101
|
O’Connell CD, Konate S, Onofrillo C, Kapsa R, Baker C, Duchi S, Eekel T, Yue Z, Beirne S, Barnsley G, Di Bella C, Choong PF, Wallace GG. Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photo-crosslinking during extrusion. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
102
|
Ferrari E, Gallo M, Wang C, Zhang L, Taramasso M, Maisano F, Pirelli L, Berdajs D, von Segesser LK. Three-dimensional printing in adult cardiovascular medicine for surgical and transcatheter procedural planning, teaching and technological innovation. Interact Cardiovasc Thorac Surg 2020; 30:203-214. [PMID: 31633170 DOI: 10.1093/icvts/ivz250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D)-printing technologies in cardiovascular surgery have provided a new way to tailor surgical and percutaneous treatments. Digital information from standard cardiac imaging is integrated into physical 3D models for an accurate spatial visualization of anatomical details. We reviewed the available literature and analysed the different printing technologies, the required procedural steps for 3D prototyping, the used cardiac imaging, the available materials and the clinical implications. We have highlighted different materials used to replicate aortic and mitral valves, vessels and myocardial properties. 3D printing allows a heuristic approach to investigate complex cardiovascular diseases, and it is a unique patient-specific technology providing enhanced understanding and tactile representation of cardiovascular anatomies for the procedural planning and decision-making process. 3D printing may also be used for medical education and surgical/transcatheter training. Communication between doctors and patients can also benefit from 3D models by improving the patient understanding of pathologies. Furthermore, medical device development and testing can be performed with rapid 3D prototyping. Additionally, widespread application of 3D printing in the cardiovascular field combined with tissue engineering will pave the way to 3D-bioprinted tissues for regenerative medicinal applications and 3D-printed organs.
Collapse
Affiliation(s)
- Enrico Ferrari
- Cardiovascular Surgery, Cardiocentro Ticino, Lugano, Switzerland
| | - Michele Gallo
- Cardiovascular Surgery, Cardiocentro Ticino, Lugano, Switzerland
| | | | - Lei Zhang
- Cardiovascular Surgery, Nanjing Jinling Hospital, Nanjing, China
| | | | - Francesco Maisano
- Cardiovascular Surgery, Zurich University Hospital, Zurich, Switzerland
| | - Luigi Pirelli
- Cardiothoracic Surgery, Lenox Hill Heart and Vascular Institute, New York, NY, USA
| | - Denis Berdajs
- Cardiovascular Surgery, Basel University Hospital, Basel, Switzerland
| | - Ludwig Karl von Segesser
- Department of Surgery, Cardiovascular Research Unit, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
103
|
Chen J, Mak S, Joseph VR, Zhang C. Function-on-Function Kriging, With Applications to Three-Dimensional Printing of Aortic Tissues. Technometrics 2020. [DOI: 10.1080/00401706.2020.1801255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jialei Chen
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA
| | - Simon Mak
- Department of Statistical Science, Duke University, Durham, NC
| | - V. Roshan Joseph
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Chuck Zhang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
104
|
Armstrong AA, Alleyne AG, Wagoner Johnson AJ. 1D and 2D error assessment and correction for extrusion-based bioprinting using process sensing and control strategies. Biofabrication 2020; 12:045023. [PMID: 32702687 DOI: 10.1088/1758-5090/aba8ee] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bioprinting literature currently lacks: (i) process sensing tools to measure material deposition, (ii) performance metrics to evaluate system performance, and (iii) control tools to correct for and avoid material deposition errors. The lack of process sensing tools limits in vivo functionality of bioprinted parts since accurate material deposition is critical to mimicking the heterogeneous structures of native tissues. We present a process monitoring and control strategy for extrusion-based fabrication that addresses all three gaps to improve material deposition. Our strategy uses a non-contact laser displacement scanner that measures both the spatial material placement and width of the deposited material. We developed a custom image processing script that uses the laser scanner data and defined error metrics for assessing material deposition. To implement process control, the script uses the error metrics to modify control inputs for the next deposition iteration in order to correct for the errors. A key contribution is the definition of a novel method to quantitatively evaluate the accuracy of printed constructs. We implement the process monitoring and control strategy on an extrusion-printing system to evaluate system performance and demonstrate improvement in both material placement and material width.
Collapse
Affiliation(s)
- Ashley A Armstrong
- The University of Illinois at Urbana Champaign, Champaign, IL, United States of America
| | | | | |
Collapse
|
105
|
Zhu H, Yang H, Ma Y, Lu TJ, Xu F, Genin GM, Lin M. Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000639. [PMID: 32802013 PMCID: PMC7418561 DOI: 10.1002/adfm.202000639] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Indexed: 05/16/2023]
Abstract
Photoresponsive hydrogels (PRHs) are soft materials whose mechanical and chemical properties can be tuned spatially and temporally with relative ease. Both photo-crosslinkable and photodegradable hydrogels find utility in a range of biomedical applications that require tissue-like properties or programmable responses. Progress in engineering with PRHs is facilitated by the development of theoretical tools that enable optimization of their photochemistry, polymer matrices, nanofillers, and architecture. This review brings together models and design principles that enable key applications of PRHs in tissue engineering, drug delivery, and soft robotics, and highlights ongoing challenges in both modeling and application.
Collapse
Affiliation(s)
- Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haiqian Yang
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
- MOE Key Laboratory for Multifunctional Materials and StructuresXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisMO63130USA
- NSF Science and Technology Center for Engineering MechanobiologyWashington University in St. LouisSt. LouisMO63130USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
106
|
Xu H, Casillas J, Krishnamoorthy S, Xu C. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed Mater 2020; 15:055021. [DOI: 10.1088/1748-605x/ab954e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
107
|
Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater 2020; 9:e1901648. [PMID: 32352649 DOI: 10.1002/adhm.201901648] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.
Collapse
Affiliation(s)
- Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Jun Li
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Yusak Hartanto
- Department of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mitchell Durham
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hu Zhang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
108
|
Long L, Wu C, Hu X, Wang Y. Biodegradable synthetic polymeric composite scaffold‐based tissue engineered heart valve with minimally invasive transcatheter implantation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lin‐yu Long
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Can Wu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Xue‐feng Hu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Yun‐bing Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| |
Collapse
|
109
|
Adib AA, Sheikhi A, Shahhosseini M, Simeunović A, Wu S, Castro CE, Zhao R, Khademhosseini A, Hoelzle DJ. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Biofabrication 2020; 12:045006. [PMID: 32464607 DOI: 10.1088/1758-5090/ab97a1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We develop and characterize a biomaterial formulation and robotic methods tailored for intracorporeal tissue engineering (TE) via direct-write (DW) 3D printing. Intracorporeal TE is defined as the biofabrication of 3D TE scaffolds inside of a living patient, in a minimally invasive manner. A biomaterial for intracorporeal TE requires to be 3D printable and crosslinkable via mechanisms that are safe to native tissues and feasible at physiological temperature (37 °C). The cell-laden biomaterial (bioink) preparation and bioprinting methods must support cell viability. Additionally, the biomaterial and bioprinting method must enable the spatially accurate intracorporeal 3D delivery of the biomaterial, and the biomaterial must adhere to or integrate into the native tissue. Current biomaterial formulations do not meet all the presumed intracorporeal DW TE requirements. We demonstrate that a specific formulation of gelatin methacryloyl (GelMA)/Laponite®/methylcellulose (GLM) biomaterial system can be 3D printed at physiological temperature and crosslinked using visible light to construct 3D TE scaffolds with clinically relevant dimensions and consistent structures. Cell viability of 71%-77% and consistent mechanical properties over 21 d are reported. Rheological modifiers, Laponite® and methylcellulose, extend the degradation time of the scaffolds. The DW modality enables the piercing of the soft tissue and over-extrusion of the biomaterial into the tissue, creating a novel interlocking mechanism with soft, hydrated native tissue mimics and animal muscle with a 3.5-4 fold increase in the biomaterial/tissue adhesion strength compared to printing on top of the tissue. The developed GLM biomaterial and robotic interlocking mechanism pave the way towards intracorporeal TE.
Collapse
Affiliation(s)
- A Asghari Adib
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Wenger L, Radtke CP, Göpper J, Wörner M, Hubbuch J. 3D-Printable and Enzymatically Active Composite Materials Based on Hydrogel-Filled High Internal Phase Emulsions. Front Bioeng Biotechnol 2020; 8:713. [PMID: 32850688 PMCID: PMC7396703 DOI: 10.3389/fbioe.2020.00713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 02/02/2023] Open
Abstract
The immobilization of enzymes in biocatalytic flow reactors is a common strategy to increase enzyme reusability and improve biocatalytic performance. Extrusion-based 3D bioprinting has recently emerged as a versatile tool for the fabrication of perfusable hydrogel grids containing entrapped enzymes for the use in such reactors. This study demonstrates the suitability of water-in-oil high internal phase emulsions (HIPEs) as 3D-printable bioinks for the fabrication of composite materials with a porous polymeric scaffold (polyHIPE) filled with enzyme-laden hydrogel. The prepared HIPEs exhibited excellent printability and are shown to be suitable for the printing of complex three-dimensional structures without the need for sacrificial support material. An automated activity assay method for the systematic screening of different material compositions in small-scale batch experiments is presented. The monomer mass fraction in the aqueous phase and the thickness of printed objects were found to be the most important parameters determining the apparent activity of the immobilized enzyme. Mass transfer limitations and enzyme inactivation were identified as probable factors reducing the apparent activity. The presented HIPE-based bioinks enable the fabrication of flow-optimized and more efficient biocatalytic reactors while the automated activity assay method allows the rapid screening of materials to optimize the biocatalytic efficiency further without time-consuming flow-through experiments involving whole printed reactors.
Collapse
Affiliation(s)
- Lukas Wenger
- Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carsten P. Radtke
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jacqueline Göpper
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Wörner
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
111
|
Li J, Liu X, Crook JM, Wallace GG. 3D Printing of Cytocompatible Graphene/Alginate Scaffolds for Mimetic Tissue Constructs. Front Bioeng Biotechnol 2020; 8:824. [PMID: 32766233 PMCID: PMC7379132 DOI: 10.3389/fbioe.2020.00824] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering, based on a combination of 3D printing, biomaterials blending and stem cell technology, offers the potential to establish customized, transplantable autologous implants using a patient's own cells. Graphene, as a two-dimensional (2D) version of carbon, has shown great potential for tissue engineering. Here, we describe a novel combination of graphene with 3D printed alginate (Alg)-based scaffolds for human adipose stem cell (ADSC) support and osteogenic induction. Alg printing was enabled through addition of gelatin (Gel) that was removed after printing, and the 3D structure was then coated with graphene oxide (GO). GO was chemically reduced with a biocompatible reductant (ascorbic acid) to provide electrical conductivity and cell affinity sites. The reduced 3D graphene oxide (RGO)/Alg scaffold has good cytocompatibility and can support human ADSC proliferation and osteogenic differentiation. Our finding supports the potential for the printed scaffold's use for in vitro engineering of bone and other tissues using ADSCs and potentially other human stem cells, as well as in vivo regenerative medicine.
Collapse
Affiliation(s)
- Jianfeng Li
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Department of Surgery, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
112
|
Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Indexed: 05/09/2023]
Abstract
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Vittorio Ferrara
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, 95125, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| |
Collapse
|
113
|
Klak M, Bryniarski T, Kowalska P, Gomolka M, Tymicki G, Kosowska K, Cywoniuk P, Dobrzanski T, Turowski P, Wszola M. Novel Strategies in Artificial Organ Development: What Is the Future of Medicine? MICROMACHINES 2020; 11:E646. [PMID: 32629779 PMCID: PMC7408042 DOI: 10.3390/mi11070646] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
The technology of tissue engineering is a rapidly evolving interdisciplinary field of science that elevates cell-based research from 2D cultures through organoids to whole bionic organs. 3D bioprinting and organ-on-a-chip approaches through generation of three-dimensional cultures at different scales, applied separately or combined, are widely used in basic studies, drug screening and regenerative medicine. They enable analyses of tissue-like conditions that yield much more reliable results than monolayer cell cultures. Annually, millions of animals worldwide are used for preclinical research. Therefore, the rapid assessment of drug efficacy and toxicity in the early stages of preclinical testing can significantly reduce the number of animals, bringing great ethical and financial benefits. In this review, we describe 3D bioprinting techniques and first examples of printed bionic organs. We also present the possibilities of microfluidic systems, based on the latest reports. We demonstrate the pros and cons of both technologies and indicate their use in the future of medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michal Wszola
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (T.B.); (P.K.); (M.G.); (G.T.); (K.K.); (P.C.); (T.D.); (P.T.)
| |
Collapse
|
114
|
Zhao Z, Vizetto-Duarte C, Moay ZK, Setyawati MI, Rakshit M, Kathawala MH, Ng KW. Composite Hydrogels in Three-Dimensional in vitro Models. Front Bioeng Biotechnol 2020; 8:611. [PMID: 32656197 PMCID: PMC7325910 DOI: 10.3389/fbioe.2020.00611] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
3-dimensional (3D) in vitro models were developed in order to mimic the complexity of real organ/tissue in a dish. They offer new possibilities to model biological processes in more physiologically relevant ways which can be applied to a myriad of applications including drug development, toxicity screening and regenerative medicine. Hydrogels are the most relevant tissue-like matrices to support the development of 3D in vitro models since they are in many ways akin to the native extracellular matrix (ECM). For the purpose of further improving matrix relevance or to impart specific functionalities, composite hydrogels have attracted increasing attention. These could incorporate drugs to control cell fates, additional ECM elements to improve mechanical properties, biomolecules to improve biological activities or any combinations of the above. In this Review, recent developments in using composite hydrogels laden with cells as biomimetic tissue- or organ-like constructs, and as matrices for multi-cell type organoid cultures are highlighted. The latest composite hydrogel systems that contain nanomaterials, biological factors, and combinations of biopolymers (e.g., proteins and polysaccharide), such as Interpenetrating Networks (IPNs) and Soft Network Composites (SNCs) are also presented. While promising, challenges remain. These will be discussed in light of future perspectives toward encompassing diverse composite hydrogel platforms for an improved organ environment in vitro.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Catarina Vizetto-Duarte
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
115
|
Włodarczyk-Biegun MK, Paez JI, Villiou M, Feng J, del Campo A. Printability study of metal ion crosslinked PEG-catechol based inks. Biofabrication 2020; 12:035009. [DOI: 10.1088/1758-5090/ab673a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
116
|
Kim K, Kim B, Lee CH. Printing Flexible and Hybrid Electronics for Human Skin and Eye-Interfaced Health Monitoring Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902051. [PMID: 31298450 DOI: 10.1002/adma.201902051] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Advances in printing materials and techniques for flexible and hybrid electronics in the domain of connected healthcare have enabled rapid development of innovative body-interfaced health monitoring systems at a tremendous pace. Thin, flexible, and stretchable biosensors that are printed on a biocompatible soft substrate provide the ability to noninvasively and unobtrusively integrate with the human body for continuous monitoring and early detection of diseases and other conditions affecting health and well being. Hybrid integration of such biosensors with extremely well-established silicon-based microcircuit chips offers a viable route for in-sensor data processing and wireless transmission in many medical and clinical settings. Here, a set of advanced and hybrid printing techniques is summarized, covering diverse aspects ranging from active electronic materials to process capability, for their use in human skin and eye-interfaced health monitoring systems with different levels of complexity. Essential components of the devices, including constituent biomaterials, structural layouts, assembly methods, and power and data processing configurations, are outlined and discussed in a categorized manner tailored to specific clinical needs. Perspectives on the benefits and challenges of these systems in basic and applied biomedical research are presented and discussed.
Collapse
Affiliation(s)
- Kyunghun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, School of Mechanical Engineering, Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
117
|
Bachtiar EO, Erol O, Millrod M, Tao R, Gracias DH, Romer LH, Kang SH. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. J Mech Behav Biomed Mater 2020; 104:103649. [PMID: 32174407 PMCID: PMC7078069 DOI: 10.1016/j.jmbbm.2020.103649] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 01/09/2023]
Abstract
Recent advancements in 3D printing have revolutionized biomedical engineering by enabling the manufacture of complex and functional devices in a low-cost, customizable, and small-batch fabrication manner. Soft elastomers are particularly important for biomedical applications because they can provide similar mechanical properties as tissues with improved biocompatibility. However, there are very few biocompatible elastomers with 3D printability, and little is known about the material properties of biocompatible 3D printable elastomers. Here, we report a new framework to 3D print a soft, biocompatible, and biostable polycarbonate-based urethane silicone (PCU-Sil) with minimal defects. We systematically characterize the rheological and thermal properties of the material to guide the 3D printing process and have determined a range of processing conditions. Optimal printing parameters such as printing speed, temperature, and layer height are determined via parametric studies aimed at minimizing porosity while maximizing the geometric accuracy of the 3D-printed samples as evaluated via micro-CT. We also characterize the mechanical properties of the 3D-printed structures under quasistatic and cyclic loading, degradation behavior and biocompatibility. The 3D-printed materials show a Young's modulus of 6.9 ± 0.85 MPa and a failure strain of 457 ± 37.7% while exhibiting good cell viability. Finally, compliant and free-standing structures including a patient-specific heart model and a bifurcating arterial structure are printed to demonstrate the versatility of the 3D-printed material. We anticipate that the 3D printing framework presented in this work will open up new possibilities not only for PCU-Sil, but also for other soft, biocompatible and thermoplastic polymers in various biomedical applications requiring high flexibility and strength combined with biocompatibility, such as vascular implants, heart valves, and catheters.
Collapse
Affiliation(s)
- Emilio O Bachtiar
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA; Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Ozan Erol
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA; Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Michal Millrod
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 600 North Wolfe St, Baltimore, MD 21205, USA
| | - Runhan Tao
- Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Lewis H Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 600 North Wolfe St, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA; Departments of Cell Biology, Pediatrics, and the Center for Cell Dynamics, Johns Hopkins University, 725 North Wolfe St, Baltimore, MD 21205, USA
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA; Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
118
|
Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1345-1367. [PMID: 32435165 PMCID: PMC7224028 DOI: 10.1007/s10924-020-01722-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I, 11A, Iasi, 700506 Romania
| |
Collapse
|
119
|
Gardin C, Ferroni L, Latremouille C, Chachques JC, Mitrečić D, Zavan B. Recent Applications of Three Dimensional Printing in Cardiovascular Medicine. Cells 2020; 9:E742. [PMID: 32192232 PMCID: PMC7140676 DOI: 10.3390/cells9030742] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Three dimensional (3D) printing, which consists in the conversion of digital images into a 3D physical model, is a promising and versatile field that, over the last decade, has experienced a rapid development in medicine. Cardiovascular medicine, in particular, is one of the fastest growing area for medical 3D printing. In this review, we firstly describe the major steps and the most common technologies used in the 3D printing process, then we present current applications of 3D printing with relevance to the cardiovascular field. The technology is more frequently used for the creation of anatomical 3D models useful for teaching, training, and procedural planning of complex surgical cases, as well as for facilitating communication with patients and their families. However, the most attractive and novel application of 3D printing in the last years is bioprinting, which holds the great potential to solve the ever-increasing crisis of organ shortage. In this review, we then present some of the 3D bioprinting strategies used for fabricating fully functional cardiovascular tissues, including myocardium, heart tissue patches, and heart valves. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro cardiovascular drug toxicity. Finally, we describe some applications of 3D printing in the development and testing of cardiovascular medical devices, and the current regulatory frameworks that apply to manufacturing and commercialization of 3D printed products.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Christian Latremouille
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75105 Paris, France; (C.L.); (J.C.C.)
| | - Juan Carlos Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75105 Paris, France; (C.L.); (J.C.C.)
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia;
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
120
|
Li Z, Zhang X, Yuan T, Zhang Y, Luo C, Zhang J, Liu Y, Fan W. Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue Eng Part A 2020; 26:886-895. [PMID: 32031056 DOI: 10.1089/ten.tea.2019.0304] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further application of SF is hindered by its limited biological activities. Incorporation of growth factors (GFs) has been identified as a solution to improve biological function. Platelet-rich plasma (PRP) is an autologous resource of GFs, which has been widely used in clinic. In this study, we have developed SF-based bioinks incorporated with different concentrations of PRP (12.5%, 25%, and 50%; vol/vol). Release kinetic studies show that SF-PRP bioinks could achieve controlled release of GFs. Subsequently, SF-PRP bioinks were successfully fabricated into scaffolds by bioprinting. Our results revealed that SF-PRP scaffolds possessed proper internal pore structure, good biomechanical properties, and a suitable degradation rate for cartilage regeneration. Live/dead staining showed that 3D, printed SF-PRP scaffolds were biocompatible. Moreover, in vitro studies revealed that tissue-engineered cartilage from the SF-PRP group exhibited improved qualities compared with the pure SF controls, according to histological and immunohistochemical findings. Biochemical evaluations confirmed that SF-PRP (50% PRP, v/v) scaffolds allowed the largest increases in collagen and glycosaminoglycan concentrations, when compared with the pure SF group. These findings suggest that 3D, printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering. Impact statement Three-dimensional bioprinting of silk fibroin (SF) hydrogel as bioinks is a promising strategy for cartilage tissue engineering, but it lacks biological activities, which favors proliferation of seeded cells and secretion of the extracellular matrix. In this study, we have successfully added platelet-rich plasma (PRP) into SF-based bioinks as an autologous source of growth factors. The 3D, printed SF-PRP scaffold showed an enhanced biological property, thus aiding in potential future development of novel cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
121
|
Deo KA, Singh KA, Peak CW, Alge DL, Gaharwar AK. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Eng Part A 2020; 26:318-338. [PMID: 32079490 PMCID: PMC7480731 DOI: 10.1089/ten.tea.2019.0298] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
3D bioprinting is an additive manufacturing technique that recapitulates the native architecture of tissues. This is accomplished through the precise deposition of cell-containing bioinks. The spatiotemporal control over bioink deposition permits for improved communication between cells and the extracellular matrix, facilitates fabrication of anatomically and physiologically relevant structures. The physiochemical properties of bioinks, before and after crosslinking, are crucial for bioprinting complex tissue structures. Specifically, the rheological properties of bioinks determines printability, structural fidelity, and cell viability during the printing process, whereas postcrosslinking of bioinks are critical for their mechanical integrity, physiological stability, cell survival, and cell functions. In this review, we critically evaluate bioink design criteria, specifically for extrusion-based 3D bioprinting techniques, to fabricate complex constructs. The effects of various processing parameters on the biophysical and biochemical characteristics of bioinks are discussed. Furthermore, emerging trends and future directions in the area of bioinks and bioprinting are also highlighted. Graphical abstract [Figure: see text] Impact statement Extrusion-based 3D bioprinting is an emerging additive manufacturing approach for fabricating cell-laden tissue engineered constructs. This review critically evaluates bioink design criteria to fabricate complex tissue constructs. Specifically, pre- and post-printing evaluation approaches are described, as well as new research directions in the field of bioink development and functional bioprinting are highlighted.
Collapse
Affiliation(s)
- Kaivalya A. Deo
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Kanwar Abhay Singh
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Charles W. Peak
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Daniel L. Alge
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas
| |
Collapse
|
122
|
Birla RK, Williams SK. 3D bioprinting and its potential impact on cardiac failure treatment: An industry perspective. APL Bioeng 2020; 4:010903. [PMID: 32095736 PMCID: PMC7028435 DOI: 10.1063/1.5128371] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
3D printing technologies are emerging as a disruptive innovation for the treatment of patients in cardiac failure. The ability to create custom devices, at the point of care, will affect both the diagnosis and treatment of cardiac diseases. The introduction of bioinks containing cells and biomaterials and the development of new computer assisted design and computer assisted manufacturing systems have ushered in a new technology known as 3D bioprinting. Small scale 3D bioprinting has successfully created cardiac tissue microphysiological systems. 3D bioprinting provides an opportunity to evaluate the assembly of specific parts of the heart and most notably heart valves. With the continuous development of instrumentation and bioinks and a complete understanding of cardiac tissue development, it is proposed that 3D bioprinting may permit the assembly of a heart described as a total biofabricated heart.
Collapse
Affiliation(s)
| | - Stuart K. Williams
- Bioficial Organs Program, University of
Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
123
|
The Potential Impact and Timeline of Engineering on Congenital Interventions. Pediatr Cardiol 2020; 41:522-538. [PMID: 32198587 DOI: 10.1007/s00246-020-02335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Congenital interventional cardiology has seen rapid growth in recent decades due to the expansion of available medical devices. Percutaneous interventions have become standard of care for many common congenital conditions. Unfortunately, patients with congenital heart disease often require multiple interventions throughout their lifespan. The availability of transcatheter devices that are biodegradable, biocompatible, durable, scalable, and can be delivered in the smallest sized patients will rely on continued advances in engineering. The development pipeline for these devices will require contributions of many individuals in academia and industry including experts in material science and tissue engineering. Advances in tissue engineering, bioresorbable technology, and even new nanotechnologies and nitinol fabrication techniques which may have an impact on the field of transcatheter congenital device in the next decade are summarized in this review. This review highlights recent advances in the engineering of transcatheter-based therapies and discusses future opportunities for engineering of transcatheter devices.
Collapse
|
124
|
Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From Shape to Function: The Next Step in Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906423. [PMID: 32045053 PMCID: PMC7116209 DOI: 10.1002/adma.201906423] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Indexed: 05/04/2023]
Abstract
In 2013, the "biofabrication window" was introduced to reflect the processing challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable materials that could serve as cell-laden bioinks, as well as the limitations of printing and assembly methods, presented a major constraint. However, recent developments have now resulted in the availability of a plethora of bioinks, new printing approaches, and the technological advancement of established techniques. Nevertheless, it remains largely unknown which materials and technical parameters are essential for the fabrication of intrinsically hierarchical cell-material constructs that truly mimic biologically functional tissue. In order to achieve this, it is urged that the field now shift its focus from materials and technologies toward the biological development of the resulting constructs. Therefore, herein, the recent material and technological advances since the introduction of the biofabrication window are briefly summarized, i.e., approaches how to generate shape, to then focus the discussion on how to acquire the biological function within this context. In particular, a vision of how biological function can evolve from the possibility to determine shape is outlined.
Collapse
Affiliation(s)
- Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Ruben G Scheuring
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Juergen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
125
|
The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110384. [DOI: 10.1016/j.msec.2019.110384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022]
|
126
|
Guo Z, Xia J, Mi S, Sun W. Mussel-Inspired Naturally Derived Double-Network Hydrogels and Their Application in 3D Printing: From Soft, Injectable Bioadhesives to Mechanically Strong Hydrogels. ACS Biomater Sci Eng 2020; 6:1798-1808. [DOI: 10.1021/acsbiomaterials.9b01864] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhongwei Guo
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingjing Xia
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shengli Mi
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wei Sun
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Mechanical Engineering and Mechanics, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
127
|
Jockusch J, Özcan M. Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent Mater J 2020; 39:345-354. [PMID: 32037387 DOI: 10.4012/dmj.2019-123] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Additive manufacturing (AM) processes are increasingly used in dentistry. The underlying process is the joining of material layer by layer based on 3D data models. Four additive processes (laser stereolithography, polymer jetting, digital light processing, fused deposition modeling) are mainly used for processing dental polymers. The number of polymer materials that can be used for AM in dentistry is small compared to other areas. Applications in dentistry using AM are limited (e.g. study models, maxillo-facial prostheses, orthodontic appliances etc.). New and further developments of materials are currently taking place due to the increasing demand for safer and other applications. Biocompatibility and the possibility of using materials not only as temporarily but as definitive reconstructions under oral conditions, mechanically more stable materials where less or no post-processing is needed are current targets in AM technologies. Printing parameters are also open for further development where optical aspects are also important.
Collapse
Affiliation(s)
- Julia Jockusch
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zürich
| | - Mutlu Özcan
- Division of Dental Biomaterials, Center of Dental Medicine, Clinic for Reconstructive Dentistry, University of Zürich
| |
Collapse
|
128
|
Investigation of gelatin methacrylate working curves in dynamic optical projection stereolithography of vascular-like constructs. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
129
|
Zhang B, Cristescu R, Chrisey DB, Narayan RJ. Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. Int J Bioprint 2020; 6:211. [PMID: 32596549 PMCID: PMC7294686 DOI: 10.18063/ijb.v6i1.211] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solvent-based extrusion (SBE) 3D printing is a popular 3D printing method, which enables incorporation of cells during the scaffold printing process. The scaffold can be customized by optimizing the scaffold structure, biomaterial, and cells to mimic the properties of natural tissue. However, several technical challenges prevent SBE 3D printing from translation to clinical use, such as the properties of current biomaterials, the difficulties associated with simultaneous control of multiple biomaterials and cells, and the scaffold-to-scaffold variability of current 3D printed scaffolds. In this review paper, a summary of SBE 3D printing for tissue engineering (TE) is provided. The influences of parameters such as ink biomaterials, ink rheological behavior, cross-linking mechanisms, and printing parameters on scaffold fabrication are considered. The printed scaffold structure, mechanical properties, degradation, and biocompatibility of the scaffolds are summarized. It is believed that a better understanding of the scaffold fabrication process and assessment methods can improve the functionality of SBE-manufactured 3D printed scaffolds.
Collapse
Affiliation(s)
- Bin Zhang
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
130
|
Gong D, Lin Q, Shao Z, Chen X, Yang Y. Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method. RSC Adv 2020; 10:27225-27234. [PMID: 35515806 PMCID: PMC9055588 DOI: 10.1039/d0ra04789a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Schematic showing the fabrication process of the 3D-printed robust double-network RSF hydrogels.
Collapse
Affiliation(s)
- Dafei Gong
- Research Center for Analysis and Measurement
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Qinrui Lin
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
- People's Republic of China
| | - Zhengzhong Shao
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
- People's Republic of China
| | - Xin Chen
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
- People's Republic of China
| | - Yuhong Yang
- Research Center for Analysis and Measurement
- Fudan University
- Shanghai 200433
- People's Republic of China
| |
Collapse
|
131
|
Oveissi F, Naficy S, Lee A, Winlaw D, Dehghani F. Materials and manufacturing perspectives in engineering heart valves: a review. Mater Today Bio 2020; 5:100038. [PMID: 32211604 PMCID: PMC7083765 DOI: 10.1016/j.mtbio.2019.100038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Valvular heart diseases (VHD) are a major health burden, affecting millions of people worldwide. The treatments for such diseases rely on medicine, valve repair, and artificial heart valves including mechanical and bioprosthetic valves. Yet, there are countless reports on possible alternatives noting long-term stability and biocompatibility issues and highlighting the need for fabrication of more durable and effective replacements. This review discusses the current and potential materials that can be used for developing such valves along with existing and developing fabrication methods. With this perspective, we quantitatively compare mechanical properties of various materials that are currently used or proposed for heart valves along with their fabrication processes to identify challenges we face in creating new materials and manufacturing techniques to better mimick the performance of native heart valves.
Collapse
Key Words
- 3D printing
- Biofabrication
- Biomaterials
- E, Young's modulus
- Electrospinning
- Gal, galactose-α1,3-galactose
- GelMa, gelatin methacrylate
- HA, hyaluronic acid
- HAVIC, human aortic valvular interstitial cells
- MA-HA, methacrylated hyaluronic acid
- NeuGc, N-glycolylneuraminic acid
- P4HB, poly(4-hydroxybutyrate)
- PAAm, polyacrylamide
- PCE, polycitrate-(ε-polypeptide)
- PCL, polycaprolactone
- PE, polyethylene
- PEG, polyethylene glycol
- PEGDA, polyethylene glycol diacrylate
- PGA, poly(glycolic acid)
- PHA, poly(hydroxyalkanoate)
- PLA, polylactide
- PMMA, poly(methyl methacrylate)
- PPG, polypropylene glycol
- PTFE, polytetrafluoroethylene
- PU, polyurethane
- SIBS, poly(styrene-b-isobutylene-b-styrene)
- SMC, smooth muscle cells
- VHD, valvular heart disease
- VIC, aortic valve leaflet interstitial cells
- Valvular heart diseases
- dECM, decellularized extracellular matrix
- ePTFE, expanded PTFE
- xSIBS, crosslinked version of SIBS
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- F. Oveissi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - S. Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - A. Lee
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, New South Wales, 2006, Australia
- Heart Centre for Children, The Children's Hospital at Westmead, New South Wales, 2145, Australia
| | - D.S. Winlaw
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, New South Wales, 2006, Australia
- Heart Centre for Children, The Children's Hospital at Westmead, New South Wales, 2145, Australia
| | - F. Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
132
|
Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater 2020; 101:26-42. [PMID: 31672585 DOI: 10.1016/j.actbio.2019.10.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Four-dimensional (4D) bioprinting, in which the concept of time is integrated with three-dimensional (3D) bioprinting as the fourth dimension, has currently emerged as the next-generation solution of tissue engineering as it presents the possibility of constructing complex, functional structures. 4D bioprinting can be used to fabricate dynamic 3D-patterned biological architectures that will change their shapes under various stimuli by employing stimuli-responsive materials. The functional transformation and maturation of printed cell-laden constructs over time are also regarded as 4D bioprinting, providing unprecedented potential for bone tissue engineering. The shape memory properties of printed structures cater to the need for personalized bone defect repair and the functional maturation procedures promote the osteogenic differentiation of stem cells. In this review, we introduce the application of different stimuli-responsive biomaterials in tissue engineering and a series of 4D bioprinting strategies based on functional transformation of printed structures. Furthermore, we discuss the application of 4D bioprinting in bone tissue engineering, as well as the current challenges and future perspectives. STATEMENTS OF SIGNIFICANCE: In this review, we have demonstrated the 4D bioprinting technologies, which integrate the concept of time within the traditional 3D bioprinting technology as the fourth dimension and facilitate the fabrications of complex, functional biological architectures. These 4D bioprinting structures could go through shape or functional transformation over time via using different stimuli-responsive biomaterials and a series of 4D bioprinting strategies. Moreover, by summarizing potential applications of 4D bioprinting in the field of bone tissue engineering, these emerging technologies could fulfill unaddressed medical requirements. The further discussions about future challenges and perspectives will give us more inspirations about widespread applications of this emerging technology for tissue engineering in biomedical field.
Collapse
Affiliation(s)
- Zhuqing Wan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
133
|
Husman D, Welzel PB, Vogler S, Bray LJ, Träber N, Friedrichs J, Körber V, Tsurkan MV, Freudenberg U, Thiele J, Werner C. Multiphasic microgel-in-gel materials to recapitulate cellular mesoenvironments in vitro. Biomater Sci 2020; 8:101-108. [DOI: 10.1039/c9bm01009b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-instructive biohybrid microgel-in-gel materials can guide the faithful in vitro reconstitution of tissues.
Collapse
|
134
|
|
135
|
Sällström N, Capel A, Lewis MP, Engstrøm DS, Martin S. 3D-printable zwitterionic nano-composite hydrogel system for biomedical applications. J Tissue Eng 2020; 11:2041731420967294. [PMID: 33194170 PMCID: PMC7604982 DOI: 10.1177/2041731420967294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022] Open
Abstract
Herein, the cytotoxicity of a novel zwitterionic sulfobetaine hydrogel system with a nano-clay crosslinker has been investigated. We demonstrate that careful selection of the composition of the system (monomer to Laponite content) allows the material to be formed into controlled shapes using an extrusion based additive manufacturing technique with the ability to tune the mechanical properties of the product. Moreover, the printed structures can support their own weight without requiring curing during printing which enables the use of a printing-then-curing approach. Cell culture experiments were conducted to evaluate the neural cytotoxicity of the developed hydrogel system. Cytotoxicity evaluations were conducted on three different conditions; a control condition, an indirect condition (where the culture medium used had been in contact with the hydrogel to investigate leaching) and a direct condition (cells growing directly on the hydrogel). The result showed no significant difference in cell viability between the different conditions and cells were also found to be growing on the hydrogel surface with extended neurites present.
Collapse
Affiliation(s)
- Nathalie Sällström
- Wolfson School of Mechanical Electrical & Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Andrew Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
| | - Daniel S Engstrøm
- Wolfson School of Mechanical Electrical & Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Simon Martin
- Department of Materials, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
136
|
Armstrong AA, Norato J, Alleyne AG, Wagoner Johnson AJ. Direct process feedback in extrusion-based 3D bioprinting. Biofabrication 2019; 12:015017. [DOI: 10.1088/1758-5090/ab4d97] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
137
|
Rupp H, Döhler D, Hilgeroth P, Mahmood N, Beiner M, Binder WH. 3D Printing of Supramolecular Polymers: Impact of Nanoparticles and Phase Separation on Printability. Macromol Rapid Commun 2019; 40:e1900467. [DOI: 10.1002/marc.201900467] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Harald Rupp
- Macromolecular ChemistryDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg von‐Danckelmann‐Platz 4 Halle D‐06120 Germany
| | - Diana Döhler
- Macromolecular ChemistryDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg von‐Danckelmann‐Platz 4 Halle D‐06120 Germany
| | - Philipp Hilgeroth
- Macromolecular ChemistryDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg von‐Danckelmann‐Platz 4 Halle D‐06120 Germany
| | - Nasir Mahmood
- Micro‐ and Nanostructure Based Polymer CompositesDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg Heinrich‐Damerow‐Straße 4 Halle D‐06120 Germany
| | - Mario Beiner
- Micro‐ and Nanostructure Based Polymer CompositesDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg Heinrich‐Damerow‐Straße 4 Halle D‐06120 Germany
| | - Wolfgang H. Binder
- Macromolecular ChemistryDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg von‐Danckelmann‐Platz 4 Halle D‐06120 Germany
- Micro‐ and Nanostructure Based Polymer CompositesDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg Heinrich‐Damerow‐Straße 4 Halle D‐06120 Germany
| |
Collapse
|
138
|
Tigner TJ, Rajput S, Gaharwar AK, Alge DL. Comparison of Photo Cross Linkable Gelatin Derivatives and Initiators for Three-Dimensional Extrusion Bioprinting. Biomacromolecules 2019; 21:454-463. [DOI: 10.1021/acs.biomac.9b01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
139
|
Noble C, Maxson EL, Lerman A, Young MD. Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model. J Mech Behav Biomed Mater 2019; 102:103519. [PMID: 31879268 DOI: 10.1016/j.jmbbm.2019.103519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022]
Abstract
Tissue engineered heart valves (TEHV) provide several advantages over currently available aortic heart valve replacements. Bioprinting provides a patient-specific means of developing a TEHV scaffold from imaging data, and the capability to embed the patient's own cells within the scaffold. In this work we investigated the remodeling capacity of a collagen-based bio-ink by implanting bioprinted disks in a rat subcutaneous model for 2, 4 and 12 weeks and evaluating the mechanical response using biaxial testing and subsequent finite element (FE) modeling. Samples explanted after 2 and 4 weeks showed inferior mechanical properties compared to native tissues while 12 week explants showed a mechanical response of similar magnitude but did not demonstrate the anisotropy present in native tissues. In the FE analysis, the model utilizing mechanical properties from samples explanted after 12 weeks showed the closest mechanical behavior to the native tissues. However, in diastole native tissues showed higher stress in the leaflet belly and lower strain at the commissures compared to 12 week explants, likely due to the anisotropy present in the native tissues. Thus, either further remodeling is required in situ in the aortic valve position or by in vitro preconditioning in an environment such as a bioreactor. Regardless, these results demonstrate the utility of FE analysis to optimize bioprinting process parameters for the most favorable in vivo mechanical performance.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva L Maxson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa D Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
140
|
|
141
|
Wiebe P, Beierle P, Shao HC, Gergely B, Starace AF, Batelaan H. Performance of plastic electron optics components fabricated using a 3D printer. Ultramicroscopy 2019; 205:70-74. [DOI: 10.1016/j.ultramic.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
|
142
|
Hsieh CT, Hsu SH. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32746-32757. [PMID: 31407899 DOI: 10.1021/acsami.9b10784] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three-dimensional (3D) bioprinting is a technology to print materials (bioink) with cells into customized tissues for regeneration or organoids for drug screening applications. Herein, a series of biodegradable polyurethane (PU)-gelatin hydrogel with tunable mechanical properties and degradation rates were developed as the bioink. The PU-gelatin hydrogel demonstrated good printability in 24-31 °C and could print a complicated structure such as the nose-shaped construct. Due to the excellent shear thinning and fast strain recovery properties, the PU-gelatin hydrogel also had long working windows for bioprinting (over 24 h), stacking ability (up to 80 layers), and feasibility for high-resolution printing (through an 80 μm nozzle). The structure stability of the PU-gelatin hydrogel was maintained by two-stage double-network formation through Ca2+ chelation and thermal gelation at 37 °C without any toxic cross-linking reagent. The compressive modulus of printed PU-gelatin hydrogel constructs increased in about 3-fold by the treatment of CaCl2 solution for 15 min and enhanced further after incubation because of the thermal sensitivity of PU at 37 °C. Mesenchymal stem cells (MSCs) printed with the PU-gelatin hydrogel through the 80 μm nozzle showed good viability, high mobility, and ∼200% proliferation ratio (or an ∼300% proliferation ratio through a 200 μm nozzle) in 10 days. Furthermore, the MSC-laden PU-gelatin constructs containing small molecular drug Y27632 underwent chondrogenesis in 10 days. The novel series of PU-gelatin hydrogels with tunable modulus, long working window, convenient bioprinting process, and high-resolution printing possibilities may serve as new bioink for 3D bioprinting of various tissues.
Collapse
Affiliation(s)
- Cheng-Tien Hsieh
- Institute of Polymer Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan, R.O.C
- Institute of Cellular and System Medicine , National Health Research Institutes , Zhunan 35053 , Taiwan, R.O.C
| |
Collapse
|
143
|
Bao Z, Xian C, Yuan Q, Liu G, Wu J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv Healthc Mater 2019; 8:e1900670. [PMID: 31364824 DOI: 10.1002/adhm.201900670] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Hydrogels based on natural polymers have bright application prospects in biomedical fields due to their outstanding biocompatibility and biodegradability. However, the poor mechanical performances of pure natural polymer-based hydrogels greatly limit their application prospects. Recently, a variety of strategies has been applied to prepare natural polymer-based hydrogels with enhanced mechanical properties, which generally exhibit stiffening, strengthening, and stretchable behaviors. This article summarizes the recent progress of natural polymer-based hydrogels with enhanced mechanical properties. From a structure point of view, four kinds of hydrogel are reviewed; double network hydrogels, nanocomposite hydrogels, click chemistry-based hydrogels, and supramolecular hydrogels. For each typical hydrogel, its preparation, structure, and mechanical performance are introduced in detail. At the end of this article, the current challenges and future prospects of hydrogels based on natural polymers are discussed and it is pointed out that 3D printing may offer a new platform for the development of natural polymer-based hydrogels.
Collapse
Affiliation(s)
- Ziting Bao
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Caihong Xian
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Qijuan Yuan
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Guiting Liu
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Jun Wu
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 Guangdong P. R. China
| |
Collapse
|
144
|
Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater 2019; 95:32-49. [PMID: 30639351 PMCID: PMC6625952 DOI: 10.1016/j.actbio.2019.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Despite the numerous lives that have been saved since the first successful procedure in 1954, organ transplant has several shortcomings which prevent it from becoming a more comprehensive solution for medical care than it is today. There is a considerable shortage of organ donors, leading to patient death in many cases. In addition, patients require lifelong immunosuppression to prevent graft rejection postoperatively. With such issues in mind, recent research has focused on possible solutions for the lack of access to donor organs and rejections, with the possibility of using the patient's own cells and tissues for treatment showing enormous potential. Three-dimensional (3D) bioprinting is a rapidly emerging technology, which holds great promise for fabrication of functional tissues and organs. Bioprinting offers the means of utilizing a patient's cells to design and fabricate constructs for replacement of diseased tissues and organs. It enables the precise positioning of cells and biologics in an automated and high throughput manner. Several studies have shown the promise of 3D bioprinting. However, many problems must be overcome before the generation of functional tissues with biologically-relevant scale is possible. Specific focus on the functionality of bioprinted tissues is required prior to clinical translation. In this perspective, this paper discusses the challenges of functionalization of bioprinted tissue under eight dimensions: biomimicry, cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and strives to inform the reader with directions in bioprinting complex and volumetric tissues. STATEMENT OF SIGNIFICANCE: With thousands of patients dying each year waiting for an organ transplant, bioprinted tissues and organs show the potential to eliminate this ever-increasing organ shortage crisis. However, this potential can only be realized by better understanding the functionality of the organ and developing the ability to translate this to the bioprinting methodologies. Considering the rate at which the field is currently expanding, it is reasonable to expect bioprinting to become an integral component of regenerative medicine. For this purpose, this paper discusses several factors that are critical for printing functional tissues including cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and inform the reader with future directions in bioprinting complex and volumetric tissues.
Collapse
Affiliation(s)
- Ashley N Leberfinger
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Shantanab Dinda
- Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Wu
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Srinivas V Koduru
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Veli Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Ceyhan, Adana 01950, Turkey
| | - Dino J Ravnic
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
145
|
Rana Khalid I, Darakhshanda I, Rafi a R. 3D Bioprinting: An attractive alternative to traditional organ transplantation. ACTA ACUST UNITED AC 2019. [DOI: 10.17352/abse.000012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
146
|
Li L, Lin Q, Tang M, Duncan AJE, Ke C. Advanced Polymer Designs for Direct‐Ink‐Write 3D Printing. Chemistry 2019; 25:10768-10781. [DOI: 10.1002/chem.201900975] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/10/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Longyu Li
- Department of Chemistry Dartmouth College 41 College Street Hanover New Hampshire 03755 USA
| | - Qianming Lin
- Department of Chemistry Dartmouth College 41 College Street Hanover New Hampshire 03755 USA
| | - Miao Tang
- Department of Chemistry Dartmouth College 41 College Street Hanover New Hampshire 03755 USA
| | - Andrew J. E. Duncan
- Department of Chemistry Dartmouth College 41 College Street Hanover New Hampshire 03755 USA
| | - Chenfeng Ke
- Department of Chemistry Dartmouth College 41 College Street Hanover New Hampshire 03755 USA
| |
Collapse
|
147
|
Fenton OS, Paolini M, Andresen JL, Müller FJ, Langer R. Outlooks on Three-Dimensional Printing for Ocular Biomaterials Research. J Ocul Pharmacol Ther 2019; 36:7-17. [PMID: 31211652 PMCID: PMC6985767 DOI: 10.1089/jop.2018.0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022] Open
Abstract
Given its potential for high-resolution, customizable, and waste-free fabrication of medical devices and in vitro biological models, 3-dimensional (3D) bioprinting has broad utility within the biomaterials field. Indeed, 3D bioprinting has to date been successfully used for the development of drug delivery systems, the recapitulation of hard biological tissues, and the fabrication of cellularized organ and tissue-mimics, among other applications. In this study, we highlight convergent efforts within engineering, cell biology, soft matter, and chemistry in an overview of the 3D bioprinting field, and we then conclude our work with outlooks toward the application of 3D bioprinting for ocular research in vitro and in vivo.
Collapse
Affiliation(s)
- Owen S. Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Marion Paolini
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jason L. Andresen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Florence J. Müller
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
148
|
Maurizi M, Slavič J, Cianetti F, Jerman M, Valentinčič J, Lebar A, Boltežar M. Dynamic Measurements Using FDM 3D-Printed Embedded Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2661. [PMID: 31212852 PMCID: PMC6631479 DOI: 10.3390/s19122661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 02/04/2023]
Abstract
3D-printing technology is opening up new possibilities for the co-printing of sensory elements. While quasi-static research has shown promise, the dynamic performance has yet to be researched. This study researched smart 3D structures with embedded and printed sensory elements. The embedded strain sensor was based on the conductive PLA (Polylactic Acid) material. The research was focused on dynamic measurements of the strain and considered the theoretical background of the piezoresistivity of conductive PLA materials, the temperature effects, the nonlinearities, the dynamic range, the electromagnetic sensitivity and the frequency range. A quasi-static calibration used in the dynamic measurements was proposed. It was shown that the temperature effects were negligible, the sensory element was linear as long as the structure had a linear response, the dynamic range started at ∼ 30 μ ϵ and broadband performance was in the range of few kHz (depending on the size of the printed sensor). The promising results support future applications of smart 3D-printed systems with embedded sensory elements being used for dynamic measurements in areas where currently piezo-crystal-based sensors are used.
Collapse
Affiliation(s)
- Marco Maurizi
- Department of Engineering, University of Perugia, Goffredo Duranti 93, 06125 Perugia, Italy.
| | - Janko Slavič
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
| | - Filippo Cianetti
- Department of Engineering, University of Perugia, Goffredo Duranti 93, 06125 Perugia, Italy.
| | - Marko Jerman
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
| | - Joško Valentinčič
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
| | - Andrej Lebar
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Ljubljana, Poljanska c. 26a, 1000 Ljubljana, Slovenia.
| | - Miha Boltežar
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
| |
Collapse
|
149
|
Skolasinski SD, Panoskaltsis-Mortari A. Lung tissue bioengineering for chronic obstructive pulmonary disease: overcoming the need for lung transplantation from human donors. Expert Rev Respir Med 2019; 13:665-678. [PMID: 31164014 DOI: 10.1080/17476348.2019.1624163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Chronic obstructive pulmonary disease (COPD) affects more than 380 million people, causing more than 3 million deaths annually worldwide. Despite this enormous burden, currently available therapies are largely limited to symptom control. Lung transplant is considered for end-stage disease but is severely limited by the availability of human organs. Furthermore, the pre-transplant course is a complex orchestration of locating and harvesting suitable lungs, and the post-transplant course is complicated by rejection and infection. Lung tissue bioengineering has the potential to relieve the organ shortage and improve the post-transplant course by generating patient-specific lungs for transplant. Additionally, emerging progenitor cell therapies may facilitate in vivo regeneration of pulmonary tissue, obviating the need for transplant. Areas Covered: We review several lung tissue bioengineering approaches including the recellularization of decellularized scaffolds, 3D bioprinting, genetically-engineered xenotransplantation, blastocyst complementation, and direct therapy with progenitor cells. Articles were identified by searching relevant terms (see Key Words) in the PubMed database and selected for inclusion based on novelty and uniqueness of their approach. Expert Opinion: Lung tissue bioengineering research is in the early stages. Of the methods reviewed, only direct cell therapy has been investigated in humans. We anticipate a minimum of 5-10 years before human therapy will be feasible.
Collapse
Affiliation(s)
- Steven D Skolasinski
- a Division of Pulmonary, Allergy, Critical Care and Sleep Medicine , University of Minnesota , Minneapolis , MN , USA
| | | |
Collapse
|
150
|
Shafranek RT, Millik SC, Smith PT, Lee CU, Boydston AJ, Nelson A. Stimuli-responsive materials in additive manufacturing. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|