101
|
Son CN, Song Y, Kim SH, Lee S, Jun JB. Digital tomosynthesis as a new diagnostic tool for assessing of chronic gout arthritic feet and ankles: comparison of plain radiography and computed tomography. Clin Rheumatol 2017; 36:2095-2100. [PMID: 28597134 DOI: 10.1007/s10067-017-3710-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/19/2017] [Accepted: 05/26/2017] [Indexed: 12/27/2022]
Abstract
This aimed to compare the three radiographic methods of digital tomosynthesis (DT), plain radiography, and computed tomography (CT) for evaluating changes in feet of patients with chronic gouty arthritis. Two independent radiologists read the plain radiography, DT, and CT images of 30 male patients with gout. The degrees of erosion and joint space narrowing were scored using the Sharp-van der Heijde scoring method in 18 foot joints, which consisted of four proximal interphalangeal and one interphalangeal joint of the first toe, five metatarsophalangeal, five tarsometatarsal, and three naviculo-cuneiform joints of the foot. DT showed high reproducibility [0.929 for intraobserver intraclass correlation coefficient (ICC) and 0.838 for interobserver ICC]. DT showed similar results to those of CT and superior results to those of plain radiography for evaluating radiographic damage [mean total score, 8.5 ± 14.6 (±standard deviation) for plain radiography, 12.9 ± 12.4 for DT, and 12.6 ± 11.2 for CT]. This study showed that DT is a good method for evaluating radiographic changes in patients with gout. Further research is needed to apply DT to actual clinical settings.
Collapse
Affiliation(s)
- Chang-Nam Son
- Division of Rheumatology, Department of Internal Medicine, School of Medicine and Institute for Medical Science, Keimyung University, Daegu, Republic of Korea
| | - Yoonah Song
- Department of Radiology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine and Institute for Medical Science, Keimyung University, Daegu, Republic of Korea
| | - Seunghun Lee
- Department of Radiology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
102
|
Zhang Y, Ren L, Vergalasova I, Yin FF. Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization. Technol Cancer Res Treat 2017; 16:866-878. [PMID: 28449625 PMCID: PMC5547009 DOI: 10.1177/1533034617705716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background and Purpose: Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. Materials and Methods: The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams’ eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. Results: The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV–MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. Conclusion: The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
Collapse
Affiliation(s)
- You Zhang
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - Lei Ren
- Medical Physics Graduate Program, Duke University, Durham, NC, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Irina Vergalasova
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, Durham, NC, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
103
|
Koo BS, Song Y, Sung YK, Lee S, Jun JB. Prevalence and distribution of sesamoid bones in the hand determined using digital tomosynthesis. Clin Anat 2017; 30:608-613. [DOI: 10.1002/ca.22881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Bon San Koo
- Department of Internal Medicine; Inje University Seoul Paik Hospital, Inje University College of Medicine; Seoul Republic of Korea
| | - Yoonah Song
- Department of Radiology; Hanyang University Hospital for Rheumatic Diseases; Seoul Republic of Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology; Hanyang University Hospital for Rheumatic Diseases; Seoul Republic of Korea
| | - Seunghun Lee
- Department of Radiology; Hanyang University Hospital for Rheumatic Diseases; Seoul Republic of Korea
| | - Jae-Bum Jun
- Department of Rheumatology; Hanyang University Hospital for Rheumatic Diseases; Seoul Republic of Korea
| |
Collapse
|
104
|
Dunkerley DAP, Slagowski JM, Funk T, Speidel MA. Dynamic electronic collimation method for 3-D catheter tracking on a scanning-beam digital x-ray system. J Med Imaging (Bellingham) 2017; 4:023501. [DOI: 10.1117/1.jmi.4.2.023501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/30/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- David A. P. Dunkerley
- University of Wisconsin—Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Jordan M. Slagowski
- University of Wisconsin—Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Tobias Funk
- Triple Ring Technologies, Inc., Newark, California, United States
| | - Michael A. Speidel
- University of Wisconsin—Madison, Department of Medical Physics, Madison, Wisconsin, United StatescUniversity of Wisconsin—Madison, Department of Medicine, Madison, Wisconsin, United States
| |
Collapse
|
105
|
Alakhras MM, Mello-Thoms C, Bourne R, Rickard M, Diffey J, Brennan PC. RELATIONSHIP BETWEEN RADIATION DOSE AND IMAGE QUALITY IN DIGITAL BREAST TOMOSYNTHESIS. RADIATION PROTECTION DOSIMETRY 2017; 173:351-360. [PMID: 26895769 DOI: 10.1093/rpd/ncw005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
This phantom-based study aimed to examine radiation dose from digital breast tomosynthesis (DBT) and digital mammography (DM) and to assess the potential for dose reductions for each modality. Images were acquired at 10-60 mm thicknesses and four dose levels and mean glandular dose was determined using a solid-state dosemeter. Eleven readers assessed image quality and compared simulated lesions with those on a reference image, and the data produced was analysed with the Friedman and Wilcoxon signed-rank tests. For a phantom thickness of 50 mm (typical breast thickness), DBT dose was 13 % higher than DM, but this differential is highly dependent on thickness. Visibility of masses was equal to a reference image (produced at 100 % dose) when dose was reduced by 75 and 50 % for DBT and DM. For microcalcifications, visibility was comparable with the reference image for both modalities at 50 % dose. This study highlighted the potential for reducing dose with DBT.
Collapse
Affiliation(s)
- Maram M Alakhras
- MIOPeG, Faculty of Health Sciences, University of Sydney, Room M220, 75 East Street Lidcombe, Sydney, NSW 2141, Australia
| | - Claudia Mello-Thoms
- MIOPeG, Faculty of Health Sciences, University of Sydney, Room M220, 75 East Street Lidcombe, Sydney, NSW 2141, Australia
- Department of Biomedical Informatics and Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Roger Bourne
- MIOPeG, Faculty of Health Sciences, University of Sydney, Room M220, 75 East Street Lidcombe, Sydney, NSW 2141, Australia
| | - Mary Rickard
- MIOPeG, Faculty of Health Sciences, University of Sydney, Room M220, 75 East Street Lidcombe, Sydney, NSW 2141, Australia
- Sydney Breast Clinic, Sydney, NSW, Australia
| | | | - Patrick C Brennan
- MIOPeG, Faculty of Health Sciences, University of Sydney, Room M220, 75 East Street Lidcombe, Sydney, NSW 2141, Australia
| |
Collapse
|
106
|
Yan H, Dai JR. Integrated Digital Tomosynthesis for patient positioning of image-guided radiation therapy. Phys Med 2017; 36:24-31. [DOI: 10.1016/j.ejmp.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/21/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022] Open
|
107
|
Svensson F, Söderman C, Svalkvist A, Rossi Norrlund R, Vikgren J, Johnsson ÅA, Båth M. Evaluation of a corrected implementation of a method of simulating pulmonary nodules in chest tomosynthesis. Acta Radiol 2017; 58:408-413. [PMID: 27382042 DOI: 10.1177/0284185116654330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background A method of simulating pulmonary nodules in tomosynthesis images has previously been developed and evaluated. An unknown feature of a rounding function included in the computer code was later found to introduce an artifact, affecting simulated nodules in low-signal regions of the images. The computer code has now been corrected. Purpose To perform a thorough evaluation of the corrected nodule-simulation method, comparing the detection rate and visual appearance of artificial nodules with those of real nodules in an observer performance experiment. Material and Methods A cohort of 64 patients with a total of 129 pulmonary nodules was used in the study. Artificial nodules, each matching a corresponding real nodule by size, attenuation, and anatomical location, were generated and simulated into the tomosynthesis images of the different patients. The detection rate and visual appearance of artificial nodules generated using both the corrected and uncorrected computer code were compared to those of real nodules. The results were evaluated using modified receiver operating characteristic (ROC) analyses. Results The difference in detection rate between artificial and real nodules slightly increased using the corrected computer code (uncorrected code: area under the curve [AUC], 0.47; 95% CI, 0.43-0.51; corrected code: AUC, 0.42; 95% CI, 0.38-0.46). The visual appearance was however substantially improved using the corrected computer code (uncorrected code: AUC, 0.70; 95% CI, 0.63-0.76; corrected code: AUC, 0.49; 95% CI, 0.29-0.65). Conclusion The computer code including a correct rounding function generates simulated nodules that are more visually realistic than simulated nodules generated using the uncorrected computer code, but have a slightly different detection rate compared to real nodules.
Collapse
Affiliation(s)
- Frida Svensson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden
| | - Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Rauni Rossi Norrlund
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Sweden
| | - Jenny Vikgren
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Sweden
| | - Magnus Båth
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
| |
Collapse
|
108
|
Zhang Y, Yin FF, Zhang Y, Ren L. Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy. Phys Med Biol 2017; 62:3859-3882. [PMID: 28338470 DOI: 10.1088/1361-6560/aa6913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study is to develop an adaptive prior knowledge guided image estimation technique to reduce the scan angle needed in the limited-angle intrafraction verification (LIVE) system for 4D-CBCT reconstruction. The LIVE system has been previously developed to reconstruct 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the 4D-CBCT images for faster intrafraction verification. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on kV-MV projections acquired in extremely limited angle (orthogonal 3°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of the respiratory motion. The 4D digital extended-cardiac-torso (XCAT) phantom and a CIRS 008A dynamic thoracic phantom were used to evaluate the effectiveness of this technique. The reconstruction accuracy of the technique was evaluated by calculating both the center-of-mass-shift (COMS) and 3D volume-percentage-difference (VPD) of the tumor in reconstructed images and the true on-board images. The performance of the technique was also assessed with varied breathing signals against scanning angle, lesion size, lesion location, projection sampling interval, and scanning direction. In the XCAT study, using orthogonal-view of 3° kV and portal MV projections, this technique achieved an average tumor COMS/VPD of 0.4 ± 0.1 mm/5.5 ± 2.2%, 0.6 ± 0.3 mm/7.2 ± 2.8%, 0.5 ± 0.2 mm/7.1 ± 2.6%, 0.6 ± 0.2 mm/8.3 ± 2.4%, for baseline drift, amplitude variation, phase shift, and patient breathing signal variation, respectively. In the CIRS phantom study, this technique achieved an average tumor COMS/VPD of 0.7 ± 0.1 mm/7.5 ± 1.3% for a 3 cm lesion and 0.6 ± 0.2 mm/11.4 ± 1.5% for a 2 cm lesion in the baseline drift case. The average tumor COMS/VPD were 0.5 ± 0.2 mm/10.8 ± 1.4%, 0.4 ± 0.3 mm/7.3 ± 2.9%, 0.4 ± 0.2 mm/7.4 ± 2.5%, 0.4 ± 0.2 mm/7.3 ± 2.8% for the four real patient breathing signals, respectively. Results demonstrated that the adaptive prior knowledge guided image estimation technique with LIVE system is robust against scanning angle, lesion size, location and scanning direction. It can estimate on-board images accurately with as little as 6 projections in orthogonal-view 3° angle. In conclusion, adaptive prior knowledge guided image reconstruction technique accurately estimates 4D-CBCT images using extremely-limited angle and projections. This technique greatly improves the efficiency and accuracy of LIVE system for ultrafast 4D intrafraction verification of lung SBRT treatments.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, NC 27710, United States of America
| | | | | | | |
Collapse
|
109
|
Nelson G, Wu M, Hinkel C, Krishna G, Funk T, Rosenberg J, Fahrig R. Improved targeting accuracy of lung tumor biopsies with scanning-beam digital x-ray tomosynthesis image guidance. Med Phys 2017; 43:6282. [PMID: 27908166 DOI: 10.1118/1.4966025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Electromagnetic navigation bronchoscopy (ENB) provides improved targeting accuracy during transbronchial biopsies of suspicious nodules. The greatest weakness of ENB-based guidance is the registration divergence that exists between the planning CT, acquired days or weeks before the intervention, and the patient on the table on the day of the intervention. Augmenting ENB guidance with real-time tomosynthesis imaging during the intervention could mitigate the divergence and further improve the yield of ENB-guided transbronchial biopsies. The real-time tomosynthesis prototype, the scanning-beam digital x-ray (SBDX) system, does not currently display images reconstructed by the iterative algorithm that was developed for this lung imaging application. A protocol using fiducial markers was therefore implemented to permit evaluation of potential improvements that would be provided by the SBDX system in a clinical setting. METHODS Ten 7 mm lesions (5 per side) were injected into the periphery of each of four preserved pig lungs. The lungs were then placed in a vacuum chamber that permitted simulation of realistic motion and deformation due to breathing. Standard clinical CT scans of the pig lung phantoms were acquired and reconstructed with isotropic resolution of 0.625 mm. Standard ENB-guided biopsy procedures including target identification, path planning, CT-to-lung registration and navigation to the lesion were carried out, and a fiducial marker was placed at the location at which a biopsy would have been acquired. The channel-to-target distance provided by the ENB system prior to fiducial placement was noted. The lung phantoms were then imaged using the SBDX system, and using high-resolution conebeam CT. The distance between the fiducial marker tip and the lesion was measured in SBDX images and in the gold-standard conebeam-CT images. The channel-to-target divergence predicted by the ENB system and measured in the SBDX images was compared to the gold standard to determine if improved targeting accuracy could be achieved using SBDX image guidance. RESULTS As expected, the ENB system showed poorer targeting accuracy for small peripheral nodules. Only 20 nodules of the 40 injected could be adequately reached using ENB guidance alone. The SBDX system was capable of visualizing these small lesions, and measured fiducial-to-target distances on SBDX agreed well with measurements in gold-standard conebeam-CT images (p = 0.0001). The correlation between gold-standard conebeam-CT distances and predicted fiducial-to-target distances provided by the ENB system was poor (p = 0.72), primarily due to inaccurate ENB CT-to-body registration and movement due to breathing. CONCLUSIONS The SBDX system permits visualization of small lung nodules, as well as accurate measurement of channel-to-target distances. Combined use of ENB with SBDX real-time image guidance could improve accuracy and yield of biopsies, particularly of those lesions located in the periphery of the lung.
Collapse
Affiliation(s)
- Geoff Nelson
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Meng Wu
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Cameron Hinkel
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Ganesh Krishna
- Palo Alto Medical Foundation, Department of Medicine, University of California San Francisco, San Francisco, California 94143
| | - Tobias Funk
- Triple Ring Technologies, Inc., Newark, California 94560
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Rebecca Fahrig
- Department of Radiology, Stanford University, Stanford, California 94305
| |
Collapse
|
110
|
Nelson F, Bokhari O, Oravec D, Kim W, Flynn M, Lumley C, McPhilamy A, Yeni YN. The Use of Tomosynthesis in the Global Study of Knee Subchondral Insufficiency Fractures. Acad Radiol 2017; 24:175-183. [PMID: 28010915 DOI: 10.1016/j.acra.2016.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/11/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
RATIONALE AND OBJECTIVES Subchondral insufficiency fractures (SIF), previously termed spontaneous osteonecrosis of the knee, are marked by a sudden onset of severe pain. Other than the size of the lesion, prediction for progression to joint replacement is difficult. The objective was to determine if quantitative analysis of bone texture using digital tomosynthesis imaging would be useful in predicting more rapid progression to joint replacement. MATERIALS AND METHODS Tomosynthesis studies of 30 knees with documented SIF were quantified by fractal, mean intercept length (MIL), and line fraction deviation analyses. Fractal dimension, lacunarity, MIL, and line fraction deviation variables measured from these analyses were then correlated to short interval progression to joint replacement surgery. RESULTS Higher odds for joint replacement were related to higher values of the standard deviation of slope lacunarity and to morphometric measures (eg, MIL). CONCLUSIONS Using digital tomosynthesis images for bone texture assessment may help distinguish condylar bone response in SIF, potentially acting as a clinically relevant predictive tool. In the future, contrasting SIF to the more gradual long-term process of osteoarthritis, there may be a better understanding of the different mechanisms for the two conditions.
Collapse
|
111
|
Ichikawa S, Kamishima T, Sutherland K, Kasahara H, Shimizu Y, Fujimori M, Yasojima N, Ono Y, Kaneda T, Koike T. Semi-Automated Quantification of Finger Joint Space Narrowing Using Tomosynthesis in Patients with Rheumatoid Arthritis. J Digit Imaging 2017; 30:369-375. [PMID: 28105533 DOI: 10.1007/s10278-017-9949-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The purpose of the study is to validate the semi-automated method using tomosynthesis images for the assessment of finger joint space narrowing (JSN) in patients with rheumatoid arthritis (RA), by using the semi-quantitative scoring method as the reference standard. Twenty patients (14 females and 6 males) with RA were included in this retrospective study. All patients underwent radiography and tomosynthesis of the bilateral hand and wrist. Two rheumatologists and a radiologist independently scored JSN with two modalities according to the Sharp/van der Heijde score. Two observers independently measured joint space width on tomosynthesis images using an in-house semi-automated method. More joints with JSN were revealed with tomosynthesis score (243 joints) and the semi-automated method (215 joints) than with radiography (120 joints), and the associations between tomosynthesis scores and radiography scores were demonstrated (P < 0.001). There was significant, negative correlation between measured joint space width and tomosynthesis scores with r = -0.606 (P < 0.001) in metacarpophalangeal joints and r = -0.518 (P < 0.001) in proximal interphalangeal joints. Inter-observer and intra-observer agreement of the semi-automated method using tomosynthesis images was in almost perfect agreement with intra-class correlation coefficient (ICC) values of 0.964 and 0.963, respectively. The semi-automated method using tomosynthesis images provided sensitive, quantitative, and reproducible measurement of finger joint space in patients with RA.
Collapse
Affiliation(s)
- Shota Ichikawa
- Graduate School of Health Sciences, Hokkaido University, North-12 West-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Tamotsu Kamishima
- Faculty of Health Sciences, Hokkaido University, North-12 West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Kenneth Sutherland
- Graduate School of Medicine, Hokkaido University, North-15 West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hideki Kasahara
- Department of Rheumatology, Sapporo Medical Center NTT EC, South-1 West-15, Chuo-ku, Sapporo, 060-0061, Japan
| | - Yuka Shimizu
- Division of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Motoshi Fujimori
- Department of Health Sciences, Hokkaido University, North-12 West-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Nobutoshi Yasojima
- Department of Radiology, Sapporo Medical Center NTT EC, South-1 West-15, Chuo-ku, Sapporo, 060-0061, Japan
| | - Yohei Ono
- Department of Radiology, Sapporo Medical Center NTT EC, South-1 West-15, Chuo-ku, Sapporo, 060-0061, Japan
| | - Takahiko Kaneda
- Graduate School of Health Sciences, Hokkaido University, North-12 West-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Takao Koike
- Sapporo Medical Center NTT EC, South-1 West-15, Chuo-ku, Sapporo, 060-0061, Japan
| |
Collapse
|
112
|
Langer SG, Graner BD, Schueler BA, Fetterly KA, Kofler JM, Mandrekar JN, Bartholmai BJ. Sensitivity of Thoracic Digital Tomosynthesis (DTS) for the Identification of Lung Nodules. J Digit Imaging 2017; 29:141-7. [PMID: 26349914 DOI: 10.1007/s10278-015-9818-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Thoracic computed tomography (CT) is considered the gold standard for detection lung pathology, yet its efficacy as a screening tool in regards to cost and radiation dose continues to evolve. Chest radiography (CXR) remains a useful and ubiquitous tool for detection and characterization of pulmonary pathology, but reduced sensitivity and specificity compared to CT. This prospective, blinded study compares the sensitivity of digital tomosynthesis (DTS), to that of CT and CXR for the identification and characterization of lung nodules. Ninety-five outpatients received a posteroanterior (PA) and lateral CXR, DTS, and chest CT at one care episode. The CXR and DTS studies were independently interpreted by three thoracic radiologists. The CT studies were used as the gold standard and read by a fourth thoracic radiologist. Nodules were characterized by presence, location, size, and composition. The agreement between observers and the effective radiation dose for each modality was objectively calculated. One hundred forty-five nodules of greatest diameter larger than 4 mm and 215 nodules less than 4 mm were identified by CT. DTS identified significantly more >4 mm nodules than CXR (DTS 32 % vs. CXR 17 %). CXR and DTS showed no significant difference in the ability to identify the smaller nodules or central nodules within 3 cm of the hilum. DTS outperformed CXR in identifying pleural nodules and those nodules located greater than 3 cm from the hilum. Average radiation dose for CXR, DTS, and CT were 0.10, 0.21, and 6.8 mSv, respectively. Thoracic digital tomosynthesis requires significantly less radiation dose than CT and nearly doubles the sensitivity of that of CXR for the identification of lung nodules greater than 4 mm. However, sensitivity and specificity for detection and characterization of lung nodules remains substantially less than CT. The apparent benefits over CXR, low cost, rapid acquisition, and minimal radiation dose of thoracic DTS suggest that it may be a useful procedure. Work-up of a newly diagnosed nodule will likely require CT, given its superior cross-sectional characterization. Further investigation of DTS as a diagnostic, screening, and surveillance tool is warranted.
Collapse
Affiliation(s)
- Steve G Langer
- Radiology Department, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Brian D Graner
- Radiology Department, William Beaumont Hospital, Royal Oak, MI, USA
| | - Beth A Schueler
- Radiology Department, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kenneth A Fetterly
- Cardiology Department, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - James M Kofler
- Radiology Department, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jayawant N Mandrekar
- Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Brian J Bartholmai
- Radiology Department, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
113
|
Wu W, Yu H, Wang S, Liu F. BPF-type region-of-interest reconstruction for parallel translational computed tomography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:487-504. [PMID: 28157118 DOI: 10.3233/xst-16208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The objective of this study is to present and test a new ultra-low-cost linear scan based tomography architecture. Similar to linear tomosynthesis, the source and detector are translated in opposite directions and the data acquisition system targets on a region-of-interest (ROI) to acquire data for image reconstruction. This kind of tomographic architecture was named parallel translational computed tomography (PTCT). In previous studies, filtered backprojection (FBP)-type algorithms were developed to reconstruct images from PTCT. However, the reconstructed ROI images from truncated projections have severe truncation artefact. In order to overcome this limitation, we in this study proposed two backprojection filtering (BPF)-type algorithms named MP-BPF and MZ-BPF to reconstruct ROI images from truncated PTCT data. A weight function is constructed to deal with data redundancy for multi-linear translations modes. Extensive numerical simulations are performed to evaluate the proposed MP-BPF and MZ-BPF algorithms for PTCT in fan-beam geometry. Qualitative and quantitative results demonstrate that the proposed BPF-type algorithms cannot only more accurately reconstruct ROI images from truncated projections but also generate high-quality images for the entire image support in some circumstances.
Collapse
Affiliation(s)
- Weiwen Wu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Shaoyu Wang
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Fenglin Liu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
114
|
Ando M, Sunaguchi N, Shimao D, Pan A, Yuasa T, Mori K, Suzuki Y, Jin G, Kim JK, Lim JH, Seo SJ, Ichihara S, Ohura N, Gupta R. Dark-Field Imaging: Recent developments and potential clinical applications. Phys Med 2016; 32:1801-1812. [DOI: 10.1016/j.ejmp.2016.11.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022] Open
|
115
|
Michail C, Valais I, Martini N, Koukou V, Kalyvas N, Bakas A, Kandarakis I, Fountos G. Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
116
|
Hirano K, Takahashi Y, Hyodo K, Kimura M. X-ray analyzer-based phase-contrast computed laminography. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1484-1489. [PMID: 27787254 DOI: 10.1107/s1600577516014831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
X-ray analyzer-based phase-contrast imaging is combined with computed laminography for imaging regions of interest in laterally extended flat specimens of weak absorption contrast. The optics discussed here consist of an asymmetrically cut collimator crystal and a symmetrically cut analyzer crystal arranged in a nondispersive (+, -) diffraction geometry. A generalized algorithm is given for calculating multi-contrast (absorption, refraction and phase contrast) images of a sample. Basic formulae are also presented for laminographic reconstruction. The feasibility of the method discussed was verified at the vertical wiggler beamline BL-14B of the Photon Factory. At a wavelength of 0.0733 nm, phase-contrast sectional images of plastic beads were successfully obtained. Owing to strong circular artifacts caused by a sample holder, the field of view was limited to about 6 mm in diameter.
Collapse
Affiliation(s)
- Keiichi Hirano
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yumiko Takahashi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kazuyuki Hyodo
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masao Kimura
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
117
|
Chan HF, Tawhai MH, Levin DL, Bartholmai BB, Clark AR. Supine to upright lung mechanics: do changes in lung shape influence lung tissue deformation? ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:832-5. [PMID: 25570088 DOI: 10.1109/embc.2014.6943720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study we analyze lung shape change between the upright and supine postures and the effect of this shape change on the deformation of lung tissue under gravity. We use supine computed tomography images along with upright tomosynthesis images obtained on the same day to show that there is significant diaphragmatic movement between postures. Using a continuum model of lung tissue deformation under gravity we show that the shape changes due to this diaphragmatic movement could result in different lung tissue expansion patterns between supine and upright lungs. This is an essential consideration when interpreting imaging data acquired in different postures or translating data acquired in supine imaging to upright function.
Collapse
|
118
|
Dorfman KE, Zhang Y, Mukamel S. Coherent control of long-range photoinduced electron transfer by stimulated X-ray Raman processes. Proc Natl Acad Sci U S A 2016; 113:10001-6. [PMID: 27559082 PMCID: PMC5018741 DOI: 10.1073/pnas.1610729113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We show that X-ray pulses resonant with selected core transitions can manipulate electron transfer (ET) in molecules with ultrafast and atomic selectivity. We present possible protocols for coherently controlling ET dynamics in donor-bridge-acceptor (DBA) systems by stimulated X-ray resonant Raman processes involving various transitions between the D, B, and A sites. Simulations presented for a Ru(II)-Co(III) model complex demonstrate how the shapes, phases and amplitudes of the X-ray pulses can be optimized to create charge on demand at selected atoms, by opening up otherwise blocked ET pathways.
Collapse
Affiliation(s)
| | - Yu Zhang
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA 92697; Department of Physics and Astronomy, University of California, Irvine, CA 92697
| |
Collapse
|
119
|
Dobbins JT, McAdams HP, Sabol JM, Chakraborty DP, Kazerooni EA, Reddy GP, Vikgren J, Båth M. Multi-Institutional Evaluation of Digital Tomosynthesis, Dual-Energy Radiography, and Conventional Chest Radiography for the Detection and Management of Pulmonary Nodules. Radiology 2016; 282:236-250. [PMID: 27439324 DOI: 10.1148/radiol.2016150497] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose To conduct a multi-institutional, multireader study to compare the performance of digital tomosynthesis, dual-energy (DE) imaging, and conventional chest radiography for pulmonary nodule detection and management. Materials and Methods In this binational, institutional review board-approved, HIPAA-compliant prospective study, 158 subjects (43 subjects with normal findings) were enrolled at four institutions. Informed consent was obtained prior to enrollment. Subjects underwent chest computed tomography (CT) and imaging with conventional chest radiography (posteroanterior and lateral), DE imaging, and tomosynthesis with a flat-panel imaging device. Three experienced thoracic radiologists identified true locations of nodules (n = 516, 3-20-mm diameters) with CT and recommended case management by using Fleischner Society guidelines. Five other radiologists marked nodules and indicated case management by using images from conventional chest radiography, conventional chest radiography plus DE imaging, tomosynthesis, and tomosynthesis plus DE imaging. Sensitivity, specificity, and overall accuracy were measured by using the free-response receiver operating characteristic method and the receiver operating characteristic method for nodule detection and case management, respectively. Results were further analyzed according to nodule diameter categories (3-4 mm, >4 mm to 6 mm, >6 mm to 8 mm, and >8 mm to 20 mm). Results Maximum lesion localization fraction was higher for tomosynthesis than for conventional chest radiography in all nodule size categories (3.55-fold for all nodules, P < .001; 95% confidence interval [CI]: 2.96, 4.15). Case-level sensitivity was higher with tomosynthesis than with conventional chest radiography for all nodules (1.49-fold, P < .001; 95% CI: 1.25, 1.73). Case management decisions showed better overall accuracy with tomosynthesis than with conventional chest radiography, as given by the area under the receiver operating characteristic curve (1.23-fold, P < .001; 95% CI: 1.15, 1.32). There were no differences in any specificity measures. DE imaging did not significantly affect nodule detection when paired with either conventional chest radiography or tomosynthesis. Conclusion Tomosynthesis outperformed conventional chest radiography for lung nodule detection and determination of case management; DE imaging did not show significant differences over conventional chest radiography or tomosynthesis alone. These findings indicate performance likely achievable with a range of reader expertise. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- James T Dobbins
- From the Carl E. Ravin Advanced Imaging Laboratory; Depts of Radiology, Biomedical Engineering, and Physics; and Medical Physics Graduate Program, Duke Univ Medical Ctr, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (J.T.D.); Carl E. Ravin Advanced Imaging Laboratory and Dept of Radiology, Duke Univ Medical Ctr, Durham, NC (H.P.M.); GE Healthcare, Waukesha, Wis (J.M.S.); Dept of Radiology, Univ of Pittsburgh, Pittsburgh, Pa (D.P.C.); Dept of Radiology, Univ of Michigan, Ann Arbor, Mich (E.A.K.); Dept of Radiology, Univ of Washington, Seattle, Wash (G.P.R.); Dept of Radiology, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (J.V.); Dept of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (M.B.); and Dept of Medical Physics and Biomedical Engineering, Sahlgrenska Univ Hospital, Gothenburg, Sweden (M.B.)
| | - H Page McAdams
- From the Carl E. Ravin Advanced Imaging Laboratory; Depts of Radiology, Biomedical Engineering, and Physics; and Medical Physics Graduate Program, Duke Univ Medical Ctr, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (J.T.D.); Carl E. Ravin Advanced Imaging Laboratory and Dept of Radiology, Duke Univ Medical Ctr, Durham, NC (H.P.M.); GE Healthcare, Waukesha, Wis (J.M.S.); Dept of Radiology, Univ of Pittsburgh, Pittsburgh, Pa (D.P.C.); Dept of Radiology, Univ of Michigan, Ann Arbor, Mich (E.A.K.); Dept of Radiology, Univ of Washington, Seattle, Wash (G.P.R.); Dept of Radiology, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (J.V.); Dept of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (M.B.); and Dept of Medical Physics and Biomedical Engineering, Sahlgrenska Univ Hospital, Gothenburg, Sweden (M.B.)
| | - John M Sabol
- From the Carl E. Ravin Advanced Imaging Laboratory; Depts of Radiology, Biomedical Engineering, and Physics; and Medical Physics Graduate Program, Duke Univ Medical Ctr, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (J.T.D.); Carl E. Ravin Advanced Imaging Laboratory and Dept of Radiology, Duke Univ Medical Ctr, Durham, NC (H.P.M.); GE Healthcare, Waukesha, Wis (J.M.S.); Dept of Radiology, Univ of Pittsburgh, Pittsburgh, Pa (D.P.C.); Dept of Radiology, Univ of Michigan, Ann Arbor, Mich (E.A.K.); Dept of Radiology, Univ of Washington, Seattle, Wash (G.P.R.); Dept of Radiology, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (J.V.); Dept of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (M.B.); and Dept of Medical Physics and Biomedical Engineering, Sahlgrenska Univ Hospital, Gothenburg, Sweden (M.B.)
| | - Dev P Chakraborty
- From the Carl E. Ravin Advanced Imaging Laboratory; Depts of Radiology, Biomedical Engineering, and Physics; and Medical Physics Graduate Program, Duke Univ Medical Ctr, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (J.T.D.); Carl E. Ravin Advanced Imaging Laboratory and Dept of Radiology, Duke Univ Medical Ctr, Durham, NC (H.P.M.); GE Healthcare, Waukesha, Wis (J.M.S.); Dept of Radiology, Univ of Pittsburgh, Pittsburgh, Pa (D.P.C.); Dept of Radiology, Univ of Michigan, Ann Arbor, Mich (E.A.K.); Dept of Radiology, Univ of Washington, Seattle, Wash (G.P.R.); Dept of Radiology, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (J.V.); Dept of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (M.B.); and Dept of Medical Physics and Biomedical Engineering, Sahlgrenska Univ Hospital, Gothenburg, Sweden (M.B.)
| | - Ella A Kazerooni
- From the Carl E. Ravin Advanced Imaging Laboratory; Depts of Radiology, Biomedical Engineering, and Physics; and Medical Physics Graduate Program, Duke Univ Medical Ctr, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (J.T.D.); Carl E. Ravin Advanced Imaging Laboratory and Dept of Radiology, Duke Univ Medical Ctr, Durham, NC (H.P.M.); GE Healthcare, Waukesha, Wis (J.M.S.); Dept of Radiology, Univ of Pittsburgh, Pittsburgh, Pa (D.P.C.); Dept of Radiology, Univ of Michigan, Ann Arbor, Mich (E.A.K.); Dept of Radiology, Univ of Washington, Seattle, Wash (G.P.R.); Dept of Radiology, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (J.V.); Dept of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (M.B.); and Dept of Medical Physics and Biomedical Engineering, Sahlgrenska Univ Hospital, Gothenburg, Sweden (M.B.)
| | - Gautham P Reddy
- From the Carl E. Ravin Advanced Imaging Laboratory; Depts of Radiology, Biomedical Engineering, and Physics; and Medical Physics Graduate Program, Duke Univ Medical Ctr, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (J.T.D.); Carl E. Ravin Advanced Imaging Laboratory and Dept of Radiology, Duke Univ Medical Ctr, Durham, NC (H.P.M.); GE Healthcare, Waukesha, Wis (J.M.S.); Dept of Radiology, Univ of Pittsburgh, Pittsburgh, Pa (D.P.C.); Dept of Radiology, Univ of Michigan, Ann Arbor, Mich (E.A.K.); Dept of Radiology, Univ of Washington, Seattle, Wash (G.P.R.); Dept of Radiology, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (J.V.); Dept of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (M.B.); and Dept of Medical Physics and Biomedical Engineering, Sahlgrenska Univ Hospital, Gothenburg, Sweden (M.B.)
| | - Jenny Vikgren
- From the Carl E. Ravin Advanced Imaging Laboratory; Depts of Radiology, Biomedical Engineering, and Physics; and Medical Physics Graduate Program, Duke Univ Medical Ctr, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (J.T.D.); Carl E. Ravin Advanced Imaging Laboratory and Dept of Radiology, Duke Univ Medical Ctr, Durham, NC (H.P.M.); GE Healthcare, Waukesha, Wis (J.M.S.); Dept of Radiology, Univ of Pittsburgh, Pittsburgh, Pa (D.P.C.); Dept of Radiology, Univ of Michigan, Ann Arbor, Mich (E.A.K.); Dept of Radiology, Univ of Washington, Seattle, Wash (G.P.R.); Dept of Radiology, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (J.V.); Dept of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (M.B.); and Dept of Medical Physics and Biomedical Engineering, Sahlgrenska Univ Hospital, Gothenburg, Sweden (M.B.)
| | - Magnus Båth
- From the Carl E. Ravin Advanced Imaging Laboratory; Depts of Radiology, Biomedical Engineering, and Physics; and Medical Physics Graduate Program, Duke Univ Medical Ctr, 2424 Erwin Rd, Suite 302, Durham, NC 27705 (J.T.D.); Carl E. Ravin Advanced Imaging Laboratory and Dept of Radiology, Duke Univ Medical Ctr, Durham, NC (H.P.M.); GE Healthcare, Waukesha, Wis (J.M.S.); Dept of Radiology, Univ of Pittsburgh, Pittsburgh, Pa (D.P.C.); Dept of Radiology, Univ of Michigan, Ann Arbor, Mich (E.A.K.); Dept of Radiology, Univ of Washington, Seattle, Wash (G.P.R.); Dept of Radiology, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (J.V.); Dept of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Academy at Univ of Gothenburg, Gothenburg, Sweden (M.B.); and Dept of Medical Physics and Biomedical Engineering, Sahlgrenska Univ Hospital, Gothenburg, Sweden (M.B.)
| |
Collapse
|
120
|
Analysis of mammographic diagnostic errors in breast clinic. Radiol Med 2016; 121:828-833. [PMID: 27372707 DOI: 10.1007/s11547-016-0655-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Mammography is the gold standard for detection of early breast cancer and it is still the only diagnostic tool which shows reduction of the mortality from that. Despite that, there is a high chance of false negatives that can lead to diagnostic errors resulting in delays of treatment and worsening of prognosis. The aim of this study is to analyze the rate of false negative in mammography and assess the source of diagnostic errors. Two radiologists have retrospectively evaluated 500 mammograms performed between January 2008 and December 2011 in Breast Imaging Clinic. 250 patients (Group A) had been operated for breast cancer and 250 patients (Group B) were healthy woman submitted to mammography according to the guideline for early detection of breast cancer. In Group A, 138 patients (55.2 %) were true missed cancer, 61 had minimal sign (24.4 %) and 53 were false negative (FN) (20.4 %). The source of errors amongst the FN were in 42 % of cases due to perception, in 15 % to interpretation, in 10 % to subtle/unusual lesion characteristics, in 9 % error for satisfaction of search, in 7 % to inherent limitations of mammography, in 4 % to poor technique and 13 % for inadequate clinical management. The diagnostic errors in breast clinic services are not negligible. The largest number of FN results from perception errors, misinterpretation and inadequate clinical management. These can be related to factors such as inattention, fatigue or lack of experience. To reduce it, it is necessary to have a dedicated multidisciplinary staff and adequate equipment and workloads.
Collapse
|
121
|
Value of tomosynthesis for lesion evaluation of small joints in osteoarthritic hands using the OARSI score. Osteoarthritis Cartilage 2016; 24:1167-71. [PMID: 26828358 DOI: 10.1016/j.joca.2016.01.982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/14/2016] [Accepted: 01/24/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the diagnostic performance of tomosynthesis in depicting osteoarthritic lesions in comparison to conventional radiographs, with use of computed tomography (CT) as standard-of-reference. METHODS Imaging of 12 cadaveric hands was performed with tomosynthesis in dorso-palmar (dp) projection, conventional radiographs (dp) and multi-detector CT. Distal interphalangeal joint (DIP)II, DIPIII, proximal interphalangeal joint (PIP)II, PIPIII, first carpometacarpal (CMC) and scaphotrapezotrapezoidal joint (STT) were graded by two independent readers using the Osteoarthritis Research Society International (OARSI) score. The mean score for each feature was calculated for all modalities. Additional wrists were evaluated for presence of calcium pyrophosphate disease (CPPD). CT served as reference-standard. Inter-reader agreement (ICC) was calculated. RESULTS Comparing tomosynthesis and conventional radiographs to CT, the sensitivity for the presence of osteophytes was 95,7% vs 65,2%; for joint space narrowing 95,8% vs 52,1%; for subchondral sclerosis 61,5% vs 51,3%; for lateral deformity 83.3% vs 83,3%; and for subchondral cysts 45,8% vs 29,2%. Erosions were not present. While tomosynthesis showed no significant difference in OARSI score grading to CT (mean OARSI-score CT: 16.8, SD = 10.6; mean OARSI-score Tomosynthesis: 16.3, SD = 9.6; P = 0.84), conventional radiographs had significant lower mean OARSI scores (mean OARSI-score X-ray: 11.1, SD = 8.3; P = 0.04). Inter-reader agreement for OARSI scoring was excellent (ICC = 0.99). CPPD calcifications present in CT, were also visible with tomosynthesis, but not with conventional radiography. CONCLUSION In conclusion, tomosynthesis depicts more osteoarthritic changes in the small joints of the hand than conventional radiography using the OARSI scoring system and CT as the standard of reference.
Collapse
|
122
|
Horváth Á, Wolf P, Nagy J, Kelemen A, Horváth G, Hadházi D, Horváth Á, Czétényi B, Süttő Z, Szondy K. OVERVIEW OF A DIGITAL TOMOSYNTHESIS DEVELOPMENT: NEW APPROACHES FOR LOW-DOSE CHEST IMAGING. RADIATION PROTECTION DOSIMETRY 2016; 169:171-176. [PMID: 26564865 DOI: 10.1093/rpd/ncv469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lung cancer has the highest mortality rate among all cancer types, and it has especially high occurrence in Hungary. Low-dose computed tomography (LDCT) has been proved to be a beneficial screening method for lung cancer, decreasing the mortality rate by 20 %. Because of the intensifying fears from X-ray radiation, there is a need to develop other modalities that might work with less radiation and have similar sensitivity in lung nodule finding. Digital tomosynthesis (DTS) may be such a modality that can be a real alternative to LDCT. The goal of this article is to summarise the first results of a Hungarian project for developing a DTS system extended with a computer-aided detection system. It describes the main approaches applied and the main benefits of using DTS based on the first clinical examinations.
Collapse
Affiliation(s)
- Ákos Horváth
- Innomed Medical, Inc., Szabó József u. 12, Budapest, Hungary
| | - Péter Wolf
- Innomed Medical, Inc., Szabó József u. 12, Budapest, Hungary
| | - János Nagy
- Innomed Medical, Inc., Szabó József u. 12, Budapest, Hungary
| | - Attila Kelemen
- Innomed Medical, Inc., Szabó József u. 12, Budapest, Hungary
| | - Gábor Horváth
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar tudósok krt. 2, Budapest, Hungary
| | - Dániel Hadházi
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar tudósok krt. 2, Budapest, Hungary
| | - Áron Horváth
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar tudósok krt. 2, Budapest, Hungary
| | - Benjámin Czétényi
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar tudósok krt. 2, Budapest, Hungary
| | - Zoltán Süttő
- Department of Pulmonology, Semmelweis University, Diós árok út 1/C, Budapest, Hungary
| | - Klára Szondy
- Department of Pulmonology, Semmelweis University, Diós árok út 1/C, Budapest, Hungary
| |
Collapse
|
123
|
Söderman C, Johnsson ÅA, Vikgren J, Norrlund RR, Molnar D, Svalkvist A, Månsson LG, Båth M. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES. RADIATION PROTECTION DOSIMETRY 2016; 169:188-198. [PMID: 26994093 PMCID: PMC4911967 DOI: 10.1093/rpd/ncw041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis.
Collapse
Affiliation(s)
- Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Jenny Vikgren
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Rauni Rossi Norrlund
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - David Molnar
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Lars Gunnar Månsson
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
124
|
Xu S, Lu J, Zhou O, Chen Y. Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis. Med Phys 2016; 42:5377-90. [PMID: 26328987 DOI: 10.1118/1.4928603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means of overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors' goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. METHODS These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. RESULTS IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. CONCLUSIONS Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.
Collapse
Affiliation(s)
- Shiyu Xu
- Department of Electrical and Computer Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901
| | - Jianping Lu
- Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599
| | - Ying Chen
- Department of Electrical and Computer Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901
| |
Collapse
|
125
|
Söderman C, Johnsson ÅA, Vikgren J, Norrlund RR, Molnar D, Svalkvist A, Månsson LG, Båth M. INFLUENCE OF THE IN-PLANE ARTEFACT IN CHEST TOMOSYNTHESIS ON PULMONARY NODULE SIZE MEASUREMENTS. RADIATION PROTECTION DOSIMETRY 2016; 169:199-203. [PMID: 26769904 DOI: 10.1093/rpd/ncv536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to investigate how the in-plane artefact present in the scan direction around structures in tomosynthesis images should be managed when measuring the size of nodules in chest tomosynthesis images in order to achieve acceptable measurement accuracy. Data from measurements, performed by radiologists, of the longest diameter of artificial nodules inserted in chest tomosynthesis images were used. The association between the measurement error and the direction of the longest nodule diameter, relative to the scan direction, was evaluated using the Kendall rank correlation coefficient. All of the radiologists had chosen to not include the artefact in the measurements. Significant association between measurement error and the direction of the longest diameter was found for nodules larger than 12 mm, which indicates that, for these nodules, there is a risk of underestimating the nodule size if the in-plane artefact is omitted from manual diameter measurements.
Collapse
Affiliation(s)
- Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Jenny Vikgren
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Rauni Rossi Norrlund
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - David Molnar
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Lars Gunnar Månsson
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
126
|
Ceder E, Danielson B, Kovàč P, Fogel H, Svalkvist A, Vikgren J, Båth M. THORACIC SPINE IMAGING: A COMPARISON BETWEEN RADIOGRAPHY AND TOMOSYNTHESIS USING VISUAL GRADING CHARACTERISTICS. RADIATION PROTECTION DOSIMETRY 2016; 169:204-210. [PMID: 26868012 DOI: 10.1093/rpd/ncv559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to evaluate digital tomosynthesis (DTS) in thoracic spine imaging, comparing the reproduction of anatomical structures with that achieved using digital radiography (DR). In a prospective visual grading study, 23 patients referred in 2014 for elective radiographic examination of the thoracic spine were examined using lateral DR and DTS. The DR image and the DTS section images were read in random order by four radiologists, evaluating the ability of the modalities to present a clear reproduction of nine specific relevant structures of the thoracic vertebrae 3, 6 and 9 (T3, T6 and T9). The data were analysed using visual grading characteristics (VGC) analysis. The VGC analysis revealed a statistically significant difference in favour of DTS for all evaluated structures, except for the anterior vertebral edges and lower end plate surfaces of T6 and T9 and the cancellous bone of T9. The difference was most striking in T3 and for posterior structures. For no structure in any vertebra was the reproduction rated significantly better for DR. In conclusion, DTS of the thoracic spine appears to be a promising alternative to DR, especially in areas where the problem of overlaying anatomy is accentuated, such as posterior and upper thoracic structures.
Collapse
Affiliation(s)
- Erik Ceder
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Barbro Danielson
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Peter Kovàč
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Hanna Fogel
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Angelica Svalkvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Jenny Vikgren
- Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Magnus Båth
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
127
|
Arvidsson J, Söderman C, Allansdotter Johnsson Å, Bernhardt P, Starck G, Kahl F, Båth M. IMAGE FUSION OF RECONSTRUCTED DIGITAL TOMOSYNTHESIS VOLUMES FROM A FRONTAL AND A LATERAL ACQUISITION. RADIATION PROTECTION DOSIMETRY 2016; 169:410-415. [PMID: 26683464 DOI: 10.1093/rpd/ncv507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Digital tomosynthesis (DTS) has been used in chest imaging as a low radiation dose alternative to computed tomography (CT). Traditional DTS shows limitations in the spatial resolution in the out-of-plane dimension. As a first indication of whether a dual-plane dual-view (DPDV) DTS data acquisition can yield a fair resolution in all three spatial dimensions, a manual registration between a frontal and a lateral image volume was performed. An anthropomorphic chest phantom was scanned frontally and laterally using a linear DTS acquisition, at 120 kVp. The reconstructed image volumes were resampled and manually co-registered. Expert radiologist delineations of the mediastinal soft tissues enabled calculation of similarity metrics in regard to delineations in a reference CT volume. The fused volume produced the highest total overlap, implying that the fused volume was a more isotropic 3D representation of the examined object than the traditional chest DTS volumes.
Collapse
Affiliation(s)
- Jonathan Arvidsson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Christina Söderman
- Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Åse Allansdotter Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Peter Bernhardt
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Göran Starck
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Fredrik Kahl
- Department of Signals and Systems, Digital Image Systems and Image Analysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Magnus Båth
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
128
|
Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly. Eur Radiol 2016; 27:491-497. [PMID: 27246721 DOI: 10.1007/s00330-016-4392-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/26/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
129
|
Ferreira P, Baptista M, Di Maria S, Vaz P. Cancer risk estimation in Digital Breast Tomosynthesis using GEANT4 Monte Carlo simulations and voxel phantoms. Phys Med 2016; 32:717-23. [PMID: 27133140 DOI: 10.1016/j.ejmp.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022] Open
|
130
|
Machida H, Yuhara T, Tamura M, Ishikawa T, Tate E, Ueno E, Nye K, Sabol JM. Whole-Body Clinical Applications of Digital Tomosynthesis. Radiographics 2016; 36:735-50. [DOI: 10.1148/rg.2016150184] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
131
|
Li B, Avinash GB, Eberhard JW, Claus BEH. Optimization of slice sensitivity profile for radiographic tomosynthesis. Med Phys 2016; 34:2907-16. [PMID: 17821999 DOI: 10.1118/1.2742499] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Similar to other tomographic imaging modalities, the slice sensitivity profile (SSP) is an important image quality metric for radiographic tomosynthesis. In this study, the relationship between the acquisition angular range (Theta) and the SSP for the linear trajectory system was carefully investigated from both theoretical and experimental perspectives. A mathematical SSP model was derived for arbitrary points in the reconstructed volume. We used a newly developed flat-panel tomosynthesis prototype system to experimentally validate the mathematical model from 20 degrees (+/-10 degrees) to 60 degrees (+/-30 degrees) angular ranges. The SSP was measured by imaging an edge phantom placed at an angle with respect to the detector plane using the modulation transfer function degradation (MTF-d) method. In addition to the experiments, computer simulations were performed to investigate the relationship in a wider angular range (2.5 degrees to 60 degrees). Furthermore, image data from an anthropomorphic phantom were collected to corroborate the system analysis. All the images in this study were constructed using a 3D view-weighted cone-beam filtered backprojection algorithm (3D VW CB-FBP). The theoretical analysis reveals that the SSP of linear trajectory tomosynthesis is inversely proportional to tan(Theta/2). This theory was supported by both simulation (chi2=1.415, DF=7, p =0.985) and phantom experiment (r=0.999, p < 0.001) and was further confirmed by an analysis of the reconstructed images of an anthropomorphic phantom. The results imply that the benefit of narrower SSP by increasing angular range quickly diminishes once beyond 40 degrees. The advantages of the MTF-d method were also demonstrated.
Collapse
Affiliation(s)
- Baojun Li
- Applied Science Laboratory, General Electric Healthcare, Waukesha, Wisconsin 53188, USA.
| | | | | | | |
Collapse
|
132
|
Armstrong H, Jones B, Miften M. Characterization of image quality in digital tomosynthesis for radiotherapy applications. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/2/025013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
133
|
Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB. Digital Breast Tomosynthesis: State of the Art. Radiology 2016; 277:663-84. [PMID: 26599926 DOI: 10.1148/radiol.2015141303] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This topical review on digital breast tomosynthesis (DBT) is provided with the intent of describing the state of the art in terms of technology, results from recent clinical studies, advanced applications, and ongoing efforts to develop multimodality imaging systems that include DBT. Particular emphasis is placed on clinical studies. The observations of increase in cancer detection rates, particularly for invasive cancers, and the reduction in false-positive rates with DBT in prospective trials indicate its benefit for breast cancer screening. Retrospective multireader multicase studies show either noninferiority or superiority of DBT compared with mammography. Methods to curtail radiation dose are of importance. (©) RSNA, 2015.
Collapse
Affiliation(s)
- Srinivasan Vedantham
- From the Department of Radiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 (S.V., A.K., G.R.V.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (D.B.K.)
| | - Andrew Karellas
- From the Department of Radiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 (S.V., A.K., G.R.V.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (D.B.K.)
| | - Gopal R Vijayaraghavan
- From the Department of Radiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 (S.V., A.K., G.R.V.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (D.B.K.)
| | - Daniel B Kopans
- From the Department of Radiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 (S.V., A.K., G.R.V.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (D.B.K.)
| |
Collapse
|
134
|
Cho HM, Ding H, Barber WC, Iwanczyk JS, Molloi S. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector. Med Phys 2016; 42:4401-10. [PMID: 26133636 DOI: 10.1118/1.4922680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. METHODS The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. RESULTS The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater than 0.89 ± 0.07 for μCas larger than 120 μm in diameter at a MGD of 3 mGy. The experimental results using a 1.6 cm diameter breast phantom showed that the prototype system can achieve an average AUC greater than 0.98 ± 0.01 for μCas larger than 140 μm in diameter using an entrance exposure of 1.2 mGy. CONCLUSIONS The proposed photon-counting breast CT system based on a Si strip detector can potentially offer superior image quality to detect μCa with a lower dose level than a standard two-view mammography.
Collapse
Affiliation(s)
- Hyo-Min Cho
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | - Huanjun Ding
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | | | | | - Sabee Molloi
- Department of Radiological Sciences, University of California, Irvine, California 92697
| |
Collapse
|
135
|
Yan H, Dai JR. A software tool of digital tomosynthesis application for patient positioning in radiotherapy. J Appl Clin Med Phys 2016; 17:174-193. [PMID: 27074482 PMCID: PMC5874927 DOI: 10.1120/jacmp.v17i2.5999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/09/2015] [Accepted: 11/04/2015] [Indexed: 11/29/2022] Open
Abstract
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two‐dimensional kV projections covering a narrow scan angles. Comparing with conventional cone‐beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic processing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone‐beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU‐based algorithm and CPU‐based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU‐based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU‐based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU‐based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy. PACS number(s): 87.57.nf
Collapse
Affiliation(s)
- Hui Yan
- Cancer Hospital Chinese Academy of Medical Sciences.
| | | |
Collapse
|
136
|
Taha Ali TF, Magid AM, Tawab MA, El-Hariri MA, EL-Shiekh AF. Potential impact of tomosynthesis on the detection and diagnosis of breast lesions. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2016. [DOI: 10.1016/j.ejrnm.2015.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
137
|
Lee C, Baek J. A Sphere Phantom Approach to Measure Directional Modulation Transfer Functions for Tomosynthesis Imaging Systems. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:871-881. [PMID: 26571519 DOI: 10.1109/tmi.2015.2498930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a sphere phantom approach to measure spatially varying directional modulation transfer functions (MTFs) for tomosynthesis imaging systems. Since the reconstructed tomosynthesis images contain significant artifacts, traditional background detrending techniques may not be effective to estimate the background trends accurately, which is essential to acquire sphere only data. A background detrending technique optimized for local volumes with different cone angles is presented. To measure directional MTFs, we calculate plane integrals of ideal sphere phantom and sphere only data. To minimize the effects of the high level of noise in tomosynthesis images, Richardson-Lucy deconvolution with Tikhonov-Miller is used to estimate directional plane spread function (PlSF). Then, directional MTFs are calculated by taking the modulus of the Fourier transform of the directional PlSFs. The measured directional MTFs are compared with the ideal directional MTFs calculated from a simulated point object. Our results show that the proposed method reliably measures directional MTFs along any desired directions, especially near low frequency regions.
Collapse
|
138
|
Dunkerley DAP, Funk T, Speidel MA. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9783. [PMID: 27375314 DOI: 10.1117/12.2216892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a region-of-interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.
Collapse
Affiliation(s)
| | - Tobias Funk
- Triple Ring Technologies, Inc, Newark, CA, USA
| | - Michael A Speidel
- Dept. of Medical Physics, University of Wisconsin, Madison, WI, USA; Dept. of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
139
|
Evaluation of back projection methods for breast tomosynthesis image reconstruction. J Digit Imaging 2016; 28:338-45. [PMID: 25384538 DOI: 10.1007/s10278-014-9736-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Breast cancer is the most common cancer among women in the USA. Compared to mammography, digital breast tomosynthesis is a new imaging technique that may improve the diagnostic accuracy by removing the ambiguities of overlapped tissues and providing 3D information of the breast. Tomosynthesis reconstruction algorithms generate 3D reconstructed slices from a few limited angle projection images. Among different reconstruction algorithms, back projection (BP) is considered an important foundation of quite a few reconstruction techniques with deblurring algorithms such as filtered back projection. In this paper, two BP variants, including α-trimmed BP and principal component analysis-based BP, were proposed to improve the image quality against that of traditional BP. Computer simulations and phantom studies demonstrated that the α-trimmed BP may improve signal response performance and suppress noise in breast tomosynthesis image reconstruction.
Collapse
|
140
|
Barquero H, Brasse D. Small Animal In Vivo X-Ray Tomosynthesis: Anatomical Relevance of the Reconstructed Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:373-380. [PMID: 26302512 DOI: 10.1109/tmi.2015.2471075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Whole body X-ray micro-Digital Tomosynthesis (micro-DT) for small animal imaging is introduced in this work. Such a system allows to deal with geometrical constraints that do not allow to use a micro-CT system as well as to reduce the radiological dose compared to a micro-CT scan. Data was simulated using the Digimouse anatomical model of the mouse with the designed system. An algebraic reconstruction algorithm regularized by Total Variation norm (TV) minimization was used to reconstruct images. Parameters for the reconstruction were optimized and the algorithm performance was evaluated quantitatively. High contrast tissues were subsequently segmented by thresholding the image. Quantitative analysis of the segmented domains indicates that a relevant anatomical information can possibly be extracted from micro-DT images. Indeed the Dice's coefficient values are greater than 0.8 for the segmented High Contrast Tissues compared to the phantom, which indicates an important overlap between the domains. The volume of the segmented tissues is over-estimated for the bones and skin-with 1.313 and 1.113 ratios of the estimated over reference volumes, respectively-and under-estimated in the case of the lungs with a 0.762 ratio. The mean point to surface distance is inferior to the voxel size of 400 μm, for the three segmented tissues. These results are very encouraging and let us consider micro-DT as an alternative to micro-CT to deal with geometrical constraints.
Collapse
|
141
|
Gilbert FJ, Tucker L, Young KC. Digital breast tomosynthesis (DBT): a review of the evidence for use as a screening tool. Clin Radiol 2016; 71:141-50. [PMID: 26707815 DOI: 10.1016/j.crad.2015.11.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022]
Abstract
Breast screening with full-field digital mammography (FFDM) fails to detect 15-30% of cancers. This figure is higher for women with dense breasts. A new tomographic technique in mammography has been developed--digital breast tomosynthesis (DBT)--which allows images to be viewed in sections through the breast and has the potential to improve cancer detection rates. Results from retrospective reading studies comparing DBT with FFDM have been largely favourable with improvement in sensitivity and specificity. Increases in diagnostic accuracy have been reported as being independent of breast density; however there are mixed reports regarding the detection of microcalcification. Prospective screening studies using DBT with FFDM have demonstrated increased rates in cancer detection compared with FFDM alone. A reduction in false-positive recall rates has also been shown. Screening with the addition of DBT would approximately double radiation dose; however a simulated FFDM image can be generated from a DBT scan. The combination of simulated FFDM images and DBT is being evaluated within several studies and some positive results have been published. Interval cancer rates for the UK National Health Service Breast Screening Programme (NHSBSP) demonstrate the limited sensitivity of FFDM in cancer detection. DBT has the potential to increase sensitivity and decrease false-positive recall rates. It has approval for screening and diagnostics in several countries; however, there are issues with DBT as a screening tool including additional reading time, IT storage and connectivity, over-diagnosis, and cost effectiveness. Feasibility and cost-effectiveness trials are needed before the implementation of DBT in NHSBSP can be considered.
Collapse
Affiliation(s)
- Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Lorraine Tucker
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ken C Young
- National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, UK; Department of Physics, University of Surrey, Guildford GU2 7JP, UK
| |
Collapse
|
142
|
Sánchez AA, Sidky EY, Pan X. Use of the Hotelling observer to optimize image reconstruction in digital breast tomosynthesis. J Med Imaging (Bellingham) 2015; 3:011008. [PMID: 26702408 DOI: 10.1117/1.jmi.3.1.011008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 11/14/2022] Open
Abstract
We propose an implementation of the Hotelling observer that can be applied to the optimization of linear image reconstruction algorithms in digital breast tomosynthesis. The method is based on considering information within a specific region of interest, and it is applied to the optimization of algorithms for detectability of microcalcifications. Several linear algorithms are considered: simple back-projection, filtered back-projection, back-projection filtration, and [Formula: see text]-tomography. The optimized algorithms are then evaluated through the reconstruction of phantom data. The method appears robust across algorithms and parameters and leads to the generation of algorithm implementations which subjectively appear optimized for the task of interest.
Collapse
Affiliation(s)
- Adrian A Sánchez
- University of Chicago , Department of Radiology, 5841 South Maryland Avenue, Chicago 60615, United States
| | - Emil Y Sidky
- University of Chicago , Department of Radiology, 5841 South Maryland Avenue, Chicago 60615, United States
| | - Xiaochuan Pan
- University of Chicago , Department of Radiology, 5841 South Maryland Avenue, Chicago 60615, United States ; University of Chicago , Department of Radiation and Cellular Oncology, 5758 South Maryland Avenue, Chicago 60615, United States
| |
Collapse
|
143
|
Cuadros AP, Peitsch C, Arguello H, Arce GR. Coded aperture optimization for compressive X-ray tomosynthesis. OPTICS EXPRESS 2015; 23:32788-32802. [PMID: 26699068 DOI: 10.1364/oe.23.032788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Radiation dose is a concern in X-ray tomographic imaging; coded aperture compressive X-ray tomosynthesis is an approach used to reduce radiation. It places a coded aperture in front of an X-ray source in order to obtain 2D patterned projections of a three-dimensional object onto a detector plane. By using different coded apertures in a multiple source system, multiplexed projections can be obtained instead of sequential projections as in conventional tomosynthesis systems. Compressed sensing (CS) reconstruction algorithms are then used to recover the three-dimensional data cube. An optimization approach to design the structure of the coded apertures in a multiple source compressive X-ray tomosynthesis imaging system is presented. A uniform energy criteria on the voxels and detector elements is used so that the object is uniformly sensed and the elements of the detector plane uniformly sense the information. Simulations and experimental results for optimized coded apertures are shown, and their performance is compared to the use of random coded apertures.
Collapse
|
144
|
Diagnostic impact of digital tomosynthesis in oncologic patients with suspected pulmonary lesions on chest radiography. Eur Radiol 2015; 26:2837-44. [PMID: 26628064 DOI: 10.1007/s00330-015-4104-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 10/30/2015] [Accepted: 11/10/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To assess the actual diagnostic impact of digital tomosynthesis (DTS) in oncologic patients with suspected pulmonary lesions on chest radiography (CXR). METHODS A total of 237 patients (135 male, 102 female; age, 70.8 ± 10.4 years) with a known primary malignancy and suspected pulmonary lesion(s) on CXR and who underwent DTS were retrospectively identified. Two radiologists (experience, 10 and 15 years) analysed in consensus CXR and DTS images and proposed a diagnosis according to a confidence score: 1 or 2 = definitely or probably benign pulmonary or extrapulmonary lesion, or pseudolesion; 3 = indeterminate; 4 or 5 = probably or definitely pulmonary lesion. DTS findings were proven by CT (n = 114 patients), CXR during follow-up (n = 105) or histology (n = 18). RESULTS Final diagnoses included 77 pulmonary opacities, 26 pulmonary scars, 12 pleural lesions and 122 pulmonary pseudolesions. DTS vs CXR presented a higher (P < 0.05) sensitivity (92 vs 15 %), specificity (91 vs 9 %), overall accuracy (92 vs 12 %), and diagnostic confidence (area under ROC, 0.997 vs 0.619). Mean effective dose of CXR vs DTS was 0.06 vs 0.107 mSv (P < 0.05). CONCLUSIONS DTS improved diagnostic accuracy and confidence in comparison to CXR alone in oncologic patients with suspected pulmonary lesions on CXR with only a slight, though significant, increase in radiation dose. KEY POINTS • Digital tomosynthesis (DTS) improves accuracy of chest radiography (CXR) in oncologic patients. • DTS improves confidence of CXR in oncologic patients. • DTS allowed avoidance of CT in about 50 % of oncologic patients.
Collapse
|
145
|
Müller FHH, Farahati J, Müller AG, Gillman E, Hentschel M. Positron emission mammography in the diagnosis of breast cancer. Is maximum PEM uptake value a valuable threshold for malignant breast cancer detection? Nuklearmedizin 2015; 55:15-20. [PMID: 26627876 DOI: 10.3413/nukmed-0753-15-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
Abstract
AIM To evaluate the diagnostic value (sensitivity, specificity) of positron emission mammography (PEM) in a single site non-interventional study using the maximum PEM uptake value (PUVmax). PATIENTS, METHODS In a singlesite, non-interventional study, 108 patients (107 women, 1 man) with a total of 151 suspected lesions were scanned with a PEM Flex Solo II (Naviscan) at 90 min p.i. with 3.5 MBq 18F-FDG per kg of body weight. In this ROI(region of interest)-based analysis, maximum PEM uptake value (PUV) was determined in lesions, tumours (PUVmaxtumour), benign lesions (PUVmaxnormal breast) and also in healthy tissues on the contralateral side (PUVmaxcontralateral breast). These values were compared and contrasted. In addition, the ratios of PUVmaxtumour / PUVmaxcontralateral breast and PUVmaxnormal breast / PUVmaxcontralateral breast were compared. The image data were interpreted independently by two experienced nuclear medicine physicians and compared with histology in cases of suspected carcinoma. RESULTS Based on a criteria of PUV>1.9, 31 out of 151 lesions in the patient cohort were found to be malignant (21%). A mean PUVmaxtumour of 3.78 ± 2.47 was identified in malignant tumours, while a mean PUVmaxnormal breast of 1.17 ± 0.37 was reported in the glandular tissue of the healthy breast, with the difference being statistically significant (p < 0.001). Similarly, the mean ratio between tumour and healthy glandular tissue in breast cancer patients (3.15 ± 1.58) was found to be significantly higher than the ratio for benign lesions (1.17 ± 0.41, p < 0.001). CONCLUSION PEM is capable of differentiating breast tumours from benign lesions with 100% sensitivity along with a high specificity of 96%, when a threshold of PUVmax >1.9 is applied.
Collapse
Affiliation(s)
- F H H Müller
- Dr. Frank H. H. Müller, Radiologie und Nuklearmedizin Ludwigshafen, Otto-Stabel-Str. 2-4, 67059 Ludwigshafen, Tel. +49/(0)621/51 00 21, Fax +49/(0)621/51 00 25,
| | | | | | | | | |
Collapse
|
146
|
Application of digital tomosynthesis in diagnosing spinal tuberculosis. Clin Imaging 2015; 40:461-4. [PMID: 27133687 DOI: 10.1016/j.clinimag.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To study the value of digital tomosynthesis (DTS) applied in diagnosing spinal tuberculosis. METHODS Images of digital radiology (DR) and DTS were retrospectively analyzed in patients with spinal tuberculosis, and image quality and ratio of detection of lesions were compared. RESULTS Excellent ratio was higher for DTS images than DR images; ratios of detection of bone destruction, sequestration, and paraspinal abscess were higher for DTS than DR. CONCLUSIONS DTS had better image quality and ratios of detection of lesions and could be applied in diagnosing and following spinal tuberculosis and other spinal conditions such as infections or suspected tumors.
Collapse
|
147
|
Use of Tomosynthesis for Detection of Bone Erosions of the Foot in Patients With Established Rheumatoid Arthritis: Comparison With Radiography and CT. AJR Am J Roentgenol 2015. [PMID: 26204289 DOI: 10.2214/ajr.14.14120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The purpose of this study was to compare tomosynthesis with radiography for the detection of bone erosions of the foot in patients with established rheumatoid arthritis (RA) using MDCT as a reference standard. SUBJECTS AND METHODS Eighteen consecutive patients with established RA were included. Each patient underwent radiography, tomosynthesis, and CT examinations of the feet on the same day. Two radiologists independently determined the number of bone erosions and the Sharp-van der Heijde score with each of the three imaging modalities. RESULTS On a total of 216 joints from 18 patients, 216 bone erosions were detected on CT, 215 on tomosynthesis, and 181 with radiography. The mean (± SD) Sharp-van der Heijde score was equivalent for tomosynthesis (18.8 ± 16.8) and CT (19.8 ± 18.5) but was statistically lower for radiography (16.4 ± 18.0) (p = 0.030). The respective overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for tomosynthesis were 80%, 75%, 78%, 76%, and 80%, whereas the respective corresponding values for radiography were 66%, 81%, 74%, 77%, and 71%. The radiation burden of tomosynthesis was almost equivalent to that of radiography. CONCLUSION Tomosynthesis has a higher sensitivity than radiography to detect bone erosions of the foot in patients with established RA and imparts an almost equivalent radiation burden.
Collapse
|
148
|
Kim YS, Park HS, Lee HH, Choi YW, Choi JG, Kim HH, Kim HJ. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms. Radiol Med 2015; 121:81-92. [PMID: 26383027 DOI: 10.1007/s11547-015-0583-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low-contrast microcalcifications, the FBP reduced detectability due to its increased noise. The EM algorithm yielded high conspicuity for both microcalcifications and masses and yielded better ASFs in terms of the full width at half maximum. The higher contrast and lower homogeneity in terms of texture analysis were shown in FBP algorithm than in other algorithms. The patient images using the EM algorithm resulted in high visibility of low-contrast mass with clear border. In this study, we compared three reconstruction algorithms by using various kinds of breast phantoms and patient cases. Future work using these algorithms and considering the type of the breast and the acquisition techniques used (e.g., angular range, dose distribution) should include the use of actual patients or patient-like phantoms to increase the potential for practical applications.
Collapse
Affiliation(s)
- Ye-seul Kim
- Department of Radiological Science and Research Institute of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon, Korea
| | - Hye-suk Park
- Department of Radiological Science and Research Institute of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon, Korea
| | - Haeng-Hwa Lee
- Department of Radiological Science and Research Institute of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon, Korea
| | - Young-Wook Choi
- Korea Electrotechnology Research Institute (KERI), Ansan, Korea
| | - Jae-Gu Choi
- Korea Electrotechnology Research Institute (KERI), Ansan, Korea
| | | | - Hee-Joung Kim
- Department of Radiological Science and Research Institute of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon, Korea.
| |
Collapse
|
149
|
Zhong Y, Lai CJ, Wang T, Shaw CC. A dual-view digital tomosynthesis imaging technique for improved chest imaging. Med Phys 2015; 42:5238-51. [PMID: 26328973 DOI: 10.1118/1.4928214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior-anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. METHODS With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values computed using the digital chest phantom or the CBCT images as the reference in the simulation and experimental study, respectively. High-contrast wires with vertical, oblique, and horizontal orientations in a PA view plane were also imaged to investigate the spatial resolutions and how the wire signals spread in the PA view and lateral view slice images. RESULTS Both the digital phantom images (simulated) and the anthropomorphic phantom images (experimentally generated) demonstrated that the dual-view DTS technique resulted in improved spatial resolution in the depth (PA) direction, more accurate representation of the anatomy, and significantly reduced artifacts. The RMSD values corroborate well with visual observations with substantially lower RMSD values measured for the dual-view DTS images as compared to those measured for the single-view DTS images. The imaging experiment with the high-contrast wires shows that while the vertical and oblique wires could be resolved in the lateral view in both single- and dual-view DTS images, the horizontal wire could only be resolved in the dual-view DTS images. This indicates that with single-view DTS, the wire signals spread liberally to off-fulcrum planes and generated wire shadow there. CONCLUSIONS The authors have demonstrated both visually and quantitatively that the dual-view DTS technique can be used to achieve more accurate rendition of the anatomy and to obtain slice images with improved resolution and reduced artifacts as compared to the single-view DTS technique, thus allowing the 3D image data to be viewed in views other than the PA view. These advantages could make the dual-view DTS technique useful in situations where better separation of the objects-of-interest from the off-fulcrum structures or more accurate 3D rendition of the anatomy are required while a regular CT examination is undesirable due to radiation dose considerations.
Collapse
Affiliation(s)
- Yuncheng Zhong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054
| | - Chao-Jen Lai
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054
| | - Tianpeng Wang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054
| | - Chris C Shaw
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054
| |
Collapse
|
150
|
Muralidhar GS, Bovik AC, Markey MK. Disparity Estimation on Stereo Mammograms. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2015; 24:2851-2863. [PMID: 25974940 DOI: 10.1109/tip.2015.2432714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We consider the problem of depth estimation on digital stereo mammograms. Being able to elucidate 3D information from stereo mammograms is an important precursor to conducting 3D digital analysis of data from this promising new modality. The problem is generally much harder than the classic stereo matching problem on visible light images of the natural world, since nearly all of the 3D structural information of interest exists as complex network of multilayered, heavily occluded curvilinear structures. Toward addressing this difficult problem, we formulate a new stereo model that minimizes a global energy functional to densely estimate disparity on stereo mammogram images, by introducing a new singularity index as a constraint to obtain better estimates of disparity along critical curvilinear structures. Curvilinear structures, such as vasculature and spicules, are particularly salient structures in the breast, and being able to accurately position them in 3D is a valuable goal. Experiments on synthetic images with known ground truth and on real stereo mammograms highlight the advantages of the proposed stereo model over the canonical stereo model.
Collapse
|