac head/MLC (Elekta SL20), the conversion of patient CT images and beam arrangement for 3D dose calculation, the calculation of gantry rotation and leaf motion by a series of static beams and the development of software to automate the entire MC process. The MC calculations were verified by measurements for conventional beam settings. The agreement was within 2%. The IMAT dose distributions generated by a commercial forward planning system (RenderPlan. Elekta) were compared with those calculated by the MC package. For the cases studied, discrepancies of over 10% were found between the MC and the RenderPlan dose calculations. These discrepancies were due in part to the inaccurate dose calculation of the RenderPlan system. The computation time for the IMAT MC calculation was in the range of 20-80 min on 15 Pentium-Ill computers. The MC method was also useful in verifying the beam apertures used in the IMAT treatments.
Collapse
Affiliation(s)
- X A Li
- Department of Radiation Oncology, University of Maryland, Baltimore 21201-1595, USA.
| | | | | | | | | |
Collapse
|
110
|
Liu HH, Verhaegen F, Dong L. A method of simulating dynamic multileaf collimators using Monte Carlo techniques for intensity-modulated radiation therapy. Phys Med Biol 2001; 46:2283-98. [PMID: 11580169 DOI: 10.1088/0031-9155/46/9/302] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method of modelling the dynamic motion of multileaf collimators (MLCs) for intensity-modulated radiation therapy (IMRT) was developed and implemented into the Monte Carlo simulation. The simulation of the dynamic MLCs (DMLCs) was based on randomizing leaf positions during a simulation so that the number of particle histories being simulated for each possible leaf position was proportional to the monitor units delivered to that position. This approach was incorporated into an EGS4 Monte Carlo program, and was evaluated in simulating the DMLCs for Varian accelerators (Varian Medical Systems, Palo Alto. CA, USA). The MU index of each segment, which was specified in the DMLC-control data, was used to compute the cumulative probability distribution function (CPDF) for the leaf positions. This CPDF was then used to sample the leaf positions during a real-time simulation, which allowed for either the step-shoot or sweeping-leaf motion in the beam delivery. Dose intensity maps for IMRT fields were computed using the above Monte Carlo method, with its accuracy verified by film measurements. The DMLC simulation improved the operational efficiency by eliminating the need to simulate multiple segments individually. More importantly, the dynamic motion of the leaves could be simulated more faithfully by using the above leaf-position sampling technique in the Monte Carlo simulation.
Collapse
Affiliation(s)
- H H Liu
- Department of Radiation Physics. The University of Texas MD Anderson Cancer Center, Houston, USA.
| | | | | |
Collapse
|
111
|
Siebers JV, Tong S, Lauterbach M, Wu Q, Mohan R. Acceleration of dose calculations for intensity-modulated radiotherapy. Med Phys 2001; 28:903-10. [PMID: 11439487 DOI: 10.1118/1.1373404] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The requirements and trade-offs between accuracy and speed for radiotherapy dose computations have been discussed for decades. Inverse planning used for intensity-modulated radiotherapy (IMRT) optimization imposes additional demands on dose calculation since it is an iterative process in which dose calculations might be repeated many (10's to 1000's) of times. This work discusses the accuracy and speed issues as related to IMRT dose calculations. A hybrid dose calculation method which accelerates the optimization process is proposed and applied in which a fast-pencil beam (PB) model is used for initial optimization iterations, followed by superposition/convolution (SC) calculations. Optimization dose results are compared for pure PB optimization, pure SC optimization, and PB optimization followed by SC optimization. Plans were evaluated in terms of isodose coverage, dose-volume histograms, and total dose calculation time for five head and neck cases with diverse locations, sizes, and shapes for tumors and critical structures. Patient plans were designed for nine equispaced beams. For one patient, an additional five-beam configuration was tested. We found that gross features of intensity distributions resulting from all schemes were similar, however there were differences in the fine detail. Differences were small between composite dose distributions optimized with PB and SC methods, yet differences in individual beam dose distributions were quite significant. When the SC method was used to compute dose following optimization with PB method, dose differences were reduced significantly both for composite plans and for individual beams. Substantial overall timesavings were observed, allowing IMRT dose planning to become a more interactive activity.
Collapse
Affiliation(s)
- J V Siebers
- VA Commonwealth University, P.O. Box 980058, 401 College Street, Richmond, Virginia 23298-0058,
| | | | | | | | | |
Collapse
|
112
|
Li JS, Pawlicki T, Deng J, Jiang SB, Mok E, Ma CM. Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 2000; 45:2969-85. [PMID: 11049183 DOI: 10.1088/0031-9155/45/10/316] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new EGS4/PRESTA Monte Carlo user code, MCDOSE, has been developed as a routine dose calculation tool for radiotherapy treatment planning. It is suitable for both conventional and intensity modulated radiation therapy. Two important features of MCDOSE are the inclusion of beam modifiers in the patient simulation and the implementation of several variance reduction techniques. Before this tool can be used reliably for clinical dose calculation, it must be properly validated. The validation for beam modifiers has been performed by comparing the dose distributions calculated by MCDOSE and the well-benchmarked EGS4 user codes BEAM and DOSXYZ. Various beam modifiers were simulated. Good agreement in the dose distributions was observed. The differences in electron cutout factors between the results of MCDOSE and measurements were within 2%. The accuracy of MCDOSE with various variance reduction techniques was tested by comparing the dose distributions in different inhomogeneous phantoms with those calculated by DOSXYZ without variance reduction. The agreement was within 1.0%. Our results demonstrate that MCDOSE is accurate and efficient for routine dose calculation in radiotherapy treatment planning, with or without beam modifiers.
Collapse
Affiliation(s)
- J S Li
- Department of Radiation Oncology, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|