101
|
Yu Y, Chan C, Ma T, Liu Y, Gallezot JD, Naganawa M, Kelada OJ, Germino M, Sinusas AJ, Carson RE, Liu C. Event-by-Event Continuous Respiratory Motion Correction for Dynamic PET Imaging. J Nucl Med 2016; 57:1084-90. [DOI: 10.2967/jnumed.115.167676] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022] Open
|
102
|
Todica A, Lehner S, Wang H, Zacherl MJ, Nekolla K, Mille E, Xiong G, Bartenstein P, la Fougère C, Hacker M, Böning G. Derivation of a respiration trigger signal in small animal list-mode PET based on respiration-induced variations of the ECG signal. J Nucl Cardiol 2016; 23:73-83. [PMID: 26068972 DOI: 10.1007/s12350-015-0154-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Raw PET list-mode data contains motion artifacts causing image blurring and decreased spatial resolution. Unless corrected, this leads to underestimation of the tracer uptake and overestimation of the lesion size, as well as inaccuracies with regard to left ventricular volume and ejection fraction (LVEF), especially in small animal imaging. METHODS AND RESULTS A respiratory trigger signal from respiration-induced variations in the electro-cardiogram (ECG) was detected. Original and revised list-mode PET data were used for calculation of left ventricular function parameters using both respiratory gating techniques. For adequately triggered datasets we saw no difference in mean respiratory cycle period between the reference standard (RRS) and the ECG-based (ERS) methods (1120 ± 159 ms vs 1120 ± 159 ms; P = n.s.). While the ECG-based method showed somewhat higher signal noise (66 ± 22 ms vs 51 ± 29 ms; P < .001), both respiratory triggering techniques yielded similar estimates for EDV, ESV, LVEF (RRS: 387 ± 56 µL, 162 ± 34 µL, 59 ± 5%; ERS: 389 ± 59 µL, 163 ± 35 µL, 59 ± 4%; P = n.s.). CONCLUSIONS This study showed that respiratory gating signals can be accurately derived from cardiac trigger information alone, without the additional requirement for dedicated measurement of the respiratory motion in rats.
Collapse
Affiliation(s)
- Andrei Todica
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Sebastian Lehner
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Hao Wang
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mathias J Zacherl
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Katharina Nekolla
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Erik Mille
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Guoming Xiong
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders, DSGZ, University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian la Fougère
- Department of Clinical Molecular Imaging and Nuclear Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Guido Böning
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
103
|
Smyczynski MS, Gifford HC, Lehovich A, McNamara JE, Segars WP, Hoffman EA, Tsui BMW, King MA. Modeling the respiratory motion of solitary pulmonary nodules and determining the impact of respiratory motion on their detection in SPECT imaging. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2016; 63:117-129. [PMID: 27182079 PMCID: PMC4863470 DOI: 10.1109/tns.2015.2512840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The objectives of this investigation were to model the respiratory motion of solitary pulmonary nodules (SPN) and then use this model to determine the impact of respiratory motion on the localization and detection of small SPN in SPECT imaging for four reconstruction strategies. The respiratory motion of SPN was based on that of normal anatomic structures in the lungs determined from breath-held CT images of a volunteer acquired at two different stages of respiration. End-expiration (EE) and time-averaged (Frame Av) non-uniform-B-spline cardiac torso (NCAT) digital-anthropomorphic phantoms were created using this information for respiratory motion within the lungs. SPN were represented as 1 cm diameter spheres which underwent linear motion during respiration between the EE and end-inspiration (EI) time points. The SIMIND Monte Carlo program was used to produce SPECT projection data simulating Tc-99m depreotide (NeoTect) imaging. The projections were reconstructed using 1) no correction (NC), 2) attenuation correction (AC), 3) resolution compensation (RC), and 4) attenuation correction, scatter correction, and resolution compensation (AC_SC_RC). A human-observer localization receiver operating characteristics (LROC) study was then performed to determine the difference in localization and detection accuracy with and without the presence of respiratory motion. The LROC comparison determined that respiratory motion degrades tumor detection for all four reconstruction strategies, thus correction for SPN motion would be expected to improve detection accuracy. The inclusion of RC in reconstruction improved detection accuracy for both EE and Frame Av over NC and AC. Also the magnitude of the impact of motion was least for AC_SC_RC.
Collapse
Affiliation(s)
- Mark S Smyczynski
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Howard C Gifford
- Biomedical Engineering Dept., University of Houston, Houston, TX
| | - Andre Lehovich
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | | | - W Paul Segars
- Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, NC
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA
| | | | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 (telephone: 508-856-4255, )
| |
Collapse
|
104
|
Smyczynski MS, Gifford HC, Dey J, Lehovich A, McNamara JE, Segars WP, King MA. LROC Investigation of Three Strategies for Reducing the Impact of Respiratory Motion on the Detection of Solitary Pulmonary Nodules in SPECT. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2016; 63:130-139. [PMID: 27182080 PMCID: PMC4863469 DOI: 10.1109/tns.2015.2481825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The objective of this investigation was to determine the effectiveness of three motion reducing strategies in diminishing the degrading impact of respiratory motion on the detection of small solitary pulmonary nodules (SPN) in single photon emission computed tomographic (SPECT) imaging in comparison to a standard clinical acquisition and the ideal case of imaging in the absence of respiratory motion. To do this non-uniform rational B-spline cardiac-torso (NCAT) phantoms based on human-volunteer CT studies were generated spanning the respiratory cycle for a normal background distribution of Tc-99m NeoTect. Similarly, spherical phantoms of 1.0 cm diameter were generated to model small SPN for each of 150 uniquely located sites within the lungs whose respiratory motion was based on the motion of normal structures in the volunteer CT studies. The SIMIND Monte Carlo program was used to produce SPECT projection data from these. Normal and single-lesion containing SPECT projection sets with a clinically realistic Poisson noise level were created for the cases of: 1) the end-expiration (EE) frame with all counts, 2) respiration-averaged motion with all counts, 3) one-fourth of the 32 frames centered around EE (Quarter-Binning), 4) one-half of the 32 frames centered around EE (Half-Binning), and 5) eight temporally binned frames spanning the respiratory cycle. Each of the sets of combined projection data were reconstructed with RBI-EM with system spatial-resolution compensation (RC). Based on the known motion for each of the 150 different lesions, the reconstructed volumes of respiratory bins were shifted so as to superimpose the locations of the SPN onto that in the first bin (Reconstruct and Shift). Five human-observers performed localization receiver operating characteristics (LROC) studies of SPN detection. The observer results were analyzed for statistical significance differences in SPN detection accuracy among the three correction strategies, the standard acquisition, and the ideal case of the absence of respiratory motion. Our human-observer LROC determined that Quarter-Binning and Half-Binning strategies resulted in SPN detection accuracy statistically significantly below (P < 0.05) that of standard clinical acquisition, whereas the Reconstruct and Shift strategy resulted in a detection accuracy not statistically significantly different from that of the ideal case. This investigation demonstrates that tumor detection based on acquisitions associated with less than all the counts which could potentially be employed may result in poorer detection despite limiting the motion of the lesion. The Reconstruct and Shift method results in tumor detection that is equivalent to ideal motion correction.
Collapse
Affiliation(s)
- Mark S Smyczynski
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Howard C Gifford
- Biomedical Engineering Dept., University of Houston, Houston, TX
| | - Joyoni Dey
- Department of Physics & Astronomy, Louisiana State University, LA
| | - Andre Lehovich
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | | | - W Paul Segars
- Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, NC
| | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 (telephone: 508-856-4255, )
| |
Collapse
|
105
|
The prognostic value of tumor shadow disappearance rate on integrated PET/CT evaluation of solitary pulmonary nodules with low glucose metabolism. Nucl Med Commun 2016; 37:356-62. [PMID: 26796032 DOI: 10.1097/mnm.0000000000000446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to determine the prognostic value of the tumor shadow disappearance rate (TDR) on integrated PET/computed tomography (PET/CT) evaluation of solitary pulmonary nodules (SPNs) with low glucose uptake. MATERIALS AND METHODS From January 2008 to September 2010, 99 patients who underwent fluorine-18 fluorodeoxyglucose PET (F-FDG-PET)/CT scanning for the evaluation of SPNs with a maximum standardized uptake value (SUVmax) below 2.75 (2.5+10%) were retrospectively reviewed. Among the 99 SPNs from these patients, 67 were malignant and 32 were benign, based on surgical pathology. Differences in baseline characteristics between the two groups were examined by means of the independent t-test, the Mann-Whitney U-test, and the χ-test. To test the efficacy of TDR for determining malignancy, the sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and positive and negative likelihood ratios (LR+ and LR-, respectively) with 95% confidence intervals were calculated using the pathological test as the gold standard. RESULTS Patients with malignant nodules were older than those with benign nodules (64.5 vs. 55.1 years, respectively, P<0.001) and had higher TDRs (0.8 vs. 0.3, respectively, P<0.001). The optimal cutoff point for the TDR was 0.4886 where the sensitivity, specificity, positive predictive value, and negative predictive value were 0.851, 0.844, 0.919, and 0.730, respectively, and the LR+ and LR- were 5.443 and 0177, respectively. A significant negative correlation between TDR and SUVmax was found only in the malignant group. CONCLUSION The diagnostic value of TDR complements the PET/CT evaluation of SPNs with a low F-FDG uptake.
Collapse
|
106
|
Carles M, Fechter T, Nemer U, Nanko N, Mix M, Nestle U, Schaefer A. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation. Phys Med Biol 2015; 60:9227-51. [DOI: 10.1088/0031-9155/60/24/9227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
107
|
Abstract
Accurate reporting of combined PET/CT imaging requires a thorough understanding of the normal and variant physiological distribution of tracers as well as common incidental findings and technical artifacts. We describe these pitfalls and artifacts, what action may help to mitigate them in clinical practice, and what further action may be appropriate. This review presents these in a region-based approach, in order to closely mimic clinical practice, and focuses on technical artifacts followed by a description of two commonly used oncologic tracers: FDG and choline.
Collapse
Affiliation(s)
| | - Paul John Schleyer
- St Thomas' PET Imaging Centre, Guys and St Thomas NHS Trust and Kings College London, London, UK
| | - Gary John Cook
- St Thomas' PET Imaging Centre, Guys and St Thomas NHS Trust and Kings College London, London, UK
| |
Collapse
|
108
|
Rui X, Cheng L, Long Y, Fu L, Alessio AM, Asma E, Kinahan PE, De Man B. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms. Phys Med Biol 2015; 60:7437-60. [PMID: 26352168 PMCID: PMC5260824 DOI: 10.1088/0031-9155/60/19/7437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images.Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode.
Collapse
Affiliation(s)
- Xue Rui
- Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Lishui Cheng
- Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Yong Long
- Formerly with Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Lin Fu
- Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Adam M. Alessio
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Evren Asma
- Formerly with Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Paul E. Kinahan
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Bruno De Man
- Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| |
Collapse
|
109
|
Balfour DR, Marsden PK, Polycarpou I, Kolbitsch C, King AP. Respiratory motion correction of PET using MR-constrained PET-PET registration. Biomed Eng Online 2015; 14:85. [PMID: 26385747 PMCID: PMC4575461 DOI: 10.1186/s12938-015-0078-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Respiratory motion in positron emission tomography (PET) is an unavoidable source of error in the measurement of tracer uptake, lesion position and lesion size. The introduction of PET-MR dual modality scanners opens a new avenue for addressing this issue. Motion models offer a way to estimate motion using a reduced number of parameters. This can be beneficial for estimating motion from PET, which can otherwise be difficult due to the high level of noise of the data. Method We propose a novel technique that makes use of a respiratory motion model, formed from initial MR scan data. The motion model is used to constrain PET-PET registrations between a reference PET gate and the gates to be corrected. For evaluation, PET with added FDG-avid lesions was simulated from real, segmented, ultrashort echo time MR data obtained from four volunteers. Respiratory motion was included in the simulations using motion fields derived from real dynamic 3D MR volumes obtained from the same volunteers. Results Performance was compared to an MR-derived motion model driven method (which requires constant use of the MR scanner) and to unconstrained PET-PET registration of the PET gates. Without motion correction, a median drop in uncorrected lesion \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm {SUV}}_{\mathrm {peak}}$$\end{document}SUVpeak intensity to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$78.4 \pm 18.6 \,\,\%$$\end{document}78.4±18.6% and an increase in median head-foot lesion width, specified by a minimum bounding box, to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$179 \pm 63.7\,\, \%$$\end{document}179±63.7% was observed relative to the corresponding measures in motion-free simulations. The proposed method corrected these values to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$86.9 \pm 13.6\,\, \%$$\end{document}86.9±13.6% (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p<0.001$$\end{document}p<0.001) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$100 \pm 29.12\,\, \%$$\end{document}100±29.12% (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p<0.001$$\end{document}p<0.001) respectively, with notably improved performance close to the diaphragm and in the liver. Median lesion displacement across all lesions was observed to be \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$6.6 \pm 5.4\,\mathrm {mm}$$\end{document}6.6±5.4mm without motion correction, which was reduced to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3.5 \pm 1.8\,\mathrm {mm}$$\end{document}3.5±1.8mm (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p<0.001$$\end{document}p<0.001) with motion correction. Discussion This paper presents a novel technique for respiratory motion correction of PET data in PET-MR imaging. After an initial 30 second MR scan, the proposed technique does not require use of the MR scanner for motion correction purposes, making it suitable for MR-intensive studies or sequential PET-MR. The accuracy of the proposed technique was similar to both comparative methods, but robustness was improved compared to the PET-PET technique, particularly in regions with higher noise such as the liver.
Collapse
Affiliation(s)
- Daniel R Balfour
- King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.
| | - Paul K Marsden
- King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.
| | | | - Christoph Kolbitsch
- King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.
| | - Andrew P King
- King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.
| |
Collapse
|
110
|
Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys 2015; 2:21. [PMID: 26501822 PMCID: PMC4573645 DOI: 10.1186/s40658-015-0125-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
Background The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI. Methods Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MRI. Whole body imaging and a dedicated 15-min liver PET acquisition was performed, in addition to navigated and breath-held hepatobiliary phase (HBP) MRI. Liver PET data was reconstructed three ways: the entire data set (liver PET), gated using respiratory bellows (RC-liver PET), and a non-gated data set reconstructed using the same amount of data used in the RC-liver PET (shortened liver PET). Liver lesions were evaluated using SUVmax, SUVpeak, SUVmean, and Volisocontour. Additionally, the displacement of each lesion between the RC-liver PET images and the navigated and breath-held HBP images was calculated. Results Respiratory compensation resulted in a 43 % increase in SUVs compared to ungated data (liver vs RC-liver PET SUVmax 26.0 vs 37.3, p < 0.001) and a 25 % increase compared to a non-gated reconstruction using the same amount of data (RC-liver vs shortened liver PET SUVmax 26.0 vs 32.6, p < 0.001). Lesion displacement was minimized using navigated HBP MRI (1.3 ± 1.0 mm) compared to breath-held HBP MRI (23.3 ± 1.0 mm). Conclusions Respiratory bellows can provide accurate respiratory compensation when imaging liver lesions using PET/MRI, and results in increased SUVs due to a combination of increased image noise and reduced respiratory blurring. Additionally, navigated HBP MRI accurately aligns with respiratory compensated PET data.
Collapse
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA. .,Department of Radiology, San Francisco VA Medical Center, San Francisco, CA, USA.
| | - Emily F Verdin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Bergsland
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,Department of Radiology, San Francisco General Hospital, San Francisco, CA, USA
| | - Carlos U Corvera
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Eric K Nakakura
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
111
|
Yoshiya T, Miyata Y, Ibuki Y, Mimae T, Tsutani Y, Nakayama H, Okumura S, Yoshimura M, Okada M. The Difference in Maximum Standardized Uptake Value among Lung Adenocarcinomas Located at the Upper and Lower Zone on PET/CT. Respiration 2015; 90:293-8. [DOI: 10.1159/000437096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
|
112
|
Nyflot MJ, Lee TC, Alessio AM, Wollenweber SD, Stearns CW, Bowen SR, Kinahan PE. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging. Med Phys 2015; 42:110-20. [PMID: 25563252 DOI: 10.1118/1.4903282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. METHODS A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV(max), SUV(mean), SUV(peak), and segmented tumor volume was evaluated as RC(max), RC(mean), RC(peak), and RC(vol), representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal-Wallis ANOVA were used to test for significant differences. RESULTS For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, -1.8 ± 6.5, -3.2 ± 5.0, and 3.0 ± 5.9 for RC(max), RC(peak), RC(mean), and RC(vol). In comparison, recovery coefficients for phase-matched CTAC were -8.4 ± 5.3, -10.5 ± 6.2, -7.6 ± 5.0, and -13.0 ± 7.7 for RC(max), RC(peak), RC(mean), and RC(vol). When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by the patient-specific respiratory waveforms; when testing patient and sinusoidal waveforms separately, patient waveforms were significantly different between phases (p < 0.0001) while the sinusoidal waveforms were not significantly different (p = 0.98). When considering only the subset of 4DMATCH images that corresponded to the end-exhale image phase, 4DEXH, mean and interquartile range were similar to 4DMATCH but variability was considerably reduced. CONCLUSIONS Comparative advantages in accuracy and precision of SUV metrics and segmented volumes were demonstrated with the use of the maximum intensity projection and end-exhale CT attenuation correction. While respiratory phase-matched CTAC should in theory provide optimal corrections, image artifacts and differences in implementation of 4DCT and 4DPET sorting can degrade the benefit of this approach. These results may be useful to guide the implementation, analysis, and development of respiratory-correlated thoracic PET/CT in the radiation oncology and diagnostic settings.
Collapse
Affiliation(s)
- Matthew J Nyflot
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043
| | - Tzu-Cheng Lee
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-6043
| | - Adam M Alessio
- Department of Radiology, University of Washington, Seattle, Washington 98195-6043
| | | | | | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 and Department of Radiology, University of Washington, Seattle, Washington 98195-6043
| | - Paul E Kinahan
- Department of Radiology, University of Washington, Seattle, Washington 98195-6043
| |
Collapse
|
113
|
Dasari PKR, Shazeeb MS, Könik A, Lindsay C, Mukherjee JM, Johnson KL, King MA. Adaptation of the modified Bouc-Wen model to compensate for hysteresis in respiratory motion for the list-mode binning of cardiac SPECT and PET acquisitions: testing using MRI. Med Phys 2015; 41:112508. [PMID: 25370667 DOI: 10.1118/1.4895845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc-Wen (BW) model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors' previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. METHODS In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior-inferior direction during free breathing using MRI navigators. A visual tracking system (vts) synchronized with MRI acquisition tracked the anterior-posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc-Wen model by inputting the vts derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson's linear correlation coefficient between the abdomen, chest, average of chest and abdomen markers, and Bouc-Wen derived signals versus the true internal motion of the heart from MRI was used to judge the signals match to the heart motion. RESULTS The results show that the Bouc-Wen model generated signals demonstrated strong correlation with the heart motion. This correlation was slightly larger on average than that of the external surrogate signals derived from the abdomen marker, and average of the abdomen and chest markers, but was not statistically significantly different from them. CONCLUSIONS The results suggest that the proposed model has the potential to be a unified framework for modeling hysteresis in respiratory motion in cardiac perfusion studies and beyond.
Collapse
Affiliation(s)
- Paul K R Dasari
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Mohammed Salman Shazeeb
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Arda Könik
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Clifford Lindsay
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Joyeeta M Mukherjee
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Karen L Johnson
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Michael A King
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
114
|
Li G, Schmidtlein CR, Burger IA, Ridge CA, Solomon SB, Humm JL. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference. Med Phys 2015; 41:091905. [PMID: 25186392 DOI: 10.1118/1.4892602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To assess and account for the impact of respiratory motion on the variability of activity and volume determination of liver tumor in positron emission tomography (PET) through a comparison between free-breathing (FB) and respiration-suspended (RS) PET images. METHODS As part of a PET/computed tomography (CT) guided percutaneous liver ablation procedure performed on a PET/CT scanner, a patient's breathing is suspended on a ventilator, allowing the acquisition of a near-motionless PET and CT reference images of the liver. In this study, baseline RS and FB PET/CT images of 20 patients undergoing thermal ablation were acquired. The RS PET provides near-motionless reference in a human study, and thereby allows a quantitative evaluation of the effect of respiratory motion on PET images obtained under FB conditions. Two methods were applied to calculate tumor activity and volume: (1) threshold-based segmentation (TBS), estimating the total lesion glycolysis (TLG) and the segmented volume and (2) histogram-based estimation (HBE), yielding the background-subtracted lesion (BSL) activity and associated volume. The TBS method employs 50% of the maximum standardized uptake value (SUVmax) as the threshold for tumors with SUVmax≥2× SUVliver-bkg, and tumor activity above this threshold yields TLG50%. The HBE method determines local PET background based on a Gaussian fit of the low SUV peak in a SUV-volume histogram, which is generated within a user-defined and optimized volume of interest containing both local background and lesion uptakes. Voxels with PET intensity above the fitted background were considered to have originated from the tumor and used to calculate the BSL activity and its associated lesion volume. RESULTS Respiratory motion caused SUVmax to decrease from RS to FB by -15%±11% (p=0.01). Using TBS method, there was also a decrease in SUVmean (-18%±9%, p=0.01), but an increase in TLG50% (18%±36%) and in the segmented volume (47%±52%, p=0.01) from RS to FB PET images. The background uptake in normal liver was stable, 1%±9%. In contrast, using the HBE method, the differences in both BSL activity and BSL volume from RS to FB were -8%±10% (p=0.005) and 0%±16% (p=0.94), respectively. CONCLUSIONS This is the first time that almost motion-free PET images of the human liver were acquired and compared to free-breathing PET. The BSL method's results are more consistent, for the calculation of both tumor activity and volume in RS and FB PET images, than those using conventional TBS. This suggests that the BSL method might be less sensitive to motion blurring and provides an improved estimation of tumor activity and volume in the presence of respiratory motion.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Irene A Burger
- Department of Radiology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Carole A Ridge
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
115
|
Bowen SR, Nyflot MJ, Herrmann C, Groh CM, Meyer J, Wollenweber SD, Stearns CW, Kinahan PE, Sandison GA. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study. Phys Med Biol 2015; 60:3731-46. [PMID: 25884892 DOI: 10.1088/0031-9155/60/9/3731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.
Collapse
Affiliation(s)
- S R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA. Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 2015; 60:R115-54. [PMID: 25650582 DOI: 10.1088/0031-9155/60/4/r115] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The integration of positron emission tomography (PET) and magnetic resonance imaging (MRI) has been an ongoing research topic for the last 20 years. This paper gives an overview of the different developments and the technical problems associated with combining PET and MRI in one system. After explaining the different detector concepts for integrating PET-MRI and minimising interference the limitations and advantages of different solutions for the detector and system are described for preclinical and clinical imaging systems. The different integrated PET-MRI systems are described in detail. Besides detector concepts and system integration the challenges and proposed solutions for attenuation correction and the potential for motion correction and resolution recovery are also discussed in this topical review.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University-iMinds Medical IT-IBiTech, De Pintelaan 185 block B, B-9000 Ghent, Belgium
| | | |
Collapse
|
117
|
Koivumäki T, Teuho J, Teräs M, Vauhkonen M, Hakulinen MA. A novel respiratory gating method for oncologic positron emission tomography based on bioimpedance approach. Ann Nucl Med 2015; 29:351-8. [DOI: 10.1007/s12149-015-0953-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/20/2015] [Indexed: 01/10/2023]
|
118
|
Kawakami W, Takemura A, Yokoyama K, Nakajima K, Yokoyama S, Koshida K. The use of positron emission tomography/computed tomography imaging in radiation therapy: a phantom study for setting internal target volume of biological target volume. Radiat Oncol 2015; 10:1. [PMID: 25567003 PMCID: PMC4299814 DOI: 10.1186/s13014-014-0315-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) is an important method for detecting tumours, planning radiotherapy treatment, and evaluating treatment responses. However, using the standardized uptake value (SUV) threshold with PET imaging may be suitable not to determine gross tumour volume but to determine biological target volume (BTV). The aim of this study was to extract internal target volume of BTV from PET images. METHODS Three spherical densities of (18)F-FDG were employed in a phantom with an air or water background with repetitive motion amplitudes of 0-30 mm. The PET data were reconstructed with attenuation correction (AC) based on CT images obtained by slow CT scanning (SCS) or helical CT scanning (HCS). The errors in measured SUVmax and volumes calculated using SUV threshold values based on SUVmax (THmax) in experiments performed with varying extents of respiratory motion and AC were analysed. RESULTS A partial volume effect (PVE) was not observed in spheres with diameters of ≥ 28 mm. When calculating SUVmax and THmax, using SCS for AC yielded smaller variance than using HCS (p<0.05). For spheres of 37- and 28-mm diameters in the phantom with either an air or water background, significant differences were observed when mean THmax of 30-, 20-, or 10-mm amplitude were compared with the stationary conditions (p<0.05). The average THmax values for 37-mm and 28-mm spheres with an air background were 0.362 and 0.352 in non-motion, respectively, and the mean THmax values for 37-mm and 28-mm spheres with a water background were 0.404 and 0.387 in non-motion and 0.244 and 0.263 in motion, respectively. When the phantom background was air, regardless of sphere concentration or size, THmax was dependent only on motion amplitude. CONCLUSIONS We found that there was no PVE for spheres with ≥ 28-mm diameters, and differences between SUVmax and THmax were reduced by using SCS for AC. In the head-and-neck and the abdomen, the standard values of THmax were 0.25 and 0.40 with and without respiratory movement, respectively. In the lungs, the value of THmax became the approximate expression depending on motion amplitude.
Collapse
Affiliation(s)
- Wataru Kawakami
- Department of Radiological Technology, Public Central Hospital of Matto Ishikawa, 3-8, Kuramitsu, Hakusan City, Ishikawa Pref, 924-8588, Japan.
- Department of Quantum Medical Technology, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan.
| | - Akihiro Takemura
- Department of Quantum Medical Technology, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan.
| | - Kunihiko Yokoyama
- PET Imaging Center, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan.
| | - Kenichi Nakajima
- Department of Nuclear Medicine, Kanazawa University Hospital, Ishikawa, Japan.
| | - Syoichi Yokoyama
- Department of Radiological Technology, Public Central Hospital of Matto Ishikawa, 3-8, Kuramitsu, Hakusan City, Ishikawa Pref, 924-8588, Japan.
| | - Kichiro Koshida
- Department of Quantum Medical Technology, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
119
|
Grimm R, Fürst S, Souvatzoglou M, Forman C, Hutter J, Dregely I, Ziegler SI, Kiefer B, Hornegger J, Block KT, Nekolla SG. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal 2015; 19:110-20. [PMID: 25461331 DOI: 10.1016/j.media.2014.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 11/25/2022]
|
120
|
Polycarpou I, Tsoumpas C, King AP, Marsden PK. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data. Phys Med Biol 2014; 59:697-713. [PMID: 24442386 DOI: 10.1088/0031-9155/59/3/697] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future PET scanners.
Collapse
|
121
|
Kesner AL, Schleyer PJ, Büther F, Walter MA, Schäfers KP, Koo PJ. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework. EJNMMI Phys 2014; 1:8. [PMID: 26501450 PMCID: PMC4673082 DOI: 10.1186/2197-7364-1-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Positron emission tomography (PET) is increasingly used for the detection, characterization, and follow-up of tumors located in the thorax. However, patient respiratory motion presents a unique limitation that hinders the application of high-resolution PET technology for this type of imaging. Efforts to transcend this limitation have been underway for more than a decade, yet PET remains for practical considerations a modality vulnerable to motion-induced image degradation. Respiratory motion control is not employed in routine clinical operations. In this article, we take an opportunity to highlight some of the recent advancements in data-driven motion control strategies and how they may form an underpinning for what we are presenting as a fully automated data-driven motion control framework. This framework represents an alternative direction for future endeavors in motion control and can conceptually connect individual focused studies with a strategy for addressing big picture challenges and goals.
Collapse
Affiliation(s)
- Adam L Kesner
- Division of Nuclear Medicine, Department of Radiology, Anschutz Medical Campus, University of Colorado Denver, 12700 E 19th Ave, Box C-278, Aurora, CO, 80045, USA.
| | - Paul J Schleyer
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, WC2R 2LS, UK.
| | - Florian Büther
- European Institute for Molecular Imaging, University of Münster, Münster, 48149, Germany.
| | - Martin A Walter
- Institute of Nuclear Medicine and Department of Clinical Research, University Hospital Bern, Bern, 3010, Switzerland.
| | - Klaus P Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, 48149, Germany.
| | - Phillip J Koo
- Division of Nuclear Medicine, Department of Radiology, Anschutz Medical Campus, University of Colorado Denver, 12700 E 19th Ave, Box C-278, Aurora, CO, 80045, USA.
| |
Collapse
|
122
|
Petibon Y, Huang C, Ouyang J, Reese TG, Li Q, Syrkina A, Chen YL, El Fakhri G. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging. Med Phys 2014; 41:042503. [PMID: 24694156 DOI: 10.1118/1.4868458] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. METHODS An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and(18)F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. RESULTS The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%-109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%-98.1% and reduced apparent lesion size by 21.8%-34.2%. Improvements were particularly important for the smallest lesion undergoing large motion at the lung-liver interface. Heterogeneous tumor structures delineation was substantially improved. Enhancements offered by PSF modeling were more important when correcting for motion at the same time. CONCLUSIONS The results suggest that the proposed quantitative PET-MR methods can significantly enhance the performance of tumor diagnosis and staging as compared to conventional methods. This approach may enable utilization of the full potential of the scanner in oncologic studies of both the lower abdomen, with moving lesions, as well as other parts of the body unaffected by motion.
Collapse
Affiliation(s)
- Yoann Petibon
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Chuan Huang
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jinsong Ouyang
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Timothy G Reese
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; and Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts 02129
| | - Quanzheng Li
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Aleksandra Syrkina
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Yen-Lin Chen
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
123
|
Pujatti PB, Foster JM, Finucane C, Hudson CD, Burnet JC, Pasqualoto KFM, Mengatti J, Mather SJ, de Araújo EB, Sosabowski JK. Evaluation and comparison of a new DOTA and DTPA-bombesin agonist in vitro and in vivo in low and high GRPR expressing prostate and breast tumor models. Appl Radiat Isot 2014; 96:91-101. [PMID: 25479439 DOI: 10.1016/j.apradiso.2014.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 01/30/2023]
Abstract
We evaluated and compared a new bombesin analog [Tyr-Gly5, Nle(14)]-BBN(6-14) conjugated to DOTA or DTPA and radiolabeled with In-111 in low and high GRPR expressing tumor models. Both peptides were radiolabeled with high radiochemical purity and specific activity. In vitro assays on T-47D, LNCaP and PC-3 cells showed that the affinity of peptides is similar and a higher binding and internalization of DOTA-peptide to PC-3 cells was observed. Both peptides could target PC-3 and LNCaP tumors in vivo and both tumor types could be visualized by microSPECT/CT.
Collapse
Affiliation(s)
- Priscilla B Pujatti
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom; Nuclear and Energy Research Institute (IPEN), University of Sao Paulo, Sao Paulo, Brazil.
| | - Julie M Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Ciara Finucane
- InviCRO LLC, 27 Drydock Ave, Boston, MA 02210, United States
| | - Chantelle D Hudson
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | | | - Jair Mengatti
- Nuclear and Energy Research Institute (IPEN), University of Sao Paulo, Sao Paulo, Brazil
| | - Stephen J Mather
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Elaine B de Araújo
- Nuclear and Energy Research Institute (IPEN), University of Sao Paulo, Sao Paulo, Brazil
| | - Jane K Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
124
|
Yip S, Chen AB, Aerts HJWL, Berbeco R. Sensitivity study of voxel-based PET image comparison to image registration algorithms. Med Phys 2014; 41:111714. [DOI: 10.1118/1.4898125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
125
|
Abstract
Lung diseases cause significant morbidity and mortality and lead to high healthcare utilization. However, few lung disease-specific biomarkers are available to accurately monitor disease activity for the purposes of clinical management or drug development. Advances in cross-modal imaging technologies, such as combined positron emission tomography (PET) and magnetic resonance (MR) imaging scanners and PET or single-photon emission computed tomography (SPECT) combined with computed tomography (CT), may aid in the development of noninvasive, molecular-based biomarkers for lung disease. However, the lungs pose particular challenges in obtaining accurate quantification of imaging data due to the low density of the organ and breathing motion. This review covers the basic physics underlying PET, SPECT, CT, and MR lung imaging and presents technical considerations for multimodal imaging with regard to PET and SPECT quantification. It also includes a brief review of the current and potential clinical applications for these hybrid imaging technologies.
Collapse
Affiliation(s)
- Delphine L Chen
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Campus Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Paul E Kinahan
- Department of Radiology and Bioengineering and Physics, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
126
|
Chan C, Harris M, Le M, Biondi J, Grobshtein Y, Liu YH, Sinusas AJ, Liu C. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system. Phys Med Biol 2014; 59:6267-87. [PMID: 25256033 DOI: 10.1088/0031-9155/59/20/6267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on the patient with defect. The results showed that the proposed methods can effectively reduce motion blur in the images caused by both respiratory and cardiac motions, which may lead to more accurate defect detection and quantifications. This approach can be easily adapted in routine clinical practice on currently available commercial systems.
Collapse
Affiliation(s)
- Chung Chan
- Department of Diagnostic Radiology, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Bowen SR, Pierce LA, Alessio AM, Liu C, Wollenweber SD, Stearns CW, Kinahan PE. Assessment of patient selection criteria for quantitative imaging with respiratory-gated positron emission tomography. J Med Imaging (Bellingham) 2014; 1:026001. [PMID: 26158039 DOI: 10.1117/1.jmi.1.2.026001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 12/25/2022] Open
Abstract
The objective of this investigation was to propose techniques for determining which patients are likely to benefit from quantitative respiratory-gated imaging by correlating respiratory patterns to changes in positron emission tomography (PET) metrics. Twenty-six lung and liver cancer patients underwent PET/computed tomography exams with recorded chest/abdominal displacements. Static and adaptive amplitude-gated [[Formula: see text]]fluoro-D-glucose (FDG) PET images were generated from list-mode acquisitions. Patients were grouped by respiratory pattern, lesion location, or degree of lesion attachment to anatomical structures. Respiratory pattern metrics were calculated during time intervals corresponding to PET field of views over lesions of interest. FDG PET images were quantified by lesion maximum standardized uptake value ([Formula: see text]). Relative changes in [Formula: see text] between static and gated PET images were tested for association to respiratory pattern metrics. Lower lung lesions and liver lesions had significantly higher changes in [Formula: see text] than upper lung lesions (14 versus 3%, [Formula: see text]). Correlation was highest ([Formula: see text], [Formula: see text], [Formula: see text]) between changes in [Formula: see text] and nonstandard respiratory pattern metrics. Lesion location had a significant impact on changes in PET quantification due to respiratory gating. Respiratory pattern metrics were correlated to changes in [Formula: see text], though sample size limited statistical power. Validation in larger cohorts may enable selection of patients prior to acquisition who would benefit from respiratory-gated PET imaging.
Collapse
Affiliation(s)
- Stephen R Bowen
- University of Washington School of Medicine , Department of Radiation Oncology, 1959 NE Pacific St, Seattle, Washington 98195, United States ; University of Washington School of Medicine , Department of Radiology, 1959 NE Pacific St, Seattle, Washington 98195, United States
| | - Larry A Pierce
- University of Washington School of Medicine , Department of Radiology, 1959 NE Pacific St, Seattle, Washington 98195, United States
| | - Adam M Alessio
- University of Washington School of Medicine , Department of Radiology, 1959 NE Pacific St, Seattle, Washington 98195, United States
| | - Chi Liu
- Yale University School of Medicine , Department of Diagnostic Radiology, New Haven, Connecticut 06510, United States
| | | | | | - Paul E Kinahan
- University of Washington School of Medicine , Department of Radiology, 1959 NE Pacific St, Seattle, Washington 98195, United States
| |
Collapse
|
128
|
Huang TC, Chou KT, Wang YC, Zhang G. Motion freeze for respiration motion correction in PET/CT: a preliminary investigation with lung cancer patient data. BIOMED RESEARCH INTERNATIONAL 2014; 2014:167491. [PMID: 25250313 PMCID: PMC4164623 DOI: 10.1155/2014/167491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 11/17/2022]
Abstract
PURPOSE Respiratory motion presents significant challenges for accurate PET/CT. It often introduces apparent increase of lesion size, reduction of measured standardized uptake value (SUV), and the mismatch in PET/CT fusion images. In this study, we developed the motion freeze method to use 100% of the counts collected by recombining the counts acquired from all phases of gated PET data into a single 3D PET data, with correction of respiration by deformable image registration. METHODS Six patients with diagnosis of lung cancer confirmed by oncologists were recruited. PET/CT scans were performed with Discovery STE system. The 4D PET/CT with the Varian real-time position management for respiratory motion tracking was followed by a clinical 3D PET/CT scan procedure in the static mode. Motion freeze applies the deformation matrices calculated by optical flow method to generate a single 3D effective PET image using the data from all the 4D PET phases. RESULTS The increase in SUV and decrease in tumor size with motion freeze for all lesions compared to the results from 3D and 4D was observed in the preliminary data of lung cancer patients. In addition, motion freeze substantially reduced tumor mismatch between the CT image and the corresponding PET images. CONCLUSION Motion freeze integrating 100% of the PET counts has the potential to eliminate the influences induced by respiratory motion in PET data.
Collapse
Affiliation(s)
- Tzung-Chi Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Road, Taichung City, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung City, Taiwan
| | - Kuei-Ting Chou
- Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Road, Taichung City, Taiwan
| | - Yao-Ching Wang
- Department of Radiation Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Geoffrey Zhang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
129
|
Chi A, Nguyen NP. 4D PET/CT as a Strategy to Reduce Respiratory Motion Artifacts in FDG-PET/CT. Front Oncol 2014; 4:205. [PMID: 25136514 PMCID: PMC4120690 DOI: 10.3389/fonc.2014.00205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/16/2014] [Indexed: 01/08/2023] Open
Abstract
The improved accuracy in tumor identification with FDG-PET has led to its increased utilization in target volume delineation for radiotherapy treatment planning in the treatment of lung cancer. However, PET/CT has constantly been influenced by respiratory motion-related image degradation, which is especially prominent for small lung tumors in the peri-diaphragmatic regions of the thorax. Here, we describe the current findings on respiratory motion-related image degradation in PET/CT, which may bring uncertainties to target volume delineation for image guided radiotherapy (IGRT) for lung cancer. Furthermore, we describe the evidence suggesting 4D PET/CT to be one strategy to minimize the impact of respiratory motion-related image degradation on tumor target delineation for thoracic IGRT. This, in our opinion, warrants further investigation in future IGRT-based lung cancer trials.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Mary Babb Randolph Cancer Center, West Virginia University , Morgantown, WV , USA
| | - Nam P Nguyen
- The International Geriatric Radiotherapy Group , Tucson, AZ , USA
| |
Collapse
|
130
|
Harteela M, Hirvi H, Mäkipää A, Teuho J, Koivumäki T, Mäkelä MM, Teräs M. Comparison of end-expiratory respiratory gating methods for PET/CT. Acta Oncol 2014; 53:1079-85. [PMID: 24960580 DOI: 10.3109/0284186x.2014.926028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Respiratory motion in positron emission tomography/computed tomography (PET/CT) causes underestimation of standardized uptake value (SUV) and variation of lesion volume, while PET and CT attenuation correction (CTAC) mismatch may introduce artefacts. The aim was to compare end-expiratory gating methods of PET and CTAC. MATERIAL AND METHODS Three methods named the minimum-constant, slope-based and amplitude-median were developed and evaluated on gating efficiency. Method evaluation and optimization was performed on 23 simulated and 23 recorded signals from a mixed patient group. The optimized methods were applied in PET/CT imaging of seven patients, consisting of non-gated CTAC, whole-body PET and four-dimensional (4D) PET/CT. Gating efficiency was evaluated by preservation of the respiratory signal, PET-CTAC alignment, image noise and measurement of lesion SUV maximum (SUVmax), SUV mean (SUVmean) and volume. The methods were evaluated with non-gated PET and end-expiratory phase of five-bin phase-gated PET. End-expiratory gated 4D-CTAC and averaged CTAC were compared for attenuation correction of end-expiratory gated PET. RESULTS Mean fraction of data preserved was larger (23-34%) with end-expiratory gating compared to phase-gated PET. End-expiratory gating showed increased SUVmax (8.2-8.4 g/ml), SUVmean (5.7-5.8 g/ml) and decreased lesion volume (-11.3-16.8%) compared to non-gated PET (SUVmax 6.2 g/ml, SUVmean 4.7 g/ml) and phase-gated PET (SUVmax 8.0 g/ml, SUVmean 5.6 g/ml). Using averaged CTAC and end-expiratory 4D-CTAC produced similar results concerning SUVmax, with less than 5% difference. Additionally, CTAC-PET-mismatch was minimal when end-expiratory 4D-CTAC was used. CONCLUSION End-expiratory gating in PET/CT results in SUVmax and SUVmean increase and reduced lesion volume compared to non-gated PET and phase-gated PET. End-expiratory 4D-CTAC or averaged CTAC will offer similar accuracy for attenuation correction of end-expiratory gated PET.
Collapse
Affiliation(s)
- Markus Harteela
- Department of Mathematics and Statistics, University of Turku , Turku , Finland
| | | | | | | | | | | | | |
Collapse
|
131
|
Doot RK, McDonald ES, Mankoff DA. Role of PET quantitation in the monitoring of cancer response to treatment: Review of approaches and human clinical trials. Clin Transl Imaging 2014; 2:295-303. [PMID: 25229053 DOI: 10.1007/s40336-014-0071-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) measures of cancer metabolism and cellular proliferation are increasingly being studied as markers of cancer response to treatment, with the goal of using them as predictors of patient therapeutic outcomes - i.e., as surrogate outcome measures. The primary PET radiotracers thus far used for monitoring response of cancer to treatment are 18F-fluorodeoxyglucose (FDG) for studying abnormal energy metabolism and 18F-fluorothymidine (FLT) for examining cell proliferation. Both FDG and FLT PET quantitation of cancer response to treatment have been found to correlate with patient outcomes, mostly in single-center studies. The aim of this review is to summarize the impact of commonly selected PET quantitation methods on the ability of PET measures to quantitate cancer response to treatment. An understanding of the biochemistry and kinetics of FDG and FLT uptake and knowledge of the expected tracer uptake by cancerous processes relative to background uptake are required to select appropriate PET quantitation methods for trials testing for correlations between PET measures and patient outcome. PET measures may eventually serve as predictive biomarkers capable of guiding individualized treatment and improving patient outcomes and quality of life by early identification of ineffective therapies. PET can also potentially identify patients who would be good candidates for molecularly targeted drugs and monitor response to these personalized therapies.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
132
|
Schleyer PJ, Thielemans K, Marsden PK. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics. Phys Med Biol 2014; 59:4345-56. [PMID: 25031067 DOI: 10.1088/0031-9155/59/15/4345] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensated for tracer kinetics and improved the correlation between the data-driven and hardware based signals. On average, good correlation was maintained throughout the PET acquisitions.
Collapse
Affiliation(s)
- P J Schleyer
- Division of Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | | | | |
Collapse
|
133
|
Respiratory-induced errors in tumor quantification and delineation in CT attenuation-corrected PET images: effects of tumor size, tumor location, and respiratory trace: a simulation study using the 4D XCAT phantom. Mol Imaging Biol 2014; 15:655-65. [PMID: 23780352 DOI: 10.1007/s11307-013-0656-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE We investigated the magnitude of respiratory-induced errors in tumor maximum standardized uptake value (SUVmax), localization, and volume for different respiratory motion traces and various lesion sizes in different locations of the thorax and abdomen in positron emission tomography (PET) images. PROCEDURES Respiratory motion traces were simulated based on the common patient breathing cycle and three diaphragm motions used to drive the 4D XCAT phantom. Lesions with different diameters were simulated in different locations of lungs and liver. The generated PET sinograms were subsequently corrected using computed tomography attenuation correction involving the end exhalation, end inhalation, and average of the respiratory cycle. By considering respiration-averaged computed tomography as a true value, the lesion volume, displacement, and SUVmax were measured and analyzed for different respiratory motions. RESULTS Respiration with 35-mm diaphragm motion results in a mean lesion SUVmax error of 24 %, a mean superior inferior displacement of 7.6 mm and a mean lesion volume overestimation of 129 % for a 9-mm lesion in the liver. Respiratory motion results in lesion volume overestimation of 50 % for a 9-mm lower lung lesion near the liver with just 15-mm diaphragm motion. Although there are larger errors in lesion SUVmax and volume for 35-mm motion amplitudes, respiration-averaged computed tomography results in smaller errors than the other two phases, except for the lower lung region. CONCLUSIONS The respiratory motion-induced errors in tumor quantification and delineation are highly dependent upon the motion amplitude, tumor location, tumor size, and choice of the attenuation map for PET image attenuation correction.
Collapse
|
134
|
Abstract
Aim Respiratory motion affects cardiac PET-computed tomography (CT) imaging by reducing attenuation correction (AC) accuracy and by introducing blur. The aim of this study was to compare three approaches for reducing motion-induced AC errors and evaluate the inclusion of respiratory motion correction. Materials and methods AC with a helical CT was compared with averaged cine and gated cine CT, as well as with a pseudo-gated CT, which was produced by applying PET-derived motion fields to the helical CT. Data-driven gating was used to produce respiratory-gated PET and CT images, and 60 NH3 PET scans were attenuation corrected with each of the CTs. Respiratory motion correction was applied to the gated and pseudo-gated attenuation-corrected PET images. Results Anterior and lateral wall intensity measured in attenuation-corrected PET images generally increased when PET-CT alignment improved and decreased when alignment degraded. On average, all methods improved PET-CT liver and cardiac alignment, and increased anterior wall intensity by more than 10% in 36, 33 and 25 cases for the averaged, gated and pseudo-gated CTAC PET images, respectively. However, cases were found where alignment worsened and severe artefacts resulted. This occurred in more cases and to a greater extent for the averaged and gated CT, where the anterior wall intensity reduced by more than 10% in 21 and 24 cases, respectively, compared with six cases for the pseudo-gated CT. Application of respiratory motion correction increased the average anterior and inferior wall intensity, but only 13% of cases increased by more than 10%. Conclusion All methods improved average respiratory-induced AC errors; however, some severe artefacts were produced. The pseudo-gated CT was found to be the most robust method.
Collapse
|
135
|
Respiratory motion reduction in PET/CT using abdominal compression for lung cancer patients. PLoS One 2014; 9:e98033. [PMID: 24837352 PMCID: PMC4024027 DOI: 10.1371/journal.pone.0098033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/14/2014] [Indexed: 12/25/2022] Open
Abstract
Purpose Respiratory motion causes substantial artifacts in reconstructed PET images when using helical CT as the attenuation map in PET/CT imaging. In this study, we aimed to reduce the respiratory artifacts in PET/CT images of patients with lung tumors using an abdominal compression device. Methods Twelve patients with lung cancer located in the middle or lower lobe of the lung were recruited. The patients were injected with 370 MBq of 18F-FDG. During PET, the patients assumed two bed positions for 1.5 min/bed. After conducting free-breathing imaging, we obtained images of the patients with abdominal compression by applying the same setup used in the free-breathing scan. The differences in the standardized uptake value (SUV)max, SUVmean, tumor volume, and the centroid of the tumors between PET and various CT schemes were measured. Results The SUVmax and SUVmean derived from PET/CT imaging using an abdominal compression device increased for all the lesions, compared with those obtained using the conventional approach. The percentage increases were 18.1% ±14% and 17% ±16.8% for SUVmax and SUVmean, respectively. PET/CT imaging combined with abdominal compression generally reduced the tumor mismatch between CT and the corresponding attenuation corrected PET images, with an average decrease of 1.9±1.7 mm over all the cases. Conclusions PET/CT imaging combined with abdominal compression reduces respiratory artifacts and PET/CT misregistration, and enhances quantitative SUV in tumor. Abdominal compression is easy to set up and is an effective method used in PET/CT imaging for clinical oncology, especially in the thoracic region.
Collapse
|
136
|
Grimm R, Fürst S, Dregely I, Forman C, Hutter JM, Ziegler SI, Nekolla S, Kiefer B, Schwaiger M, Hornegger J, Block T. Self-gated radial MRI for respiratory motion compensation on hybrid PET/MR systems. ACTA ACUST UNITED AC 2014; 16:17-24. [PMID: 24505739 DOI: 10.1007/978-3-642-40760-4_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenging due to the respiratory motion during the exam. The advent of hybrid PET/MR systems offers new ways to compensate for respiratory motion without exposing the patient to additional radiation. The use of self-gated reconstructions of a 3D radial stack-of-stars GRE acquisition is proposed to derive a high-resolution MRI motion model. The self-gating signal is used to perform respiratory binning of the simultaneously acquired PET raw data. Matching mu-maps are generated for every bin, and post-reconstruction registration is performed in order to obtain a motion-compensated PET volume from the individual gates. The proposed method is demonstrated in-vivo for three clinical patients. Motion-corrected reconstructions are compared against ungated and gated PET reconstructions. In all cases, motion-induced blurring of lesions in the liver and lung was substantially reduced, without compromising SNR as it is the case for gated reconstructions.
Collapse
Affiliation(s)
- Robert Grimm
- Pattern Recognition Lab, FAU Erlangen, Erlangen, Germany
| | | | - Isabel Dregely
- Department of Nuclear Medicine, TU Munich, Munich, Germany
| | | | | | | | | | | | | | | | - Tobias Block
- Department of Radiology, NYU Langone Medical Center, New York City, NY, USA
| |
Collapse
|
137
|
Wang S, Bowen SR, Chaovalitwongse WA, Sandison GA, Grabowski TJ, Kinahan PE. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification. Phys Med Biol 2014; 59:1027-45. [PMID: 24504153 DOI: 10.1088/0031-9155/59/4/1027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV(peak)) over lesions of interest. Relative differences in SUV(peak) between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV(peak) values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.
Collapse
Affiliation(s)
- Shouyi Wang
- Department of Industrial and Systems Engineering, 3900 Stevens Way, Seattle, WA 98195, USA. Integrated Brain Imaging Center, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
138
|
Improved visualization of perfusion defects by respiratory-gated SPECT: a phantom simulation study. Nucl Med Commun 2013; 35:189-96. [PMID: 24217430 DOI: 10.1097/mnm.0000000000000015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Single-photon emission computed tomography ventilation/perfusion (SPECT V/Q) imaging is recommended both by the Society of Nuclear Medicine and by the European Association of Nuclear Medicine for the diagnosis of pulmonary embolism. However, respiratory motion produces image blurring and degradation of detail in the lungs. We have investigated respiratory gating of SPECT images, correcting for motion to reduce blur and improve image definition. MATERIALS AND METHODS Wedge-shaped defects of different sizes ranging from 15 to 4 mm were fixed in the lung cavities of an anthropomorphic lung phantom to simulate perfusion defects. Gated and nongated SPECT images were obtained using a double-headed SPECT system. Three-dimensional movement was introduced using a purpose-built moving platform with two motion frequencies of 10 and 20 cycles/min. Motion was tracked with a respiratory-gating system. Gated SPECT data were acquired in 16 discrete data bins in synchronization with the breathing cycle. The images were reconstructed using ordered-subset expectation maximization algorithms and corrected for rigid motion. Contrast and contrast-to-noise ratios (CNRs) were measured to quantify any improvement in the gated motion-corrected images. Visualization of defects in the reconstructed images was performed by seven observers and analyzed using alternative free-response receiver operating characteristic analysis. RESULTS Assessment of gated and nongated SPECT phantom images demonstrated that motion adversely affected the detectability of defects. Quantification of data demonstrated that, in the controlled simulation, image quality, defect definition, observer confidence, contrast, and CNR were increased after applying motion correction. Improvement in CNRs was found to be significant using alternative free-response receiver operating characteristic analysis (P=0.0002). CONCLUSION Respiratory-gated motion-corrected SPECT images enhanced the visualization of defects compared with matched moving/nongated images in a realistic moving phantom. This approach may be particularly valuable for SPECT V/Q imaging and may improve the diagnosis of pulmonary embolism.
Collapse
|
139
|
Chan C, Jin X, Fung EK, Naganawa M, Mulnix T, Carson RE, Liu C. Event-by-event respiratory motion correction for PET with 3D internal-1D external motion correlation. Med Phys 2013; 40:112507. [DOI: 10.1118/1.4826165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
140
|
Nam WH, Ahn IJ, Kim KM, Kim BI, Ra JB. Motion-compensated PET image reconstruction with respiratory-matched attenuation correction using two low-dose inhale and exhale CT images. Phys Med Biol 2013; 58:7355-74. [DOI: 10.1088/0031-9155/58/20/7355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
141
|
Ouyang J, Li Q, El Fakhri G. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med 2013. [PMID: 23178089 DOI: 10.1053/j.semnuclmed.2012.08.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) image quality is limited by patient motion. Emission data are blurred owing to cardiac and/or respiratory motion. Although spatial resolution is 4 mm for standard clinical whole-body PET scanners, the effective resolution can be as low as 1 cm owing to motion. Additionally, the deformation of attenuation medium causes image artifacts. Previously, gating has been used to "freeze" the motion, but led to significantly increased noise level. Simultaneous PET/magnetic resonance (MR) modality offers a new way to perform PET motion correction. MR can be used to measure 3-dimensional motion fields, which can then be incorporated into the iterative PET reconstruction to obtain motion-corrected PET images. In this report, we present MR imaging techniques to acquire dynamic images, a nonrigid image registration algorithm to extract motion fields from acquired MR images, and a PET reconstruction algorithm with motion correction. We also present results from both phantom and in vivo animal PET/MR studies. We demonstrate that MR-based PET motion correction using simultaneous PET/MR improves image quality and lesion detectability compared with gating and no motion correction.
Collapse
Affiliation(s)
- Jinsong Ouyang
- Center for Advanced Radiological Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
142
|
Sun T, Wu TH, Wang SJ, Yang BH, Wu NY, Mok GSP. Low dose interpolated average CT for thoracic PET/CT attenuation correction using an active breathing controller. Med Phys 2013; 40:102507. [DOI: 10.1118/1.4820976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
143
|
Skretting A, Revheim ME, Knudtsen IS, Johnsrud K, Bogsrud TV. An implementation of time-efficient respiratory-gated PET acquisition by repeated breath-holds. Acta Radiol 2013; 54:672-5. [PMID: 23463858 DOI: 10.1177/0284185113478007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Respiratory gating in positron emission tomography (PET) is used to improve detection of small tumors in the lower lung regions and in the liver, and to obtain a better estimate of the standardized uptake value (SUV). PURPOSE To develop a time-efficient method for acquisition of respiratory-gated PET/CT that would produce one single high quality image volume corresponding to a breath-hold state. MATERIAL AND METHODS An instrument was developed that displayed to the patient either red or green numbers, counting down from a chosen maximum to one at a rate of one dial per second. The patient was instructed to repeatedly hold the breath in moderate inspiration when red numbers were displayed and to breathe freely during display of green numbers. PET data were acquired in list mode and trigger signals were sent to the scanner and inserted into the list file each time the color of the countdown numbers switched from green to red. Data acquired during breath-holds were used to create one single image volume. RESULTS High quality breath-hold images were obtained from 10 min data acquisition at one bed position. Improved image quality compared to standard whole-body PET was demonstrated by a significant reduction of noise (standard deviation) in regions of normal liver tissues. CONCLUSION The instruction to perform repeated breath-holds was well understood by patients and they cooperated satisfactorily. When the new procedure is used the duration of the data acquisition may typically be reduced by a factor of 4 compared to conventional respiratory-gated protocols where the patient breathes freely.
Collapse
Affiliation(s)
- Arne Skretting
- The Intervention Centre, Oslo University Hospital, Oslo
- Institute of Clinical Medicine, University of Oslo, Oslo
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, Oslo
- Department of Radiology and Nuclear medicine, Oslo University Hospital, Oslo
| | - Ingerid Skjei Knudtsen
- Department of Physics, University of Oslo, Oslo
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Kjersti Johnsrud
- Department of Radiology and Nuclear medicine, Oslo University Hospital, Oslo
| | - Trond Velde Bogsrud
- Department of Radiology and Nuclear medicine, Oslo University Hospital, Oslo
| |
Collapse
|
144
|
Mahasittiwat P, Yuan S, Xie C, Ritter T, Cao Y, Ten Haken RK, Kong FMS. Metabolic Tumor Volume on PET Reduced More than Gross Tumor Volume on CT during Radiotherapy in Patients with Non-Small Cell Lung Cancer Treated with 3DCRT or SBRT. ACTA ACUST UNITED AC 2013; 2:191-202. [PMID: 23795245 DOI: 10.1007/s13566-013-0091-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE We have previously demonstrated that tumor reduces in activity and size during the course of radiotherapy (RT) in a limited number of patients with non-small cell lung cancer (NSCLC). This study aimed to quantify the metabolic tumor volume (MTV) on PET and compare its changes with those of gross tumor volume (GTV) on CT during-RT for 3D conformal radiotherapy (3DCRT) and stereotactic body radiotherapy (SBRT). METHODS Patients with stage I-III NSCLC treated with a definitive course of RT ± chemotherapy were eligible for this prospective study. FDG-PET/CT scans were acquired within 2 weeks before RT (pre-RT) and at about two thirds of total dose during-RT. PET-MTVs were delineated using a method combining the tumor/aorta ratio autosegmentation and CT anatomy based manual editing. Data is presented as mean (95% confident interval). RESULTS The MTV delineation methodology was first confirmed to be highly reproducible by comparing volumes defined by different physicians and using different systems (coefficiency >0.98). Fifty patients with 88 primary and nodal lesions were evaluated. The mean ratios of MTV/GTV were 0.70(-0.07~1.47) and 0.33(-0.30~0.95) for pre-RT and during-RT, respectively. PET-MTV reduced by 70% (62-77%), while CT-GTV by 41% (33-49%) (p< 0.001) during-RT. MTV reduction was 72.9% and 15.4% for 3DCRT and SBRT, respectively (p< 0.001). CONCLUSION PET-MTV reduced more than CT-GTV during-RT, while patients treated with 3DCRT reduced more than SBRT. RTOG1106 is using during-RT PET-MTV to adapt radiation therapy in 3DCRT.
Collapse
Affiliation(s)
- Pawinee Mahasittiwat
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI ; Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Thailand
| | | | | | | | | | | | | |
Collapse
|
145
|
Cuaron J, Dunphy M, Rimner A. Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer. Front Oncol 2013; 2:208. [PMID: 23316478 PMCID: PMC3539654 DOI: 10.3389/fonc.2012.00208] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/13/2012] [Indexed: 12/22/2022] Open
Abstract
The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated (18)F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. (18)F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. (18)F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on (18)F-FDG-PET scan when CT criteria for malignant involvement are not met. (18)F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. (18)F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. (18)F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3-6 months, using (18)F-FDG-PET to evaluate equivocal CT findings. As high (18)F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, (18)F-FDG-PET-positive findings require pathological confirmation in most cases. There is increased interest in the prognostic and predictive role of FDG-PET scans. Studies show that absence of metabolic response to neoadjuvant therapy correlates with poor pathologic response, and a favorable (18)F-FDG-PET response appears to be associated with improved survival. Further work is underway to identify subsets of patients that might benefit individualized management based on FDG-PET.
Collapse
Affiliation(s)
- John Cuaron
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center New York, NY, USA
| | | | | |
Collapse
|
146
|
Büther F, Ernst I, Hamill J, Eich HT, Schober O, Schäfers M, Schäfers KP. External radioactive markers for PET data-driven respiratory gating in positron emission tomography. Eur J Nucl Med Mol Imaging 2012; 40:602-14. [PMID: 23238525 DOI: 10.1007/s00259-012-2313-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/23/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE Respiratory gating is an established approach to overcoming respiration-induced image artefacts in PET. Of special interest in this respect are raw PET data-driven gating methods which do not require additional hardware to acquire respiratory signals during the scan. However, these methods rely heavily on the quality of the acquired PET data (statistical properties, data contrast, etc.). We therefore combined external radioactive markers with data-driven respiratory gating in PET/CT. The feasibility and accuracy of this approach was studied for [(18)F]FDG PET/CT imaging in patients with malignant liver and lung lesions. METHODS PET data from 30 patients with abdominal or thoracic [(18)F]FDG-positive lesions (primary tumours or metastases) were included in this prospective study. The patients underwent a 10-min list-mode PET scan with a single bed position following a standard clinical whole-body [(18)F]FDG PET/CT scan. During this scan, one to three radioactive point sources (either (22)Na or (18)F, 50-100 kBq) in a dedicated holder were attached the patient's abdomen. The list mode data acquired were retrospectively analysed for respiratory signals using established data-driven gating approaches and additionally by tracking the motion of the point sources in sinogram space. Gated reconstructions were examined qualitatively, in terms of the amount of respiratory displacement and in respect of changes in local image intensity in the gated images. RESULTS The presence of the external markers did not affect whole-body PET/CT image quality. Tracking of the markers led to characteristic respiratory curves in all patients. Applying these curves for gated reconstructions resulted in images in which motion was well resolved. Quantitatively, the performance of the external marker-based approach was similar to that of the best intrinsic data-driven methods. Overall, the gain in measured tumour uptake from the nongated to the gated images indicating successful removal of respiratory motion was correlated with the magnitude of the respiratory displacement of the respective tumour lesion, but not with lesion size. CONCLUSION Respiratory information can be assessed from list-mode PET/CT through PET data-derived tracking of external radioactive markers. This information can be successfully applied to respiratory gating to reduce motion-related image blurring. In contrast to other previously described PET data-driven approaches, the external marker approach is independent of tumour uptake and thereby applicable even in patients with poor uptake and small tumours.
Collapse
Affiliation(s)
- Florian Büther
- European Institute for Molecular Imaging, University of Münster, Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
147
|
Accurate localization of incidental findings on the computed tomography attenuation correction image: the influence of tube current variation. Nucl Med Commun 2012. [PMID: 23196677 DOI: 10.1097/mnm.0b013e32835c0984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This observer performance study assessed lesion detection in the computed tomography attenuation correction image, as would be produced for myocardial perfusion imaging over a tube current (mA) range. A static anthropomorphic chest phantom containing simulated pulmonary lesions was scanned using the four available mA values (1, 1.5, 2 and 2.5) on a GE Infinia Hawkeye 4. All other computed tomography acquisition parameters remained constant throughout. Twenty-seven cases showing zero to four lesions were produced for a free-response receiver-operating characteristic method. Image observations were completed using our novel web-based ROCView software under controlled conditions. The Jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit was used for significance testing, wherein a difference in lesion detection performance was considered significant at P values less than 0.05. Twenty readers with varying computed tomography experience (0-24 years) evaluated 108 images using an ordinal scale to score confidence. The JAFROC analysis showed that there was no statistically significant difference in performance between mA values (P=0.439) for this sample of observers. In conclusion, no significant difference in lesion detection performance was seen between the mA values. This suggests that there is no value in using anything other than the lowest mA value for the investigation of incidental extracardiac findings.
Collapse
|
148
|
Abstract
The driving force in the research and development of new hybrid PET-CT/MR imaging scanners is the production of images with optimum quality, accuracy, and resolution. However, the acquisition process is limited by several factors. Key issues are the respiratory and cardiac motion artifacts that occur during an imaging session. In this article the necessary tools for modeling and simulation of realistic high-resolution four-dimensional PET-CT and PET-MR imaging data are described. Beyond the need for four-dimensional simulations, accurate modeling of the acquisition process can be included within the reconstruction algorithms assisting in the improvement of image quality and accuracy of estimation of physiologic parameters from four-dimensional hybrid PET imaging.
Collapse
|
149
|
Bowen SR, Nyflot MJ, Gensheimer M, Hendrickson KRG, Kinahan PE, Sandison GA, Patel SA. Challenges and opportunities in patient-specific, motion-managed and PET/CT-guided radiation therapy of lung cancer: review and perspective. Clin Transl Med 2012; 1:18. [PMID: 23369522 PMCID: PMC3560984 DOI: 10.1186/2001-1326-1-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022] Open
Abstract
The increasing interest in combined positron emission tomography (PET) and computed tomography (CT) to guide lung cancer radiation therapy planning has been well documented. Motion management strategies during treatment simulation PET/CT imaging and treatment delivery have been proposed to improve the precision and accuracy of radiotherapy. In light of these research advances, why has translation of motion-managed PET/CT to clinical radiotherapy been slow and infrequent? Solutions to this problem are as complex as they are numerous, driven by large inter-patient variability in tumor motion trajectories across a highly heterogeneous population. Such variation dictates a comprehensive and patient-specific incorporation of motion management strategies into PET/CT-guided radiotherapy rather than a one-size-fits-all tactic. This review summarizes challenges and opportunities for clinical translation of advances in PET/CT-guided radiotherapy, as well as in respiratory motion-managed radiotherapy of lung cancer. These two concepts are then integrated into proposed patient-specific workflows that span classification schemes, PET/CT image formation, treatment planning, and adaptive image-guided radiotherapy delivery techniques.
Collapse
Affiliation(s)
- Stephen R Bowen
- University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific St, Box 356043, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
150
|
Koivumäki T, Vauhkonen M, Kuikka JT, Hakulinen MA. Bioimpedance-based measurement method for simultaneous acquisition of respiratory and cardiac gating signals. Physiol Meas 2012; 33:1323-34. [DOI: 10.1088/0967-3334/33/8/1323] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|