101
|
Martin-Gomez A, Eisenstecken T, Gompper G, Winkler RG. Hydrodynamics of polymers in an active bath. Phys Rev E 2020; 101:052612. [PMID: 32575238 DOI: 10.1103/physreve.101.052612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The conformational and dynamical properties of active polymers in solution are determined by the nature of the activity. Here, the behavior of polymers with self-propelled, active Brownian particle-type monomers differs qualitatively from that of polymers with monomers driven externally by colored-noise forces. We present simulation and theoretical results for polymers in solution in the presence of external active noise. In simulations, a semiflexible bead-spring chain is considered, in analytical calculations, a continuous linear wormlike chain. Activity is taken into account by independent monomer or site velocities, with orientations changing in a diffusive manner. In simulations, hydrodynamic interactions (HIs) are taken into account by the Rotne-Prager-Yamakawa tensor or by an implementation of the active polymer in the multiparticle-collision-dynamics approach for fluids. To arrive at an analytical solution, the preaveraged Oseen tensor is employed. The active process implies a dependence of the stationary-state properties on HIs via the polymer relaxation times. With increasing activity, HIs lead to an enhanced swelling of flexible polymers, and the conformational properties differ substantially from those of polymers with self-propelled monomers in the presence of HIs, or free-draining polymers. The polymer mean-square displacement is enhanced by HIs. Over a wide range of timescales, hydrodynamics leads to a subdiffusive regime of the site mean-square displacement for flexible active polymers, with an exponent of 5/7, larger than that of the Rouse (1/2) and Zimm (2/3) models of passive polymers.
Collapse
Affiliation(s)
- Aitor Martin-Gomez
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
102
|
Van Vu T, Vo VT, Hasegawa Y. Entropy production estimation with optimal current. Phys Rev E 2020; 101:042138. [PMID: 32422750 DOI: 10.1103/physreve.101.042138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
Entropy production characterizes the thermodynamic irreversibility and reflects the amount of heat dissipated into the environment and free energy lost in nonequilibrium systems. According to the thermodynamic uncertainty relation, we propose a deterministic method to estimate the entropy production from a single trajectory of system states. We explicitly and approximately compute an optimal current that yields the tightest lower bound using predetermined basis currents. Notably, the obtained tightest lower bound is intimately related to the multidimensional thermodynamic uncertainty relation. By proving the saturation of the thermodynamic uncertainty relation in the short-time limit, the exact estimate of the entropy production can be obtained for overdamped Langevin systems, irrespective of the underlying dynamics. For Markov jump processes, because the attainability of the thermodynamic uncertainty relation is not theoretically ensured, the proposed method provides the tightest lower bound for the entropy production. When entropy production is the optimal current, a more accurate estimate can be further obtained using the integral fluctuation theorem. We illustrate the proposed method using three systems: a four-state Markov chain, a periodically driven particle, and a multiple bead-spring model. The estimated results in all examples empirically verify the effectiveness and efficiency of the proposed method.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Van Tuan Vo
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
103
|
Affiliation(s)
- Daniel Geiß
- Max Planck Institute for Mathematics in the Sciences 04103 Leipzig Germany
| | - Klaus Kroy
- Institute for Theoretical PhysicsUniversity of Leipzig Germany
| |
Collapse
|
104
|
Cao X, Zhang B, Zhao N. Contrastive factors of activity and crowding on conformational properties of a flexible polymer. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
105
|
Cao X, Zhang B, Zhao N. Effective temperature scaled dynamics of a flexible polymer in an active bath. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1730992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiuli Cao
- College of Chemistry, Sichuan University, Chengdu, China
| | - Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
106
|
Piñeros WD, Tlusty T. Kinetic proofreading and the limits of thermodynamic uncertainty. Phys Rev E 2020; 101:022415. [PMID: 32168722 DOI: 10.1103/physreve.101.022415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
To mitigate errors induced by the cell's heterogeneous noisy environment, its main information channels and production networks utilize the kinetic proofreading (KPR) mechanism. Here, we examine two extensively studied KPR circuits, DNA replication by the T7 DNA polymerase and translation by the E. coli ribosome. Using experimental data, we analyze the performance of these two vital systems in light of the fundamental bounds set by the recently discovered thermodynamic uncertainty relation (TUR), which places an inherent trade-off between the precision of a desirable output and the amount of energy dissipation required. We show that the DNA polymerase operates close to the TUR lower bound, while the ribosome operates ∼5 times farther from this bound. This difference originates from the enhanced binding discrimination of the polymerase which allows it to operate effectively as a reduced reaction cycle prioritizing correct product formation. We show that approaching this limit also decouples the thermodynamic uncertainty factor from speed and error, thereby relaxing the accuracy-speed trade-off of the system. Altogether, our results show that operating near this reduced cycle limit not only minimizes thermodynamic uncertainty, but also results in global performance enhancement of KPR circuits.
Collapse
Affiliation(s)
- William D Piñeros
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
107
|
Netz RR. Approach to equilibrium and nonequilibrium stationary distributions of interacting many-particle systems that are coupled to different heat baths. Phys Rev E 2020; 101:022120. [PMID: 32168558 DOI: 10.1103/physreve.101.022120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A Hamiltonian-based model of many harmonically interacting massive particles that are subject to linear friction and coupled to heat baths at different temperatures is used to study the dynamic approach to equilibrium and nonequilibrium stationary states. An equilibrium system is here defined as a system whose stationary distribution equals the Boltzmann distribution, the relation of this definition to the conditions of detailed balance and vanishing probability current is discussed both for underdamped as well as for overdamped systems. Based on the exactly calculated dynamic approach to the stationary distribution, the functional that governs this approach, which is called the free entropy S_{free}(t), is constructed. For the stationary distribution S_{free}(t) becomes maximal and its time derivative, the free entropy production S[over ̇]_{free}(t), is minimal and vanishes. Thus, S_{free}(t) characterizes equilibrium as well as nonequilibrium stationary distributions by their extremal and stability properties. For an equilibrium system, i.e., if all heat baths have the same temperature, the free entropy equals the negative free energy divided by temperature and thus corresponds to the Massieu function which was previously introduced in an alternative formulation of statistical mechanics. Using a systematic perturbative scheme for calculating velocity and position correlations in the overdamped massless limit, explicit results for few particles are presented: For two particles localization in position and momentum space is demonstrated in the nonequilibrium stationary state, indicative of a tendency to phase separate. For three elastically interacting particles heat flows from a particle coupled to a cold reservoir to a particle coupled to a warm reservoir if the third reservoir is sufficiently hot. This does not constitute a violation of the second law of thermodynamics, but rather demonstrates that a particle in such a nonequilibrium system is not characterized by an effective temperature which equals the temperature of the heat bath it is coupled to. Active particle models can be described in the same general framework, which thereby allows us to characterize their entropy production not only in the stationary state but also in the approach to the stationary nonequilibrium state. Finally, the connection to nonequilibrium thermodynamics formulations that include the reservoir entropy production is discussed.
Collapse
Affiliation(s)
- Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
108
|
Miermans CA, Broedersz CP. A lattice kinetic Monte-Carlo method for simulating chromosomal dynamics and other (non-)equilibrium bio-assemblies. SOFT MATTER 2020; 16:544-556. [PMID: 31808764 DOI: 10.1039/c9sm01835b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological assemblies in living cells such as chromosomes constitute large many-body systems that operate in a fluctuating, out-of-equilibrium environment. Since a brute-force simulation of that many degrees of freedom is currently computationally unfeasible, it is necessary to perform coarse-grained stochastic simulations. Here, we develop all tools necessary to write a lattice kinetic Monte-Carlo (LKMC) algorithm capable of performing such simulations. We discuss the validity and limits of this approach by testing the results of the simulation method in simple settings. Importantly, we illustrate how at large external forces Metropolis-Hastings kinetics violate the fluctuation-dissipation and steady-state fluctuation theorems and discuss better alternatives. Although this simulation framework is rather general, we demonstrate our approach using a DNA polymer with interacting SMC condensin loop-extruding enzymes. Specifically, we show that the scaling behavior of the loop-size distributions that we obtain in our LKMC simulations of this SMC-DNA system is consistent with that reported in other studies using Brownian dynamics simulations and analytic approaches. Moreover, we find that the irreversible dynamics of these enzymes under certain conditions result in frozen, sterically jammed polymer configurations, highlighting a potential pitfall of this approach.
Collapse
Affiliation(s)
- Christiaan A Miermans
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | | |
Collapse
|
109
|
Potts PP, Samuelsson P. Thermodynamic uncertainty relations including measurement and feedback. Phys Rev E 2019; 100:052137. [PMID: 31869995 DOI: 10.1103/physreve.100.052137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Thermodynamic uncertainty relations quantify how the signal-to-noise ratio of a given observable is constrained by dissipation. Fluctuation relations generalize the second law of thermodynamics to stochastic processes. We show that any fluctuation relation directly implies a thermodynamic uncertainty relation, considerably increasing their range of applicability. In particular, we extend thermodynamic uncertainty relations to scenarios which include measurement and feedback. Since feedback generally breaks time-reversal invariance, the uncertainty relations involve quantities averaged over the forward and the backward experiment defined by the associated fluctuation relation. This implies that the signal-to-noise ratio of a given experiment can in principle become arbitrarily large as long as the corresponding backward experiment compensates, e.g., by being sufficiently noisy. We illustrate our results with the Szilard engine as well as work extraction by free energy reduction in a quantum dot.
Collapse
Affiliation(s)
- Patrick P Potts
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Peter Samuelsson
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
110
|
Abstract
Nucleosome positioning controls the accessible regions of chromatin and plays essential roles in DNA-templated processes. ATP driven remodeling enzymes are known to be crucial for its establishment in vivo, but their nonequilibrium nature has hindered the development of a unified theoretical framework for nucleosome positioning. Using a perturbation theory, we show that the effect of these enzymes can be well approximated by effective equilibrium models with rescaled temperatures and interactions. Numerical simulations support the accuracy of the theory in predicting both kinetic and steady-state quantities, including the effective temperature and the radial distribution function, in biologically relevant regimes. The energy landscape view emerging from our study provides an intuitive understanding for the impact of remodeling enzymes in either reinforcing or overwriting intrinsic signals for nucleosome positioning, and may help improve the accuracy of computational models for its prediction in silico.
Collapse
|
111
|
Mura F, Gradziuk G, Broedersz CP. Mesoscopic non-equilibrium measures can reveal intrinsic features of the active driving. SOFT MATTER 2019; 15:8067-8076. [PMID: 31576897 DOI: 10.1039/c9sm01169b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological assemblies such as chromosomes, membranes, and the cytoskeleton are driven out of equilibrium at the nanoscale by enzymatic activity and molecular motors. Similar non-equilibrium dynamics can be realized in synthetic systems, such as chemically fueled colloidal particles. Characterizing the stochastic non-equilibrium dynamics of such active soft assemblies still remains a challenge. Recently, new non-invasive approaches have been proposed to determine the non-equilibrium behavior, which are based on detecting broken detailed balance in the stochastic trajectories of several coordinates of the system. Inspired by the method of two-point microrheology, in which the equilibrium fluctuations of a pair of probe particles reveal the viscoelastic response of an equilibrium system, here, we investigate whether we can extend such an approach to non-equilibrium assemblies: can one extract information on the nature of the active driving in a system from the analysis of a two-point non-equilibrium measure? We address this question theoretically in the context of a class of elastic systems, driven out of equilibrium by a spatially heterogeneous stochastic internal driving. We consider several scenarios for the spatial features of the internal driving that may be relevant in biological and synthetic systems, and investigate how such features of the active noise may be reflected in the long-range scaling behavior of two-point non-equilibrium measures.
Collapse
Affiliation(s)
- Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | - Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| |
Collapse
|
112
|
Yan J, Hilfinger A, Vinnicombe G, Paulsson J. Kinetic Uncertainty Relations for the Control of Stochastic Reaction Networks. PHYSICAL REVIEW LETTERS 2019; 123:108101. [PMID: 31573304 DOI: 10.1103/physrevlett.123.108101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Nonequilibrium stochastic reaction networks are commonly found in both biological and nonbiological systems, but have remained hard to analyze because small differences in rate functions or topology can change the dynamics drastically. Here, we conjecture exact quantitative inequalities that relate the extent of fluctuations in connected components, for various network topologies. Specifically, we find that regardless of how two components affect each other's production rates, it is impossible to suppress fluctuations below the uncontrolled equivalents for both components: one must increase its fluctuations for the other to be suppressed. For systems in which components control each other in ringlike structures, it appears that fluctuations can only be suppressed in one component if all other components instead increase fluctuations, compared to the case without control. Even the general N-component system-with arbitrary connections and parameters-must have at least one component with increased fluctuations to reduce fluctuations in others. In connected reaction networks it thus appears impossible to reduce the statistical uncertainty in all components, regardless of the control mechanisms or energy dissipation.
Collapse
Affiliation(s)
- Jiawei Yan
- Department of Systems Biology, Harvard University, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Andreas Hilfinger
- Department of Chemical & Physical Sciences, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
- Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Glenn Vinnicombe
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Johan Paulsson
- Department of Systems Biology, Harvard University, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
113
|
Inferring broken detailed balance in the absence of observable currents. Nat Commun 2019; 10:3542. [PMID: 31387988 PMCID: PMC6684597 DOI: 10.1038/s41467-019-11051-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022] Open
Abstract
Identifying dissipation is essential for understanding the physical mechanisms underlying nonequilibrium processes. In living systems, for example, the dissipation is directly related to the hydrolysis of fuel molecules such as adenosine triphosphate (ATP). Nevertheless, detecting broken time-reversal symmetry, which is the hallmark of dissipative processes, remains a challenge in the absence of observable directed motion, flows, or fluxes. Furthermore, quantifying the entropy production in a complex system requires detailed information about its dynamics and internal degrees of freedom. Here we introduce a novel approach to detect time irreversibility and estimate the entropy production from time-series measurements, even in the absence of observable currents. We apply our technique to two different physical systems, namely, a partially hidden network and a molecular motor. Our method does not require complete information about the system dynamics and thus provides a new tool for studying nonequilibrium phenomena. Non-equilibrium systems with hidden states are relevant for biological systems such as molecular motors. Here the authors introduce a method for quantifying irreversibility in such a system by exploiting the fluctuations in the waiting times of time series data.
Collapse
|
114
|
Sou I, Hosaka Y, Yasuda K, Komura S. Nonequilibrium probability flux of a thermally driven micromachine. Phys Rev E 2019; 100:022607. [PMID: 31574649 DOI: 10.1103/physreve.100.022607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 06/10/2023]
Abstract
We discuss the nonequilibrium statistical mechanics of a thermally driven micromachine consisting of three spheres and two harmonic springs [Y. Hosaka et al., J. Phys. Soc. Jpn. 86, 113801 (2017)JUPSAU0031-901510.7566/JPSJ.86.113801]. We obtain the nonequilibrium steady state probability distribution function of such a micromachine and calculate its probability flux in the corresponding configuration space. The resulting probability flux can be expressed in terms of a frequency matrix that is used to distinguish between a nonequilibrium steady state and a thermal equilibrium state satisfying detailed balance. The frequency matrix is shown to be proportional to the temperature difference between the spheres. We obtain a linear relation between the eigenvalue of the frequency matrix and the average velocity of a thermally driven micromachine that can undergo a directed motion in a viscous fluid. This relation is consistent with the scallop theorem for a deterministic three-sphere microswimmer.
Collapse
Affiliation(s)
- Isamu Sou
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kento Yasuda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
115
|
Gradziuk G, Mura F, Broedersz CP. Scaling behavior of nonequilibrium measures in internally driven elastic assemblies. Phys Rev E 2019; 99:052406. [PMID: 31212437 DOI: 10.1103/physreve.99.052406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/07/2022]
Abstract
Detecting and quantifying nonequilibrium activity is essential for studying internally driven assemblies, including synthetic active matter and complex living systems such as cells or tissue. We discuss a noninvasive approach of measuring nonequilibrium behavior based on the breaking of detailed balance. We focus on "cycling frequencies"-the average frequency with which the trajectories of pairs of degrees of freedom revolve in phase space-and explain their connection with other nonequilibrium measures, including the area enclosing rate and the entropy production rate. We test our approach on simple toy models composed of elastic networks immersed in a viscous fluid with site-dependent internal driving. We prove both numerically and analytically that the cycling frequencies obey a power law as a function of distance between the tracked degrees of freedom. Importantly, the behavior of the cycling frequencies contains information about the dimensionality of the system and the amplitude of active noise. The mapping we use in our analytical approach thus offers a convenient framework for predicting the behavior of two-point nonequilibrium measures for a given activity distribution in the network.
Collapse
Affiliation(s)
- Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| |
Collapse
|
116
|
Martín-Gómez A, Eisenstecken T, Gompper G, Winkler RG. Active Brownian filaments with hydrodynamic interactions: conformations and dynamics. SOFT MATTER 2019; 15:3957-3969. [PMID: 31012481 DOI: 10.1039/c9sm00391f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The conformational and dynamical properties of active self-propelled filaments/polymers are investigated in the presence of hydrodynamic interactions by both, Brownian dynamics simulations and analytical theory. Numerically, a discrete linear chain composed of active Brownian particles is considered, analytically, a continuous linear semiflexible polymer with active velocities changing diffusively. The force-free nature of active monomers is accounted for-no Stokeslet fluid flow induced by active forces-and higher order hydrodynamic multipole moments are neglected. Hence, fluid-mediated interactions are assumed to arise solely due to intramolecular forces. The hydrodynamic interactions (HI) are taken into account analytically by the preaveraged Oseen tensor, and numerically by the Rotne-Prager-Yamakawa tensor. The nonequilibrium character of the active process implies a dependence of the stationary-state properties on HI via the polymer relaxation times. In particular, at moderate activities, HI lead to a substantial shrinkage of flexible and semiflexible polymers to an extent far beyond shrinkage of comparable free-draining polymers; even flexible HI-polymers shrink, while active free-draining polymers swell monotonically. Large activities imply a reswelling, however, to a less extent than for non-HI polymers, caused by the shorter polymer relaxation times due to hydrodynamic interactions. The polymer mean square displacement is enhanced, and an activity-determined ballistic regime appears. Over a wide range of time scales, flexible active polymers exhibit a hydrodynamically governed subdiffusive regime, with an exponent significantly smaller than that of the Rouse and Zimm models of passive polymers. Compared to simulations, the analytical approach predicts a weaker hydrodynamic effect. Overall, hydrodynamic interactions modify the conformational and dynamical properties of active polymers substantially.
Collapse
Affiliation(s)
- Aitor Martín-Gómez
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|
117
|
Li J, Horowitz JM, Gingrich TR, Fakhri N. Quantifying dissipation using fluctuating currents. Nat Commun 2019; 10:1666. [PMID: 30971687 PMCID: PMC6458151 DOI: 10.1038/s41467-019-09631-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/05/2019] [Indexed: 11/26/2022] Open
Abstract
Systems coupled to multiple thermodynamic reservoirs can exhibit nonequilibrium dynamics, breaking detailed balance to generate currents. To power these currents, the entropy of the reservoirs increases. The rate of entropy production, or dissipation, is a measure of the statistical irreversibility of the nonequilibrium process. By measuring this irreversibility in several biological systems, recent experiments have detected that particular systems are not in equilibrium. Here we discuss three strategies to replace binary classification (equilibrium versus nonequilibrium) with a quantification of the entropy production rate. To illustrate, we generate time-series data for the evolution of an analytically tractable bead-spring model. Probability currents can be inferred and utilized to indirectly quantify the entropy production rate, but this approach requires prohibitive amounts of data in high-dimensional systems. This curse of dimensionality can be partially mitigated by using the thermodynamic uncertainty relation to bound the entropy production rate using statistical fluctuations in the probability currents. The determination of entropy production from experimental data is a challenge but a recently introduced theoretical tool, the thermodynamic uncertainty relation, allows one to infer a lower bound on entropy production. Here the authors provide a critical assessment of the practical implementation of this tool.
Collapse
Affiliation(s)
- Junang Li
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jordan M Horowitz
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.,Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Todd R Gingrich
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| | - Nikta Fakhri
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
118
|
Gonzalez JP, Neu JC, Teitsworth SW. Experimental metrics for detection of detailed balance violation. Phys Rev E 2019; 99:022143. [PMID: 30934298 DOI: 10.1103/physreve.99.022143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 06/09/2023]
Abstract
We report on the measurement of detailed balance violation in a coupled, noise-driven linear electronic circuit consisting of two nominally identical RC elements that are coupled via a variable capacitance. The state variables are the time-dependent voltages across each of the two primary capacitors, and the system is driven by independent noise sources in series with each of the resistances. From the recorded time histories of these two voltages, we quantify violations of detailed balance by three methods: (1) explicit construction of the probability current density, (2) constructing the time-dependent stochastic area, and (3) constructing statistical fluctuation loops. In comparing the three methods, we find that the stochastic area is relatively simple to implement and computationally inexpensive and provides a highly sensitive means for detecting violations of detailed balance.
Collapse
Affiliation(s)
- Juan Pablo Gonzalez
- Duke University, Department of Physics, Box 90305 Durham, NC 27708-0305, USA
| | - John C Neu
- University of California, Berkeley, Department of Mathematics, Berkeley, CA 94720-3840, USA
| | | |
Collapse
|
119
|
Huebinger J, Spindler J, Holl KJ, Koos B. Quantification of protein mobility and associated reshuffling of cytoplasm during chemical fixation. Sci Rep 2018; 8:17756. [PMID: 30532039 PMCID: PMC6288139 DOI: 10.1038/s41598-018-36112-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023] Open
Abstract
To understand cellular functionalities, it is essential to unravel spatio-temporal patterns of molecular distributions and interactions within living cells. The technological progress in fluorescence microscopy now allows in principle to measure these patterns with sufficient spatial resolution. However, high resolution imaging comes with long acquisition times and high phototoxicity. Therefore, physiological live cell imaging is often unfeasible and chemical fixation is employed. Yet, fixation methods have not been rigorously investigated, in terms of pattern preservation, at the resolution at which cells can now be imaged. A key parameter for this is the time required until fixation is complete. During this time, cells are under unphysiological conditions and patterns decay. We demonstrate here that formaldehyde fixation takes more than one hour for cytosolic proteins in cultured cells. Other small aldehydes, glyoxal and acrolein, did not perform better. Associated with this, we found a distinct displacement of proteins and lipids, including their loss from cells. Fixations using glutaraldehyde were faster than four minutes and retained most cytoplasmic proteins. Surprisingly, autofluorescence produced by glutaraldehyde was almost completely absent with supplementary addition of formaldehyde without compromising fixation speed. These findings indicate, which cellular processes can actually be reliably imaged after a certain chemical fixation.
Collapse
Affiliation(s)
- Jan Huebinger
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227, Dortmund, Germany.
| | - Jessica Spindler
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227, Dortmund, Germany
| | - Kristin J Holl
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227, Dortmund, Germany
| | - Björn Koos
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227, Dortmund, Germany
| |
Collapse
|
120
|
Osmanović D. Properties of Rouse polymers with actively driven regions. J Chem Phys 2018; 149:164911. [DOI: 10.1063/1.5045686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Dino Osmanović
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
121
|
Miermans CA, Broedersz CP. Bacterial chromosome organization by collective dynamics of SMC condensins. J R Soc Interface 2018; 15:rsif.2018.0495. [PMID: 30333247 DOI: 10.1098/rsif.2018.0495] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/19/2018] [Indexed: 11/12/2022] Open
Abstract
A prominent organizational feature of bacterial chromosomes was revealed by Hi-C experiments, indicating anomalously high contacts between the left and right chromosomal arms. These long-range contacts have been attributed to various nucleoid-associated proteins, including the ATPase Structural Maintenance of Chromosomes (SMC) condensin. Although the molecular structure of these ATPases has been mapped in detail, it still remains unclear by which physical mechanisms they collectively generate long-range chromosomal contacts. Here, we develop a computational model that captures the subtle interplay between molecular-scale activity of slip-links and large-scale chromosome organization. We first consider a scenario in which the ATPase activity of slip-links regulates their DNA-recruitment near the origin of replication, while the slip-link dynamics is assumed to be diffusive. We find that such diffusive slip-links can collectively organize the entire chromosome into a state with aligned arms, but not within physiological constraints. However, slip-links that include motor activity are far more effective at organizing the entire chromosome over all length-scales. The persistence of motor slip-links at physiological densities can generate large, nested loops and drive them into the bulk of the DNA. Finally, our model with motor slip-links can quantitatively account for the rapid arm-arm alignment of chromosomal arms observed in vivo.
Collapse
Affiliation(s)
- Christiaan A Miermans
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80333 München, Germany
| |
Collapse
|
122
|
Bernheim-Groswasser A, Gov NS, Safran SA, Tzlil S. Living Matter: Mesoscopic Active Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707028. [PMID: 30256463 DOI: 10.1002/adma.201707028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/27/2018] [Indexed: 06/08/2023]
Abstract
An introduction to the physical properties of living active matter at the mesoscopic scale (tens of nanometers to micrometers) and their unique features compared with "dead," nonactive matter is presented. This field of research is increasingly denoted as "biological physics" where physics includes chemical physics, soft matter physics, hydrodynamics, mechanics, and the related engineering sciences. The focus is on the emergent properties of these systems and their collective behavior, which results in active self-organization and how they relate to cellular-level biological function. These include locomotion (cell motility and migration) forces that give rise to cell division, the growth and form of cellular assemblies in development, the beating of heart cells, and the effects of mechanical perturbations such as shear flow (in the bloodstream) or adhesion to other cells or tissues. An introduction to the fundamental concepts and theory with selected experimental examples related to the authors' own research is presented, including red-blood-cell membrane fluctuations, motion of the nucleus within an egg cell, self-contracting acto-myosin gels, and structure and beating of heart cells (cardiomyocytes), including how they can be driven by an oscillating, mechanical probe.
Collapse
Affiliation(s)
- Anne Bernheim-Groswasser
- Department of Chemical Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shelly Tzlil
- Department of Mechanical Engineering, Technion, Haifa, 3200003, Israel
| |
Collapse
|
123
|
Wan KY, Goldstein RE. Time Irreversibility and Criticality in the Motility of a Flagellate Microorganism. PHYSICAL REVIEW LETTERS 2018; 121:058103. [PMID: 30118294 PMCID: PMC7616082 DOI: 10.1103/physrevlett.121.058103] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Active living organisms exhibit behavioral variability, partitioning between fast and slow dynamics. Such variability may be key to generating rapid responses in a heterogeneous, unpredictable environment wherein cellular activity effects continual exchanges of energy fluxes. We demonstrate a novel, noninvasive strategy for revealing nonequilibrium control of swimming-specifically, in an octoflagellate microalga. These organisms exhibit surprising features of flagellar excitability and mechanosensitivity, which characterize a novel, time-irreversible "run-stop-shock" motility comprising forward runs, knee-jerk shocks with dramatic beat reversal, and long stops during which cells are quiescent yet continue to exhibit submicron flagellar vibrations. Entropy production, associated with flux cycles arising in a reaction graph representation of the gait-switching dynamics, provides a direct measure of detailed balance violation in this primitive alga.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
124
|
Mura F, Gradziuk G, Broedersz CP. Nonequilibrium Scaling Behavior in Driven Soft Biological Assemblies. PHYSICAL REVIEW LETTERS 2018; 121:038002. [PMID: 30085773 DOI: 10.1103/physrevlett.121.038002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Measuring and quantifying nonequilibrium dynamics in active biological systems is a major challenge because of their intrinsic stochastic nature and the limited number of variables accessible in any real experiment. We investigate what nonequilibrium information can be extracted from noninvasive measurements using a stochastic model of soft elastic networks with a heterogeneous distribution of activities, representing enzymatic force generation. In particular, we use this model to study how the nonequilibrium activity, detected by tracking two probes in the network, scales as a function of the distance between the probes. We quantify the nonequilibrium dynamics through the cycling frequencies, a simple measure of circulating currents in the phase space of the probes. We find that these cycling frequencies exhibit power-law scaling behavior with the distance between probes. In addition, we show that this scaling behavior governs the entropy production rate that can be recovered from the two traced probes. Our results provide insight into how internal enzymatic driving generates nonequilibrium dynamics on different scales in soft biological assemblies.
Collapse
Affiliation(s)
- Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| |
Collapse
|
125
|
Gieseler J, Millen J. Levitated Nanoparticles for Microscopic Thermodynamics-A Review. ENTROPY 2018; 20:e20050326. [PMID: 33265416 PMCID: PMC7512845 DOI: 10.3390/e20050326] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
Levitated Nanoparticles have received much attention for their potential to perform quantum mechanical experiments even at room temperature. However, even in the regime where the particle dynamics are purely classical, there is a lot of interesting physics that can be explored. Here we review the application of levitated nanoparticles as a new experimental platform to explore stochastic thermodynamics in small systems.
Collapse
Affiliation(s)
- Jan Gieseler
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
- Correspondence: (J.G.); (J.M.)
| | - James Millen
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- Department of Physics, Kings College London, Strand, London WC2R 2LS, UK
- Correspondence: (J.G.); (J.M.)
| |
Collapse
|
126
|
Cherstvy AG, Nagel O, Beta C, Metzler R. Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells. Phys Chem Chem Phys 2018; 20:23034-23054. [DOI: 10.1039/c8cp04254c] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells?
Collapse
Affiliation(s)
- Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Oliver Nagel
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Carsten Beta
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|