101
|
Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents. Mol Phylogenet Evol 2016; 99:7-15. [DOI: 10.1016/j.ympev.2016.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 11/19/2022]
|
102
|
Takezaki N, Nishihara H. Resolving the Phylogenetic Position of Coelacanth: The Closest Relative Is Not Always the Most Appropriate Outgroup. Genome Biol Evol 2016; 8:1208-21. [PMID: 27026053 PMCID: PMC4860700 DOI: 10.1093/gbe/evw071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Determining the phylogenetic relationship of two extant lineages of lobe-finned fish, coelacanths and lungfishes, and tetrapods is important for understanding the origin of tetrapods. We analyzed data sets from two previous studies along with a newly collected data set, each of which had varying numbers of species and genes and varying extent of missing sites. We found that in all the data sets the sister relationship of lungfish and tetrapods was constructed with the use of cartilaginous fish as the outgroup with a high degree of statistical support. In contrast, when ray-finned fish were used as the outgroup, which is taxonomically an immediate outgroup of lobe-finned fish and tetrapods, the sister relationship of coelacanth and tetrapods was supported most strongly, although the statistical support was weaker. Even though it is generally accepted that the closest relative is an appropriate outgroup, our analysis suggested that the large divergence of the ray-finned fish as indicated by their long branch lengths and different amino acid frequencies made them less suitable as an outgroup than cartilaginous fish.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Mikicho, Kitagun, Kagawa, Japan
| | - Hidenori Nishihara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-Cho, Midori-Ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
103
|
Buenaventura E, Whitmore D, Pape T. Molecular phylogeny of the hyperdiverse genusSarcophaga(Diptera: Sarcophagidae), and comparison between algorithms for identification of rogue taxa. Cladistics 2016; 33:109-133. [DOI: 10.1111/cla.12161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Eliana Buenaventura
- Natural History Museum of Denmark; Universitetsparken 15 Copenhagen DK-2100 Denmark
| | - Daniel Whitmore
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Thomas Pape
- Natural History Museum of Denmark; Universitetsparken 15 Copenhagen DK-2100 Denmark
| |
Collapse
|
104
|
|
105
|
Williams AV, Miller JT, Small I, Nevill PG, Boykin LM. Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia. Mol Phylogenet Evol 2016; 96:1-8. [DOI: 10.1016/j.ympev.2015.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 11/24/2015] [Indexed: 11/27/2022]
|
106
|
Wang B, Zhang Y, Wei P, Sun M, Ma X, Zhu X. Identification of nuclear low-copy genes and their phylogenetic utility in rosids. Genome 2015; 57:547-54. [PMID: 25761707 DOI: 10.1139/gen-2014-0138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By far, the interordinal relationships in rosids remain poorly resolved. Previous studies based on chloroplast, mitochondrial, and nuclear DNA has produced conflicting phylogenetic resolutions that has become a widely concerned problem in recent phylogenetic studies. Here, a total of 96 single-copy nuclear gene loci were identified from the KOG (eukaryotic orthologous groups) database, most of which were first used for phylogenetic analysis of angiosperms. The orthologous sequence datasets from completely sequenced genomes of rosids were assembled for the resolution of the position of the COM (Celastrales-Oxalidales-Malpighiales) clade in rosids. Our analysis revealed strong and consistent support for CM topology (the COM clade as sister to the malvids). Our results will contribute to further exploring the underlying cause of conflict between chloroplast, mitochondrial, and nuclear data. In addition, our study identified a few novel nuclear molecular markers with potential to investigate the deep phylogenetic relationship of plants or other eukaryotic taxonomical groups.
Collapse
Affiliation(s)
- Baohua Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | | | | | | | | | | |
Collapse
|
107
|
Wang F, Ballesteros JA, Hormiga G, Chesters D, Zhan Y, Sun N, Zhu C, Chen W, Tu L. Resolving the phylogeny of a speciose spider group, the family Linyphiidae (Araneae). Mol Phylogenet Evol 2015; 91:135-49. [PMID: 25988404 DOI: 10.1016/j.ympev.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/03/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022]
Abstract
For high-level molecular phylogenies, a comprehensive sampling design is a key factor for not only improving inferential accuracy, but also for maximizing the explanatory power of the resulting phylogeny. Two standing problems in molecular phylogenies are the unstable placements of some deep and long branches, and the phylogenetic relationships shown by robust supported clades conflict with recognized knowledge. Empirical and theoretical studies suggest that increasing taxon sampling is expected to ameliorate, if not resolve, both problems; however, sometimes neither the current taxonomic system nor the established phylogeny can provide sufficient information to guide additional sampling design. We examined the phylogeny of the spider family Linyphiidae, and selected ingroup species based on epigynal morphology, which can be reconstructed in a phylogenetic context. Our analyses resulted in seven robustly supported clades within linyphiids. The placements of four deep and long branches are sensitive to variations in both outgroup and ingroup sampling, suggesting the possibility of long branch attraction artifacts. Results of ancestral state reconstruction indicate that successive state transformations of the epigynal plate are associated with early cladogenetic events in linyphiid diversification. Representatives of different subfamilies were mixed together within well supported clades and examination revealed that their defining characters, as per traditional taxonomy, are homoplastic. Furthermore, our results demonstrated that increasing taxon sampling produced a more informative framework, which in turn helps to study character evolution and interpret the relationships among linyphiid lineages. Additional defining characters are needed to revise the linyphiid taxonomic system based on our phylogenetic hypothesis.
Collapse
Affiliation(s)
- Fang Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Jesus A Ballesteros
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Douglas Chesters
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yongjia Zhan
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Ning Sun
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Chaodong Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Lihong Tu
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China.
| |
Collapse
|
108
|
Igea J, Bogarín D, Papadopulos AST, Savolainen V. A comparative analysis of island floras challenges taxonomy-based biogeographical models of speciation. Evolution 2015; 69:482-91. [PMID: 25522772 PMCID: PMC6681140 DOI: 10.1111/evo.12587] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/28/2014] [Indexed: 11/30/2022]
Abstract
Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy‐based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation.
Collapse
Affiliation(s)
- Javier Igea
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, United Kingdom
| | | | | | | |
Collapse
|
109
|
Muscarella R, Uriarte M, Erickson DL, Swenson NG, Zimmerman JK, Kress WJ. A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data. PLoS One 2014; 9:e112843. [PMID: 25386879 PMCID: PMC4227909 DOI: 10.1371/journal.pone.0112843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/17/2014] [Indexed: 11/23/2022] Open
Abstract
Background The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. Methodology/principal findings We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning.
Collapse
Affiliation(s)
- Robert Muscarella
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, United States of America
| | - María Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, United States of America
| | - David L Erickson
- Department of Botany, MRC-166, National Museum of Natural History Smithsonian Institution, P.O. Box 37012, Washington, D. C., 20013, United States of America
| | - Nathan G Swenson
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States of America
| | - Jess K Zimmerman
- Department of Environmental Science, University of Puerto Rico, San Juan, Puerto Rico 00925, United States of America
| | - W John Kress
- Department of Botany, MRC-166, National Museum of Natural History Smithsonian Institution, P.O. Box 37012, Washington, D. C., 20013, United States of America
| |
Collapse
|
110
|
Perez SI, Rosenberger AL. The status of platyrrhine phylogeny: A meta-analysis and quantitative appraisal of topological hypotheses. J Hum Evol 2014; 76:177-87. [DOI: 10.1016/j.jhevol.2014.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 08/16/2014] [Accepted: 08/17/2014] [Indexed: 11/27/2022]
|
111
|
Liedigk R, Roos C, Brameier M, Zinner D. Mitogenomics of the Old World monkey tribe Papionini. BMC Evol Biol 2014; 14:176. [PMID: 25209564 PMCID: PMC4169223 DOI: 10.1186/s12862-014-0176-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/25/2014] [Indexed: 12/28/2022] Open
Abstract
Background The evolutionary history of the Old World monkey tribe Papionini comprising the genera Macaca, Mandrillus, Cercocebus, Lophocebus, Theropithecus, Rungwecebus and Papio is still matter of debate. Although the African Papionini (subtribe Papionina) are generally considered to be the sister lineage to the Asian Papionini (subtribe Macacina), previous studies based on morphological data, nuclear or mitochondrial sequences have shown contradictory phylogenetic relationships among and within both subtribes. To further elucidate the phylogenetic relationships among papionins and to estimate divergence ages we generated mitochondrial genome data and combined them with previously published sequences. Results Our mitochondrial gene tree comprises 33 papionins representing all genera of the tribe except Rungwecebus. In contrast to most previous studies, the obtained phylogeny suggests a division of the Papionini into three main mitochondrial clades with similar ages: 1) Papio, Theropithecus, Lophocebus; 2) Mandrillus, Cercocebus; and 3) Macaca; the Mandrillus + Cercocebus clade appears to be more closely related to Macaca than to the other African Papionini. Further, we find paraphyletic relationships within the Mandrillus + Cercocebus clade as well as in Papio. Relationships among Theropithecus, Lophocebus and Papio remain unresolved. Divergence ages reveal initial splits within the three mitochondrial clades around the Miocene/Pliocene boundary and differentiation of Macaca species groups occurred on a similar time scale as those found between genera of the subtribe Papionina. Conclusion Due to the largely well-resolved mitochondrial phylogeny, our study provides new insights into the evolutionary history of the Papionini. Results show some contradictory relationships in comparison to previous analyses, notably the paraphyly within the Cercocebus + Mandrillus clade and three instead of only two major mitochondrial clades. Divergence ages among species groups of macaques are similar to those among African Papionini genera, suggesting that diversification of the mitochondrial genome is of a similar magnitude in both subtribes. However, since our mitochondrial tree represents just a single gene tree that most likely does not reflect the true species tree, extensive nuclear sequence data is required to illuminate the true species phylogeny of papionins and to trace possible ancient hybridization events among lineages. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0176-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rasmus Liedigk
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany.
| | | | | | | |
Collapse
|
112
|
Banguera-Hinestroza E, Hayano A, Crespo E, Hoelzel AR. Delphinid systematics and biogeography with a focus on the current genus Lagenorhynchus: multiple pathways for antitropical and trans-oceanic radiation. Mol Phylogenet Evol 2014; 80:217-30. [PMID: 25130419 DOI: 10.1016/j.ympev.2014.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/20/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
The six species currently classified within the genus Lagenorhynchus exhibit a pattern of antitropical distribution common among marine taxa. In spite of their morphological similarities they are now considered an artificial grouping, and include both recent and the oldest representatives of the Delphinidae radiation. They are, therefore, a good model for studying questions about the evolutionary processes that have driven dolphin speciation, dispersion and distribution. Here we used two different approaches. First we constructed a multigenic phylogeny with a minimum amount of missing data (based on 9 genes, 11,030bp, using the 6 species of the genus and their closest relatives) to infer their relationships. Second, we built a supermatrix phylogeny (based on 33 species and 27 genes) to test the effect of taxon sampling on the phylogeny of the genus, to provide inference on biogeographic history, and provide inference on the main events shaping the dispersion and radiation of delphinids. Our analyses suggested an early evolutionary history of marine dolphins in the North Atlantic Ocean and revealed multiple pathways of migration and radiation, probably guided by paleoceanographic changes during the Miocene and Pliocene. L. acutus and L. albirostris likely shared a common ancestor that arose in the North Atlantic around the Middle Miocene, predating the radiation of subfamilies Delphininae, Globicephalinae and Lissodelphininae.
Collapse
Affiliation(s)
| | - Azusa Hayano
- Wildlife Research Center, Kyoto University, Sakyo, Kyoto 606-8203, Japan
| | - Enrique Crespo
- Centro Nacional Patagonico (CONICET), Blvd. Brown 3600 (9120), Puerto Madryn, Chubut, Argentina
| | - A Rus Hoelzel
- Department of Biological and Biomedical Sciences, University of Durham, South Road DH1 3LE, UK.
| |
Collapse
|
113
|
Zhou C, Mao F, Yin Y, Huang J, Gogarten JP, Xu Y. AST: an automated sequence-sampling method for improving the taxonomic diversity of gene phylogenetic trees. PLoS One 2014; 9:e98844. [PMID: 24892935 PMCID: PMC4044049 DOI: 10.1371/journal.pone.0098844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 05/08/2014] [Indexed: 01/25/2023] Open
Abstract
A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our results show that the resolution of our computational results is almost as good as that of manual inference by domain experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is available at http://csbl.bmb.uga.edu/~zhouchan/AST.php.
Collapse
Affiliation(s)
- Chan Zhou
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Fenglou Mao
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Yanbin Yin
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- College of Computer Science and Technology, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
114
|
Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2014; 75:165-83. [PMID: 24583291 PMCID: PMC4059600 DOI: 10.1016/j.ympev.2014.02.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany.
| | - Jason A Hodgson
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Andrew S Burrell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States.
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, OR, United States.
| | - Ryan L Raaum
- New York Consortium in Evolutionary Primatology, United States; Department of Anthropology, Lehman College & The Graduate Center, City University of New York, Bronx, NY, United States.
| | - Todd R Disotell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States.
| |
Collapse
|
115
|
Li T, Hua J, Wright AM, Cui Y, Xie Q, Bu W, Hillis DM. Long-branch attraction and the phylogeny of true water bugs (Hemiptera: Nepomorpha) as estimated from mitochondrial genomes. BMC Evol Biol 2014; 14:99. [PMID: 24884699 PMCID: PMC4101842 DOI: 10.1186/1471-2148-14-99] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most previous studies of morphological and molecular data have consistently supported the monophyly of the true water bugs (Hemiptera: Nepomorpha). An exception is a recent study by Hua et al. (BMC Evol Biol 9: 134, 2009) based on nine nepomorphan mitochondrial genomes. In the analysis of Hua et al. (BMC Evol Biol 9: 134, 2009), the water bugs in the group Pleoidea formed the sister group to a clade that consisted of Nepomorpha (the remaining true water bugs) + Leptopodomorpha (shore bugs) + Cimicomorpha (assassin bugs and relatives) + Pentatomomorpha (stink bugs and relatives), thereby suggesting that fully aquatic hemipterans evolved independently at least twice. Based on these results, Hua et al. (BMC Evol Biol 9: 134, 2009) elevated the Pleoidea to a new infraorder, the Plemorpha. RESULTS Our reanalysis suggests that the lack of support for the monophyly of the true water bugs (including Pleoidea) by Hua et al. (BMC Evol Biol 9: 134, 2009) likely resulted from inadequate taxon sampling. In particular, long-branch attraction (LBA) between the distant outgroup taxa and Pleoidea, as well as LBA among taxa in the ingroup, made Nepomorpha appear to be polyphyletic. We used three complementary strategies to test and alleviate the effects of LBA: (1) the removal of distant outgroups from the analysis; (2) the addition of closely related outgroups; and (3) the addition of a mitochondrial genome from a second family of Pleoidea. We also performed likelihood-ratio tests to examine the support for monophyly of Nepomorpha with different combinations of taxa included in the analysis. Furthermore, we found that specimens of Helotrephes sp. were misidentified as Paraplea frontalis (Fieber, 1844) by Hua et al. (BMC Evol Biol 9: 134, 2009). CONCLUSIONS All analyses that included the addition of more taxa significantly and consistently supported the placement of Pleoidea within the Nepomorpha (i.e., supported the monophyly of the traditional true water bugs). Our analyses further support a close relationship between Notonectoidea and Pleoidea within Nepomorpha, and the superfamilies Nepoidea, Ochteroidea, Naucoroidea, and Pleoidea are resolved as monophyletic in all trees with strong support. Our results also confirmed that monophyly of Nepomorpha clearly is not refuted by the mitochondrial genome data.
Collapse
Affiliation(s)
- Teng Li
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jimeng Hua
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - April M Wright
- Department of Integrative Biology, University of Texas at Austin, Austin TX 78712, USA
| | - Ying Cui
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qiang Xie
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - David M Hillis
- Department of Integrative Biology, University of Texas at Austin, Austin TX 78712, USA
| |
Collapse
|
116
|
Kimball RT, Braun EL. Does more sequence data improve estimates of galliform phylogeny? Analyses of a rapid radiation using a complete data matrix. PeerJ 2014; 2:e361. [PMID: 24795852 PMCID: PMC4006227 DOI: 10.7717/peerj.361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/03/2014] [Indexed: 01/19/2023] Open
Abstract
The resolution of rapid evolutionary radiations or "bushes" in the tree of life has been one of the most difficult and interesting problems in phylogenetics. The avian order Galliformes appears to have undergone several rapid radiations that have limited the resolution of prior studies and obscured the position of taxa important both agriculturally and as model systems (chicken, turkey, Japanese quail). Here we present analyses of a multi-locus data matrix comprising over 15,000 sites, primarily from nuclear introns but also including three mitochondrial regions, from 46 galliform taxa with all gene regions sampled for all taxa. The increased sampling of unlinked nuclear genes provided strong bootstrap support for all but a small number of relationships. Coalescent-based methods to combine individual gene trees and analyses of datasets that are independent of published data indicated that this well-supported topology is likely to reflect the galliform species tree. The inclusion or exclusion of mitochondrial data had a limited impact upon analyses upon analyses using either concatenated data or multispecies coalescent methods. Some of the key phylogenetic findings include support for a second major clade within the core phasianids that includes the chicken and Japanese quail and clarification of the phylogenetic relationships of turkey. Jackknifed datasets suggested that there is an advantage to sampling many independent regions across the genome rather than obtaining long sequences for a small number of loci, possibly reflecting the differences among gene trees that differ due to incomplete lineage sorting. Despite the novel insights we obtained using this increased sampling of gene regions, some nodes remain unresolved, likely due to periods of rapid diversification. Resolving these remaining groups will likely require sequencing a very large number of gene regions, but our analyses now appear to support a robust backbone for this order.
Collapse
Affiliation(s)
- Rebecca T Kimball
- Department of Biology, University of Florida , Gainesville, FL , USA
| | - Edward L Braun
- Department of Biology, University of Florida , Gainesville, FL , USA
| |
Collapse
|
117
|
The impact of automated filtering of BLAST-determined homologs in the phylogenetic detection of horizontal gene transfer from a transcriptome assembly. Mol Phylogenet Evol 2014; 71:184-92. [DOI: 10.1016/j.ympev.2013.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 10/09/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022]
|
118
|
Wu J, Hasegawa M, Zhong Y, Yonezawa T. Importance of synonymous substitutions under dense taxon sampling and appropriate modeling in reconstructing the mitogenomic tree of Eutheria. Genes Genet Syst 2014; 89:237-51. [DOI: 10.1266/ggs.89.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jiaqi Wu
- School of Life Sciences, Fudan University
| | - Masami Hasegawa
- The Institute of Statistical Mathematics
- School of Life Sciences, Fudan University
| | - Yang Zhong
- Institute of Biodiversity Science and Geobiology, Tibet University
- School of Life Sciences, Fudan University
| | | |
Collapse
|
119
|
Ruane S, Bryson RW, Pyron RA, Burbrink FT. Coalescent Species Delimitation in Milksnakes (Genus Lampropeltis) and Impacts on Phylogenetic Comparative Analyses. Syst Biol 2013; 63:231-50. [DOI: 10.1093/sysbio/syt099] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
120
|
Park DS, Potter D. A test of Darwin's naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors. Proc Natl Acad Sci U S A 2013; 110:17915-20. [PMID: 24127587 PMCID: PMC3816436 DOI: 10.1073/pnas.1309948110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invasive species have great ecological and economic impacts and are difficult to control once established, making the ability to understand and predict invasive behavior highly desirable. Preemptive measures to prevent potential invasive species from reaching new habitats are the most economically and environmentally efficient form of management. Darwin's naturalization hypothesis predicts that invaders less related to native flora are more likely to be successful than those that are closely related to natives. Here we test this hypothesis, using the weed-rich thistle tribe, Cardueae, in the California Floristic Province, a biodiversity hotspot, as our study system. An exhaustive molecular phylogenetic approach was used, generating and examining more than 100,000 likely phylogenies of the tribe based on nuclear and chloroplast DNA markers, representing the most in-depth reconstruction of the clade to date. Branch lengths separating invasive and noninvasive introduced taxa from native California taxa were used to represent phylogenetic distances between these groups and were compared at multiple biogeographical scales to ascertain whether invasive thistles are more or less closely related to natives than noninvasive introduced thistles are. Patterns within this highly supported clade show that not only are introduced thistles more closely related to natives more likely to be invasive, but these invasive species are also evolutionarily closer to native flora than by chance. This suggests that preadaptive traits are important in determining an invader's success. Such rigorous molecular phylogenetic analyses may prove a fruitful means for furthering our understanding of biological invasions and developing predictive frameworks for screening potential invasive taxa.
Collapse
Affiliation(s)
- Daniel S. Park
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Daniel Potter
- Department of Plant Sciences, University of California, Davis, CA 95616
| |
Collapse
|
121
|
|
122
|
Zhang JB, Li RQ, Xiang XG, Manchester SR, Lin L, Wang W, Wen J, Chen ZD. Integrated fossil and molecular data reveal the biogeographic diversification of the eastern Asian-eastern North American disjunct hickory genus (Carya Nutt.). PLoS One 2013; 8:e70449. [PMID: 23875028 PMCID: PMC3713062 DOI: 10.1371/journal.pone.0070449] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/18/2013] [Indexed: 12/01/2022] Open
Abstract
The hickory genus (Carya) contains ca. 17 species distributed in subtropical and tropical regions of eastern Asia and subtropical to temperate regions of eastern North America. Previously, the phylogenetic relationships between eastern Asian and eastern North American species of Carya were not fully confirmed even with an extensive sampling, biogeographic and diversification patterns had thus never been investigated in a phylogenetic context. We sampled 17 species of Carya and 15 species representing all other genera of the Juglandaceae as outgroups, with eight nuclear and plastid loci to reconstruct the phylogeny of Carya. The phylogenetic positions of seven extinct genera of the Juglandaceae were inferred using morphological characters and the molecular phylogeny as a backbone constraint. Divergence times within Carya were estimated with relaxed Bayesian dating. Biogeographic analyses were performed in DIVA and LAGRANGE. Diversification rates were inferred by LASER and APE packages. Our results support two major clades within Carya, corresponding to the lineages of eastern Asia and eastern North America. The split between the two disjunct clades is estimated to be 21.58 (95% HPD 11.07-35.51) Ma. Genus-level DIVA and LAGRANGE analyses incorporating both extant and extinct genera of the Juglandaceae suggested that Carya originated in North America, and migrated to Eurasia during the early Tertiary via the North Atlantic land bridge. Fragmentation of the distribution caused by global cooling in the late Tertiary resulted in the current disjunction. The diversification rate of hickories in eastern North America appeared to be higher than that in eastern Asia, which is ascribed to greater ecological opportunities, key morphological innovations, and polyploidy.
Collapse
Affiliation(s)
- Jing-Bo Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rui-Qi Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Guo Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Steven R. Manchester
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Li Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
- * E-mail: (ZDC); (JW)
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail: (ZDC); (JW)
| |
Collapse
|
123
|
Zhao L, Annie ASH, Amrita S, Yi SKF, Rudolf M. Does better taxon sampling help? A new phylogenetic hypothesis for Sepsidae (Diptera: Cyclorrhapha) based on 50 new taxa and the same old mitochondrial and nuclear markers. Mol Phylogenet Evol 2013; 69:153-64. [PMID: 23707858 DOI: 10.1016/j.ympev.2013.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/05/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022]
Abstract
We here present a phylogenetic hypothesis for Sepsidae (Diptera: Cyclorrhapha), a group of schizophoran flies with ca. 320 described species that is widely used in sexual selection research. The hypothesis is based on five nuclear and five mitochondrial markers totaling 8813 bp for ca. 30% of the diversity (105 sepsid taxa) and - depending on analysis - six or nine outgroup species. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian inferences (BI) yield overall congruent, well-resolved, and supported trees that are largely unaffected by three different ways to partition the data in BI and ML analyses. However, there are also five areas of uncertainty that affect suprageneric relationships where different analyses yield alternate topologies and MP and ML trees have significant conflict according to Shimodaira-Hasegawa tests. Two of these were already affected by conflict in a previous analysis that was based on the same genes and a subset of 69 species. The remaining three involve newly added taxa or genera whose relationships were previously resolved with low support. We thus find that the denser taxon sample in the present analysis does not reduce the topological conflict that had been identified previously. The present study nevertheless presents a significant contribution to the understanding of sepsid relationships in that 50 additional taxa from 18 genera are added to the Tree-of-Life of Sepsidae and that the placement of most taxa is well supported and robust to different tree reconstruction techniques.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Biological Sciences, National University of Singapore, 14 Science Dr 4, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
124
|
Bukhari SA, Caetano-Anollés G. Origin and evolution of protein fold designs inferred from phylogenomic analysis of CATH domain structures in proteomes. PLoS Comput Biol 2013; 9:e1003009. [PMID: 23555236 PMCID: PMC3610613 DOI: 10.1371/journal.pcbi.1003009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/13/2013] [Indexed: 12/22/2022] Open
Abstract
The spatial arrangements of secondary structures in proteins, irrespective of their connectivity, depict the overall shape and organization of protein domains. These features have been used in the CATH and SCOP classifications to hierarchically partition fold space and define the architectural make up of proteins. Here we use phylogenomic methods and a census of CATH structures in hundreds of genomes to study the origin and diversification of protein architectures (A) and their associated topologies (T) and superfamilies (H). Phylogenies that describe the evolution of domain structures and proteomes were reconstructed from the structural census and used to generate timelines of domain discovery. Phylogenies of CATH domains at T and H levels of structural abstraction and associated chronologies revealed patterns of reductive evolution, the early rise of Archaea, three epochs in the evolution of the protein world, and patterns of structural sharing between superkingdoms. Phylogenies of proteomes confirmed the early appearance of Archaea. While these findings are in agreement with previous phylogenomic studies based on the SCOP classification, phylogenies unveiled sharing patterns between Archaea and Eukarya that are recent and can explain the canonical bacterial rooting typically recovered from sequence analysis. Phylogenies of CATH domains at A level uncovered general patterns of architectural origin and diversification. The tree of A structures showed that ancient structural designs such as the 3-layer (αβα) sandwich (3.40) or the orthogonal bundle (1.10) are comparatively simpler in their makeup and are involved in basic cellular functions. In contrast, modern structural designs such as prisms, propellers, 2-solenoid, super-roll, clam, trefoil and box are not widely distributed and were probably adopted to perform specialized functions. Our timelines therefore uncover a universal tendency towards protein structural complexity that is remarkable.
Collapse
Affiliation(s)
- Syed Abbas Bukhari
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
125
|
How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS One 2012; 7:e50076. [PMID: 23209646 PMCID: PMC3509159 DOI: 10.1371/journal.pone.0050076] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/15/2012] [Indexed: 11/30/2022] Open
Abstract
Background Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions. Methodology/Principal Findings Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates. Conclusions/Significance A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades.
Collapse
|
126
|
The lemur revolution starts now: the genomic coming of age for a non-model organism. Mol Phylogenet Evol 2012; 66:442-52. [PMID: 22982436 DOI: 10.1016/j.ympev.2012.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
Morris Goodman was a revolutionary. Together with a mere handful of like-minded scientists, Morris established himself as a leader in the molecular phylogenetic revolution of the 1960s. The effects of this revolution are most evident in this journal, which he founded in 1992. Happily for lemur biologists, one of Morris Goodman's primary interests was in reconstructing the phylogeny of the primates, including the tooth-combed Lorisifomes of Africa and Asia, and the Lemuriformes of Madagascar (collectively referred to as the suborder Strepsirrhini). This paper traces the development of molecular phylogenetic and evolutionary genetic trends and methods over the 50-year expanse of Morris Goodman's career, particularly as they apply to our understanding of lemuriform phylogeny, biogeography, and biology. Notably, this perspective reveals that the lemuriform genome is sufficiently rich in phylogenetic signal such that the very earliest molecular phylogenetic studies - many of which were conducted by Goodman himself - have been validated by contemporary studies that have exploited advanced computational methods applied to phylogenomic scale data; studies that were beyond imagining in the earliest days of phylogeny reconstruction. Nonetheless, the frontier still beckons. New technologies for gathering and analyzing genomic data will allow investigators to build upon what can now be considered a nearly-known phylogeny of the Lemuriformes in order to ask innovative questions about the evolutionary mechanisms that generate and maintain the extraordinary breadth and depth of biological diversity within this remarkable clade of primates.
Collapse
|
127
|
Koetschan C, Hackl T, Müller T, Wolf M, Förster F, Schultz J. ITS2 Database IV: Interactive taxon sampling for internal transcribed spacer 2 based phylogenies. Mol Phylogenet Evol 2012; 63:585-8. [PMID: 22366368 DOI: 10.1016/j.ympev.2012.01.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
|