101
|
Fenjves ES, Ochoa MS, Cabrera O, Mendez AJ, Kenyon NS, Inverardi L, Ricordi C. Human, nonhuman primate, and rat pancreatic islets express erythropoietin receptors. Transplantation 2003; 75:1356-60. [PMID: 12717230 DOI: 10.1097/01.tp.0000062862.88375.bd] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Erythropoietin (EPO) promotes survival in a variety of cells by mediating antiapoptotic signals through the EPO receptor (R). The authors examined pancreatic islets for the presence of EPO-R to determine whether these cells are protected by EPO from cytokine-induced apoptosis. METHODS Reverse-transcriptase polymerase chain reaction, immunohistology, and Western blots were used to establish the presence and localization of EPO-R on rat, nonhuman primate, and human islets. Islets were exposed to cytokines in the presence and absence of recombinant EPO and apoptosis was measured using a terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay followed by fluorescence-activated cell sorter analysis. Glucose stimulation indices were measured to assess the effect of EPO on islet function. RESULTS The presence of EPO-R was demonstrated on islets regardless of species. Recombinant EPO protected islets in culture from cytokine-induced apoptosis in a dose-dependent manner. Furthermore, the presence of EPO in the media does not adversely affect islet function. CONCLUSIONS This is the first demonstration that pancreatic islets express EPO-R and that EPO may prevent islet-cell apoptosis in culture. In vivo trials to evaluate the potential of long-term expression of EPO to augment islet survival in transplantation are underway.
Collapse
Affiliation(s)
- Elizabeth S Fenjves
- Diabetes Research Institute, University Of Miami, School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
102
|
Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101:2999-3001. [PMID: 12480709 DOI: 10.1182/blood-2002-06-1830] [Citation(s) in RCA: 552] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ex vivo-expanded mesenchymal stem cells (MSCs) were transduced with a green fluorescent protein (GFP) retroviral construct and subsequently infused into 3 adult baboons following lethal total body irradiation and hematopoietic support or without any prior conditioning. To study the long-term fate of these MSCs, necropsies were performed between 9 and 21 months following MSC infusion, and an average of 16 distinct tissues were recovered from each recipient and evaluated for the presence of the GFP transgene in purified genomic DNA by sensitive real-time polymerase chain reaction (PCR). Two baboons received autologous and one allogeneic GFP-transduced MSCs. Both allogeneic and autologous MSCs appeared to distribute in a similar manner. Gastrointestinal tissues harbored high concentrations of transgene per microgram of DNA. Additional tissues including kidney, lung, liver, thymus, and skin were also found to contain relatively high amounts of DNA equivalents. Estimated levels of engraftment in these tissues ranged from 0.1% to 2.7%. The nonconditioned recipient appeared to have less abundant engraftment. These data suggest that MSCs initially distribute broadly following systemic infusion and later may participate in ongoing cellular turnover and replacement in a wide variety of tissues.
Collapse
Affiliation(s)
- Steven M Devine
- Section of Hematology/Oncology, Department of Surgery, University of Illinois College of Medicine, Chicago, USA.
| | | | | | | | | |
Collapse
|
103
|
Eliopoulos N, Al-Khaldi A, Crosato M, Lachapelle K, Galipeau J. A neovascularized organoid derived from retrovirally engineered bone marrow stroma leads to prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocompetent mice. Gene Ther 2003; 10:478-89. [PMID: 12621452 DOI: 10.1038/sj.gt.3301919] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marrow stromal cells (MSCs) are postnatal progenitor cells that can be easily cultured ex vivo to large amounts. This feature is attractive for cell therapy applications where genetically engineered MSCs could serve as an autologous cellular vehicle for the delivery of therapeutic proteins. The usefulness of MSCs in transgenic cell therapy will rely upon their potential to engraft in nonmyeloablated, immunocompetent recipients. Further, the ability to deliver MSCs subcutaneously - as opposed to intravenous or intraperitoneal infusions - would enhance safety by providing an easily accessible, and retrievable, artificial subcutaneous implant in a clinical setting. To test this hypothesis, MSCs were retrovirally engineered to secrete mouse erythropoietin (Epo) and their effect was ascertained in nonmyeloablated syngeneic mice. Epo-secreting MSCs when administered as 'free' cells by subcutaneous or intraperitoneal injection, at the same cell dose, led to a significant - yet temporary - hematocrit increase to over 70% for 55+/-13 days. In contrast, in mice implanted subcutaneously with Matrigel trade mark -embedded MSCs, the hematocrit persisted at levels >80% for over 110 days in four of six mice (P<0.05 logrank). Moreover, Epo-secreting MSCs mixed in Matrigel elicited and directly participated in blood vessel formation de novo reflecting their mesenchymal plasticity. MSCs embedded in human-compatible bovine collagen matrix also led to a hematocrit >70% for 75+/-8.9 days. In conclusion, matrix-embedded MSCs will spontaneously form a neovascularized organoid that supports the release of a soluble plasma protein directly into the bloodstream for a sustained pharmacological effect in nonmyeloablated recipients.
Collapse
Affiliation(s)
- N Eliopoulos
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
104
|
Schwenter F, Déglon N, Aebischer P. Optimization of human erythropoietin secretion from MLV-infected human primary fibroblasts used for encapsulated cell therapy. J Gene Med 2003; 5:246-57. [PMID: 12666190 DOI: 10.1002/jgm.338] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The transplantation of encapsulated cells genetically engineered to secrete human erythropoietin (hEpo) represents an alternative to repeated injections of the recombinant hormone for the treatment of Epo-responsive anemia. In the present study, the ability of primary human foreskin fibroblasts to secrete high levels of hEpo and the importance of cis-acting elements and infection conditions on transgene expression level were assessed. METHODS The transduction efficiency was first evaluated with beta-galactosidase (LacZ)-encoding retroviral vectors derived from the murine leukemia retrovirus (MLV) pseudotyped either with an amphotropic envelope or with the G glycoprotein of vesicular stomatitis virus (VSV-G). Human fibroblasts were then infected with an amphotropic hEpo-expressing retroviral vector, which was modified by insertion of a post-transcriptional regulatory element from the woodchuck hepatitis virus (WPRE) and a Kozak consensus sequence (KZ). Human Epo production was further optimized by increasing the multiplicity of infection and by selecting high producer cells. The survival and the transgene expression of these fibroblasts were finally evaluated in vivo. The cells were encapsulated into microporous hollow fibers and subcutaneously implanted in nude mice. RESULTS A secretion level of approximately 5 IU hEpo/10(6) cells/day was obtained with the basal vector. A 7.5-fold increase in transgene expression was observed with the insertion of WPRE and KZ elements. Finally, according to the optimization of infection conditions, we obtained a 40-fold increase in hEpo secretion, reaching approximately 200 IU hEpo/10(6) cells/day. The in vivo experiments showed an increase in the hematocrit during the first 2 weeks and elevated levels exceeding 60% were maintained over a 6-week period. CONCLUSIONS These results indicate that primary human fibroblasts represent a promising source for encapsulated cell therapy.
Collapse
Affiliation(s)
- F Schwenter
- Division of Surgical Research & Gene Therapy Center, CHUV, Lausanne University Medical School, 1011 Lausanne, Switzerland
| | | | | |
Collapse
|
105
|
Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57:11-20. [PMID: 12542793 DOI: 10.1046/j.1365-3083.2003.01176.x] [Citation(s) in RCA: 995] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We aimed to study the effects of mesenchymal stem cells (MSCs) on alloreactivity and effects of T-cell activation on human peripheral blood lymphocytes (PBLs) in vitro. MSCs were expanded from the bone marrow of healthy subjects. MSCs isolated from second to third passage were positive for CD166, CD105, CD44, CD29, SH-3 and SH-4, but negative for CD34 and CD45. MSCs cultured in osteogenic, adipogenic or chondrogenic media differentiated, respectively, into osteocytes, adipocytes or chondrocytes. MSC added to PBL cultures had various effects, ranging from slight inhibition to stimulation of DNA synthesis. The stimulation index (SI = (PBL + MSC)/PBL) varied between 0.2 and 7.3. The SI was not affected by the MSC dose or by the addition of allogeneic or autologous MSCs to the lymphocytes. Suppression of proliferative activity was observed in all experiments after the addition of 10,000-40,000 MSCs to mixed lymphocyte cultures (MLCs). Lymphocyte proliferation was 10-90%, compared with a control MLC run in parallel without MSCs. In contrast, the addition of fewer MSCs (10-1000 cells) led to a less consistent suppression or a marked lymphocyte proliferation in several experiments, ranging from 40 to 190% of the maximal lymphocyte proliferation in control MLCs. The ability to inhibit or stimulate T-cell alloresponses appeared to be independent of the major histocompatibility complex, as results were similar using 'third party' MSCs or MSCs that were autologous to the responder or stimulating PBLs. The strongest inhibitory effect was seen if MSCs were added at the beginning of the 6 day culture, and the effect declined if MSCs were added on day 3 or 5. Marked inhibitory effects of allogeneic and autologous MSCs (15,000) were also noted after mitogenic lymphocyte stimulation by phytohaemagglutinin (median lymphocyte proliferation of 30% of controls), Concanavalin A (56%) and protein A (65%). Little, if any, inhibition occurred after stimulation with pokeweed mitogen. Low numbers of MSCs (150 cells) were unable to inhibit mitogen-induced T-cell responses. MSCs have significant immune modulatory effects on MLCs and after mitogenic stimulation of PBL. High numbers of MSCs suppress alloreactive T cells, whereas very low numbers clearly stimulated lymphocyte proliferation in some experiments. The effect of a larger number of MSCs on MLCs seems more dependent on cell dose than histocompatibility and could result from an 'overload' of a stimulatory mechanism.
Collapse
Affiliation(s)
- K Le Blanc
- Division of Clinical Immunology; Centre for Allogeneic Stem Cell Transplantation, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
106
|
Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, Benhaim P, Chen ISY, Hedrick MH. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther 2003; 14:59-66. [PMID: 12573059 DOI: 10.1089/10430340360464714] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have characterized a population of mesenchymal progenitor cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multilineage potential similar to bone marrow-derived mesenchymal stem cells and are also easily expanded in culture. The primary benefit of using adipose tissue as a source of multilineage progenitor cells is its relative abundance and ease of procurement. We examined the infection of PLA cells with adenoviral, oncoretroviral, and lentiviral vectors. We demonstrate that PLA cells can be transduced with lentiviral vectors at high efficiency. PLA cells maintain transgene expression after differentiation into adipogenic and osteogenic lineages after lentiviral transduction. Therefore, PLA cells and lentiviral vectors may be an efficient combination for use as a therapeutic gene delivery vehicle.
Collapse
Affiliation(s)
- Kouki Morizono
- Microbiology, Immunology, and Molecular Genetics and Medicine, Department of Hematology-Oncology, UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, CA 90024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
In addition to hematopoietic stem cells (HSC), human post natal bone marrow contains another stem cell capable of giving rise to multiple mesenchymal cell lineages. Termed mesenchymal stem cells (MSCs) based on their capacity for multi-lineage differentiation, these cells can easily be obtained following a simple bone marrow aspiration procedure and subsequently expanded in culture through as many as 50 population doublings. This extensive capacity for expansion in vitro at clinical scale has recently facilitated the development of clinical trials designed to assess the safety, feasibility, and efficacy of transplanting MSC for a variety of pathological conditions. This review focuses on the background and rationale for performing clinical studies of MSC transplantation and will discuss the potential role that MSC may play in the correction or modification of human diseases.
Collapse
Affiliation(s)
- Steven M Devine
- Section of Hematology/Oncology, University of Illinois, College of Medicine, Chicago, USA.
| |
Collapse
|
108
|
Ballas CB, Zielske SP, Gerson SL. Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem 2002; 38:20-8. [PMID: 12046846 DOI: 10.1002/jcb.10127] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is excitement generated almost daily about the possible uses of stem cells to treat human disease. Much of the interest of late is generated by embryonic stem cells (ESCs). As exciting as ESCs may be, they are quite controversial for moral reasons, given their source. They are also scientifically controversial since they are much less well understood than the original, long-standing, and clinically successful hematopoietic stem cell (HSC). HSCs have the distinct advantage of being reasonably well characterized and have been proven in the clinic. They can be isolated by simple procedures directly from the bone marrow or from peripheral blood after being stimulated (mobilized). They can then be manipulated and delivered to a patient, often producing a cure. Their biology provides the paradigm by which all other stem cells are judged, and they have little in the way of moral controversy surrounding them given they are isolated from adults who have consented to the procedure. Another putative stem cell has gained momentum in the last few years; the mesenchymal stem cell (MSC). MSCs appear to have much in common with HSCs. They were originally characterized from bone marrow, are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. Unlike HSCs, they have not yet been definitively shown to function as stem cells, despite their ability to differentiate into various mesenchymal cell types under the right culture conditions. Still, there is mounting evidence these cells may be useful, if not as true stem cells then at least as vehicles for emerging cell and gene therapies, especially in the field of tissue engineering. While this is an important endpoint, it is more important to thoroughly understand stem cell biology. That understanding can then be applied toward the ultimate goal of using these cells not just for various forms of therapy, but rather as a tool to discover the mechanisms and means to bring about directed repair and regeneration of damaged or diseased tissues and organs. The excitement of HSCs and MSCs has been muted somewhat by the excitement surrounding ESCs, primarily due to the fact HSCs and MSCs are viewed as limited to specific cell types while ESCs could potentially be applied to any cell type. Recent information indicates HSCs, MSCs, and other cells in general may have more universal differentiation abilities than previously thought.
Collapse
Affiliation(s)
- Christopher B Ballas
- Division of Hematology/Oncology, Comprehensive Cancer Center at University Hospitals of Cleveland and Case Western Reserve University, Ohio, USA
| | | | | |
Collapse
|
109
|
Binley K, Askham Z, Iqball S, Spearman H, Martin L, de Alwis M, Thrasher AJ, Ali RR, Maxwell PH, Kingsman S, Naylor S. Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy. Blood 2002; 100:2406-13. [PMID: 12239150 DOI: 10.1182/blood-2002-02-0605] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anemia is a common clinical problem, and there is much interest in its role in promoting left ventricular hypertrophy through increasing cardiac workload. Normally, red blood cell production is adjusted through the regulation of erythropoietin (Epo) production by the kidney. One important cause of anemia is relative deficiency of Epo, which occurs in most types of renal disease. Clinically, this can be corrected by supplementation with recombinant Epo. Here we describe an oxygen-regulated gene therapy approach to treating homozygous erythropoietin-SV40 T antigen (Epo-TAg(h)) mice with relative erythropoietin deficiency. We used vectors in which murine Epo expression was directed by an Oxford Biomedica hypoxia response element (OBHRE) or a constitutive cytomegalovirus (CMV) promoter. Both corrected anemia, but CMV-Epo-treated mice acquired fatal polycythemia. In contrast, OBHRE-Epo corrected the hematocrit level in anemic mice to a normal physiologic level that stabilized without resulting in polycythemia. Importantly, the OBHRE-Epo vector had no significant effect on the hematocrit of control mice. Homozygous Epo-TAg(h) mice display cardiac hypertrophy, a common adaptive response in patients with chronic anemia. In the OBHRE-Epo-treated Epo-TAg(h) mice, we observed a significant reversal of cardiac hypertrophy. We conclude that the OBHRE promoter gives rise to physiologically regulated Epo secretion such that the hematocrit level is corrected to healthy in anemic Epo-TAg(h) mice. This establishes that a hypoxia regulatory mechanism similar to the natural mechanism can be achieved, and it makes EPO gene therapy more attractive and safer in clinical settings. We envisage that this control system will allow regulated delivery of therapeutic gene products in other ischemic settings.
Collapse
Affiliation(s)
- Katie Binley
- Oxford BioMedica (UK) Ltd; Molecular Immunology Unit, Institute of Child Health, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Koç ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 2002; 30:215-22. [PMID: 12203137 DOI: 10.1038/sj.bmt.1703650] [Citation(s) in RCA: 462] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2001] [Accepted: 04/17/2002] [Indexed: 12/13/2022]
Abstract
Patients with Hurler syndrome (mucopolysaccharidosis type-IH) and metachromatic leukodystrophy (MLD) develop significant skeletal and neurologic defects that limit their survival. Transplantation of allogeneic hematopoietic stem cells results in partial correction of the clinical manifestations. We postulated that some of these defects may be corrected by infusion of allogeneic, multipotential, bone marrow-derived mesenchymal stem cells (MSC). Patients with Hurler syndrome (n = 5) or MLD (n = 6) who previously underwent successful bone marrow transplantation from an HLA-identical sibling were infused with 2-10 x 10(6)/kg MSCs, isolated and expanded from a bone marrow aspirate of the original donor. There was no infusion-related toxicity. In most recipients culture-purified MSCs at 2 days, 30-60 days and 6-24 months after MSC infusion remained of host type. In two patients the bone marrow-derived MSCs contained 0.4 and 2% donor MSCs by FISH 60 days after MSC infusion. In four patients with MLD there were significant improvements in nerve conduction velocities after MSC infusion. The bone mineral density was either maintained or slightly improved in all patients. There was no clinically apparent change in patients' overall health, mental and physical development after MSC infusion. We conclude that donor allogeneic MSC infusion is safe and may be associated with reversal of disease pathophysiology in some tissues. The role of MSCs in the management of Hurler syndrome and MLD should be further evaluated.
Collapse
Affiliation(s)
- O N Koç
- Division of Hematology/Oncology, Department of Medicine at Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
111
|
Daga A, Muraglia A, Quarto R, Cancedda R, Corte G. Enhanced engraftment of EPO-transduced human bone marrow stromal cells transplanted in a 3D matrix in non-conditioned NOD/SCID mice. Gene Ther 2002; 9:915-21. [PMID: 12085239 DOI: 10.1038/sj.gt.3301727] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Accepted: 03/11/2002] [Indexed: 01/08/2023]
Abstract
Intravenous infusion of bone marrow stromal cells (BMSCs) has been proposed as a means to support hematopoiesis in bone marrow transplantation or as a vehicle for gene therapy. However, it seems that this route of injection leads to engraftment of a small proportion of BMSCs, possibly because they are unable to cross the endothelial barrier. We have transplanted human BMSCs, ex vivo expanded and transduced with a retrovirus encoding the human erythropoietin gene, either intravenously or subcutaneously with or without a tridimensional scaffold in non-conditioned NOD/SCID mice. Efficiency of engraftment was evaluated monitoring the hematocrit levels. Systemic infusion never significantly increased hematocrit levels, whereas subcutaneous transplantation of the same number of cells induced an important increase of the hematocrit (approximately 70%) for at least 2 months. A substantial increase in the length of the response was observed when cells were subcutaneously transplanted in a tridimensional scaffold. To determine whether the transient effect was due to cell loss or to reduction in expression, the cells implanted into a tridimensional scaffold were recovered, expanded in vitro, and re-implanted in a new group of mice. Again the hematocrit levels rose 2 weeks after transplantation ( approximately 70%). These results demonstrate that ex vivo expanded human BMSCs are not quantitatively transplantable by systemic infusion in non-conditioned recipients, whereas the local implantation into a tridimensional scaffold allows long-term engraftment and efficient expression of a foreign gene.
Collapse
Affiliation(s)
- A Daga
- Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | |
Collapse
|
112
|
Zhang XY, La Russa VF, Bao L, Kolls J, Schwarzenberger P, Reiser J. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 2002; 5:555-65. [PMID: 11991746 DOI: 10.1006/mthe.2002.0585] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) have attracted attention as potential platforms for the systemic delivery of therapeutic proteins in vivo following gene transfer using oncogenic retroviruses. However, the major limitations of this strategy include low levels of gene transfer and a general lack of long-term transgene expression. We have investigated the expression of several transgenes in MSCs following HIV-1 lentiviral vector-mediated gene transfer. Vectors containing a variety of strong promoters driving enhanced green fluorescence protein (EGFP) and coral (Discosoma sp.)-derived red fluorescent protein (DsRed) reporter genes pseudotyped with the vesicular stomatitis virus-G (VSV-G) glycoprotein were able to transduce cultured MSCs with high efficiency. Transduction efficiencies and transgene expression levels in MSCs were found to be higher with lentiviral vectors than with a vector based on the murine stem cell virus pseudotyped with VSV-G. Transgene expression was maintained in culture for at least 5 months. HIV-1-based lentiviral vectors were able to transduce clonogenic mesenchymal progenitor cells, which were capable of maintaining transgene expression by their MSC progeny, over several cell divisions and during differentiation into adipocytes, indicating that terminal adipocyte cell differentiation was unaffected by lentivirus-mediated reporter gene transfer. Collectively these results suggest that lentivirus-mediated gene transfer strategies provide an efficient tool for ex vivo modification of MSCs that does not interfere with differentiation.
Collapse
Affiliation(s)
- Xian-Yang Zhang
- Gene Therapy Program, Immunology & Parasitology, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|