101
|
Harari-Steinberg O, Pleniceanu O, Dekel B. Selecting the optimal cell for kidney regeneration: fetal, adult or reprogrammed stem cells. Organogenesis 2011; 7:123-34. [PMID: 21519195 DOI: 10.4161/org.7.2.15783] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive loss in renal function over a period of months or years. End-stage renal disease (ESRD) or stage 5 CKD ensues when renal function deteriorates to under 15% of the normal range. ESRD requires either dialysis or, preferentially, a kidney organ allograft, which is severely limited due to organ shortage for transplantation. To combat this situation, one needs to either increase supply of organs or decrease their demand. Two strategies therefore exist: for those that have completely lost their kidney function (ESRD), we will need to supply new kidneys. Taking into account the kidneys' extremely complex structure, this may prove to be impossible in the near future. In contrast, for those patients that are in the slow progression route from CKD to ESRD but still have functional kidneys, we might be able to halt progression by introducing stem cell therapy to diseased kidneys to rejuvenate or regenerate individual cell types. Multiple cell compartments that fall into three categories are likely to be worthy targets for cell repair: vessels, stroma (interstitium) and nephron epithelia. Different stem/progenitor cells can be linked to regeneration of specific cell types; hematopoietic progenitors and hemangioblastic cell types have specific effects on the vascular niche (vasculogenesis and angiogenesis). Multipotent stromal cells (MSC), whether derived from the bone marrow or isolated from the kidney's non-tubular compartment, may, in turn, heal nephron epithelia via paracrine mechanisms. Nevertheless, as we now know that all of the above lack nephrogenic potential, we should continue our quest to derive genuine nephron (epithelial) progenitors from differentiated pluripotent stem cells, from fetal and adult kidneys and from directly reprogrammed somatic cells.
Collapse
Affiliation(s)
- Orit Harari-Steinberg
- The Pediatric Stem Cell Research Institute, Sackler School of Medicine; Tel Aviv University, Israel
| | | | | |
Collapse
|
102
|
Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, Camussi G. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 2011; 26:1474-83. [PMID: 21324974 DOI: 10.1093/ndt/gfr015] [Citation(s) in RCA: 595] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Several studies demonstrated that mesenchymal stem cells (MSCs) reverse acute kidney injury (AKI) by a paracrine mechanism rather than by MSC transdifferentiation. We recently demonstrated that microvesicles (MVs) released from MSCs may account for this paracrine mechanism by a horizontal transfer of messenger RNA and microRNA. METHODS MVs isolated from MSCs were injected intravenously in rats (30 μg/rat) immediately after monolateral nephrectomy and renal artery and vein occlusion for 45 min. To evaluate the MV effects on AKI induced by ischaemia-reperfusion injury (IRI), the animals were divided into different groups: normal rats (n = 4), sham-operated rats (n = 6), IRI rats (n = 6), IRI + MV rats (n = 6), and IRI + RNase-MV rats (n = 6), and all animals were sacrificed at Day 2 after the operation. To evaluate the chronic kidney damage consequent to IRI, the rats were divided into different groups: sham-operated rats (n = 6) and IRI rats (n = 6), IRI + MV rats (n = 6), and all animal were sacrificed 6 months after the operation. RESULTS We found that a single administration of MVs, immediately after IRI, protects rats from AKI by inhibiting apoptosis and stimulating tubular epithelial cell proliferation. The MVs also significantly reduced the impairment of renal function. Pretreatment of MVs with RNase to inactivate their RNA cargo abrogated these protective effects. Moreover, MVs by reducing the acute injury also protected from later chronic kidney disease. CONCLUSION MVs released from MSCs protect from AKI induced by ischaemia reperfusion injury and from subsequent chronic renal damage. This suggest that MVs could be exploited as a potential new therapeutic approach.
Collapse
Affiliation(s)
- Stefano Gatti
- Center for Surgical Research, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
103
|
Shokeir AA, Harraz AM, El-Din ABS. Tissue engineering and stem cells: basic principles and applications in urology. Int J Urol 2010; 17:964-73. [PMID: 20969644 DOI: 10.1111/j.1442-2042.2010.02643.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To overcome problems of damaged urinary tract tissues and complications of current procedures, tissue engineering (TE) techniques and stem cell (SC) research have achieved great progress. Although diversity of techniques is used, urologists should know the basics. We carried out a literature review regarding the basic principles and applications of TE and SC technologies in the genitourinary tract. We carried out MEDLINE/PubMed searches for English articles until March 2010 using a combination of the following keywords: bladder, erectile dysfunction, kidney, prostate, Peyronie's disease, stem cells, stress urinary incontinence, testis, tissue engineering, ureter, urethra and urinary tract. Retrieved abstracts were checked, and full versions of relevant articles were obtained. Scientists have achieved great advances in basic science research. This is obvious by the tremendous increase in the number of publications. We divided this review in two topics; the first discusses basic science principles of TE and SC, whereas the second part delineates current clinical applications and advances in urological literature. TE and SC applications represent an alternative resource for treating complicated urological diseases. Despite the paucity of clinical trials, the promising results of animal models and continuous work represents the hope of treating various urological disorders with this technology.
Collapse
Affiliation(s)
- Ahmed A Shokeir
- Mansoura Urology and Nephrology Center, Urology Department, Mansoura, Egypt.
| | | | | |
Collapse
|
104
|
Choi SJ, Kim JK, Hwang SD. Mesenchymal stem cell therapy for chronic renal failure. Expert Opin Biol Ther 2010; 10:1217-26. [PMID: 20560782 DOI: 10.1517/14712598.2010.500284] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD Chronic kidney disease (CKD) has become a worldwide public health problem. Renal transplantation is the treatment of choice for end-stage renal disease, but is limited by a small number of organ donors and the immune barrier. To overcome these problems, new therapeutic strategies for tissue repair have recently emerged. AREAS COVERED IN THIS REVIEW We discuss the therapeutic potential of mesenchymal stem cells (MSCs) in kidney injury and examine the latest reports providing evidence supporting MSC efficacy in the treatment of chronic renal failure (CRF). WHAT THE READER WILL GAIN MSCs improve histological and functional outcomes in various CRF model systems. Paracrine effects rather than transdifferentiation might result in the prevention of progressive renal failure. In addition, MSCs can reprogram kidney cell differentiation, and modulate neo-kidney transplantation in CRF. TAKE HOME MESSAGE Although many practical problems remain to be addressed, treatment with MSCs will enter the mainstream of CRF treatment.
Collapse
Affiliation(s)
- Soo Jeong Choi
- Soonchunhyang University Bucheon Hospital, Internal Medicine, Wonmi-gu, Bucheon-si, Republic of Korea
| | | | | |
Collapse
|
105
|
Kelley R, Werdin ES, Bruce AT, Choudhury S, Wallace SM, Ilagan RM, Cox BR, Tatsumi-Ficht P, Rivera EA, Spencer T, Rapoport HS, Wagner BJ, Guthrie K, Jayo MJ, Bertram TA, Presnell SC. Tubular cell-enriched subpopulation of primary renal cells improves survival and augments kidney function in rodent model of chronic kidney disease. Am J Physiol Renal Physiol 2010; 299:F1026-39. [PMID: 20826573 DOI: 10.1152/ajprenal.00221.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Established chronic kidney disease (CKD) may be identified by severely impaired renal filtration that ultimately leads to the need for dialysis or kidney transplant. Dialysis addresses only some of the sequelae of CKD, and a significant gap persists between patients needing transplant and available organs, providing impetus for development of new CKD treatment modalities. Some postulate that CKD develops from a progressive imbalance between tissue damage and the kidney's intrinsic repair and regeneration processes. In this study we evaluated the effect of kidney cells, delivered orthotopically by intraparenchymal injection to rodents 4-7 wk after CKD was established by two-step 5/6 renal mass reduction (NX), on the regeneration of kidney function and architecture as assessed by physiological, tissue, and molecular markers. A proof of concept for the model, cell delivery, and systemic effect was demonstrated with a heterogeneous population of renal cells (UNFX) that contained cells from all major compartments of the kidney. Tubular cells are known contributors to kidney regeneration in situ following acute injury. Initially tested as a control, a tubular cell-enriched subpopulation of UNFX (B2) surprisingly outperformed UNFX. Two independent studies (3 and 6 mo in duration) with B2 confirmed that B2 significantly extended survival and improved renal filtration (serum creatinine and blood urea nitrogen). The specificity of B2 effects was verified by direct comparison to cell-free vehicle controls and an equivalent dose of non-B2 cells. Quantitative histological evaluation of kidneys at 6 mo after treatment confirmed that B2 treatment reduced severity of kidney tissue pathology. Treatment-associated reduction of transforming growth factor (TGF)-β1, plasminogen activator inhibitor (PAI)-1, and fibronectin (FN) provided evidence that B2 cells attenuated canonical pathways of profibrotic extracellular matrix production.
Collapse
Affiliation(s)
- Rusty Kelley
- Tengion, Inc., 3929 Westpoint Blvd., Suite G, Winston-Salem, NC 27103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Microvesicles (MVs) are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the surface membranes of most cell types. An increasing body of evidence indicates that they play a pivotal role in cell-to-cell communication. Indeed, they may directly stimulate target cells by receptor-mediated interactions or may transfer from the cell of origin to various bioactive molecules including membrane receptors, proteins, mRNAs, microRNAs, and organelles. In this review we discuss the pleiotropic biologic effects of MVs that are relevant for communication among cells in physiological and pathological conditions. In particular, we discuss their potential involvement in inflammation, renal disease, and tumor progression, and the evidence supporting a bidirectional exchange of genetic information between stem and injured cells. The transfer of gene products from injured cells may explain stem cell functional and phenotypic changes without the need of transdifferentiation into tissue cells. On the other hand, transfer of gene products from stem cells may reprogram injured cells to repair damaged tissues.
Collapse
|
107
|
Lee SR, Lee SH, Moon JY, Park JY, Lee D, Lim SJ, Jeong KH, Park JK, Lee TW, Ihm CG. Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. Ren Fail 2010; 32:840-8. [DOI: 10.3109/0886022x.2010.494803] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
108
|
Asanuma H, Vanderbrink BA, Campbell MT, Hile KL, Zhang H, Meldrum DR, Meldrum KK. Arterially delivered mesenchymal stem cells prevent obstruction-induced renal fibrosis. J Surg Res 2010; 168:e51-9. [PMID: 20850784 DOI: 10.1016/j.jss.2010.06.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 05/12/2010] [Accepted: 06/14/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. MATERIALS AND METHODS Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 wk later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson's trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). RESULTS Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 wk post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. CONCLUSIONS Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved.
Collapse
Affiliation(s)
- Hiroshi Asanuma
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Asanuma H, Meldrum DR, Meldrum KK. Therapeutic Applications of Mesenchymal Stem Cells to Repair Kidney Injury. J Urol 2010; 184:26-33. [DOI: 10.1016/j.juro.2010.03.050] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroshi Asanuma
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel R. Meldrum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kirstan K. Meldrum
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
110
|
Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O'Connor KC. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 2010; 28:788-98. [PMID: 20127798 DOI: 10.1002/stem.312] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In regenerative medicine, bone marrow is a promising source of mesenchymal stem cells (MSCs) for a broad range of cellular therapies. This research addresses a basic prerequisite to realize the therapeutic potential of MSCs by developing a novel high-capacity assay to quantify the clonal heterogeneity in potency that is inherent to MSC preparations. The assay utilizes a 96-well format to (1) classify MSCs according to colony-forming efficiency as a measure of proliferation capacity and trilineage potential to exhibit adipo-, chondro-, and osteogenesis as a measure of multipotency and (2) preserve a frozen template of MSC clones of known potency for future use. The heterogeneity in trilineage potential of normal bone marrow MSCs is more complex than previously reported: all eight possible categories of trilineage potential were detected. In this study, the average colony-forming efficiency of MSC preparations was 55-62%, and tripotent MSCs accounted for nearly 50% of the colony-forming cells. The multiple phenotypes detected in this study infer a more convoluted hierarchy of lineage commitment than described in the literature. Greater cell amplification, colony-forming efficiency, and colony diameter for tri- versus unipotent clones suggest that MSC proliferation may be a function of potency. CD146 may be a marker of multipotency, with approximately 2-fold difference in mean fluorescence intensity between tri- and unipotent clones. The significance of these findings is discussed in the context of the efficacy of MSC therapies. The in vitro assay described herein will likely have numerous applications given the importance of heterogeneity to the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Katie C Russell
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
111
|
Sangidorj O, Yang SH, Jang HR, Lee JP, Cha RH, Kim SM, Lim CS, Kim YS. Bone marrow-derived endothelial progenitor cells confer renal protection in a murine chronic renal failure model. Am J Physiol Renal Physiol 2010; 299:F325-35. [PMID: 20484299 DOI: 10.1152/ajprenal.00019.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endothelial cell damage and impaired angiogenesis substantially contribute to the progression of chronic renal failure (CRF). The effect of endothelial progenitor cell (EPC) treatment on the progression of CRF is yet to be determined. We performed 5/6 nephrectomy to induce CRF in C57BL/6 mice. EPCs were isolated from bone marrow, grown in conditioned medium, and characterized with surface marker analysis. The serial changes in kidney function and histological features were scrutinized in CRF mice and EPC-treated CRF (EPC-CRF) mice. Adoptively transferred EPCs were present at the glomeruli and the tubulointerstitial area until week 8 after transfer. In CRF mice, renal function deteriorated steadily over time, whereas the EPC-CRF group showed less deterioration of renal function as well as reduced proteinuria along with a relatively preserved kidney structure. Renal expression of proinflammatory cytokines and adhesion molecules was already decreased in the EPC-CRF group at the early stage of disease, at which point the renal function and histology of CRF and EPC-CRF mice were not different. Angiogenic molecules including VEGF, KDR, and thrombospondin-1, which were decreased in the CRF group, were restored by EPC treatment. In conclusion, EPCs trafficked into the injured kidney protected the kidney from the inflammatory condition and consequently resulted in functional and structural renal preservation. Our study suggests EPCs as a potential candidate for a novel therapeutic approach in CRF.
Collapse
Affiliation(s)
- Odongua Sangidorj
- 1Department of Internal Medicine, Seoul National University College of Medicine, Jongro-gu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Neonephrogenesis, the capacity to regenerate renal tissue, is a distinctive feature of fish but not usually of mammals. However, evidence exists for kidney repair in response to insulting agents for animals and human beings. Studies have therefore been designed in the past few years to clarify the cellular and molecular basis of renal repair, with the aim to investigate the potential regenerative capacity of animal and human kidneys. Three main questions are being addressed by this research: whether terminally differentiated cells in adult animal kidneys have regenerative capacity; whether multipotent progenitor cells exist in kidneys; and whether renal repair can be favoured or accelerated by cells of extrarenal origin migrating to the kidney in response to injury. In this Review, we describe evidence of cellular and molecular pathways related to renal repair and regeneration, and review data from animal and human studies that show that the kidney might have regenerative capacity.
Collapse
Affiliation(s)
- Ariela Benigni
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy.
| | | | | |
Collapse
|
113
|
Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH, Seguro AC, Pacheco-Silva A, Saraiva Camara NO. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 2010; 27:3063-73. [PMID: 19750536 DOI: 10.1002/stem.214] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2|x|10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson's trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney.
Collapse
Affiliation(s)
- Patricia Semedo
- Nephrology Division, Medicine Department, Federal University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 2010; 19:7-12. [PMID: 19823086 DOI: 10.1097/mnh.0b013e328332fb6f] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The mechanism of stem cell-induced kidney repair remains controversial. Engraftment of bone marrow-derived stem cells is considered a rare event and several studies point to paracrine/endocrine processes. This review focuses on microvesicle-mediated transfer of genetic information between stem cells and injured tissue as a paracrine/endocrine mechanism. RECENT FINDINGS The following findings support a bidirectional exchange of genetic information between stem and injured cells: microvesicles shuttle defined patterns of mRNA and microRNA, are actively released from embryonic and adult stem cells and are internalized by a receptor-mediated mechanism in target cells; transcripts delivered by microvesicles from injured cells may reprogram the phenotype of stem cells to acquire specific features of the tissue; transcripts delivered by microvesicles from stem cells may induce dedifferentiation of cells surviving injury with cell cycle reentry and tissue self-repair. SUMMARY Transfer of genetic information from injured cells may explain stem cell functional and phenotypic changes without the need for transdifferentiation into tissue cells. On the contrary, transfer of genetic information from stem cells may redirect altered functions in target cells suggesting that stem cells may repair damaged tissues without directly replacing parenchymal cells.
Collapse
|
115
|
Lee SH, Jang AS, Kim YE, Cha JY, Kim TH, Jung S, Park SK, Lee YK, Won JH, Kim YH, Park CS. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res 2010; 11:16. [PMID: 20137099 PMCID: PMC2827393 DOI: 10.1186/1465-9921-11-16] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 02/08/2010] [Indexed: 12/01/2022] Open
Abstract
Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs) on bleomycin (BLM)-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002). Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p < 0.05). Degree of lymphocyte and macrophage infiltration increased steadily over time. BMDMSC transfer significantly reduced the BLM-induced increase in wet/dry ratio, degree of neutrophilic infiltration, collagen deposition, and levels of the cytokines, nitrite, and nitrate to those in sham-treated rats (p < 0.05). Fluorescence in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines.
Collapse
Affiliation(s)
- Shin-Hwa Lee
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, 1174 Jung Dong, Wonmi Ku, Bucheon, Gyeonggi Do 420-767, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
|