101
|
McWhite CD, Meyer AG, Wilke CO. Sequence amplification via cell passaging creates spurious signals of positive adaptation in influenza virus H3N2 hemagglutinin. Virus Evol 2016; 2:vew026. [PMID: 27713835 PMCID: PMC5049878 DOI: 10.1093/ve/vew026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical influenza A virus isolates are frequently not sequenced directly. Instead, a majority of these isolates (~70% in 2015) are first subjected to passaging for amplification, most commonly in non-human cell culture. Here, we find that this passaging leaves distinct signals of adaptation, which can confound evolutionary analyses of the viral sequences. We find distinct patterns of adaptation to Madin-Darby (MDCK) and monkey cell culture absent from unpassaged hemagglutinin sequences. These patterns also dominate pooled datasets not separated by passaging type, and they increase in proportion to the number of passages performed. By contrast, MDCK-SIAT1 passaged sequences seem mostly (but not entirely) free of passaging adaptations. Contrary to previous studies, we find that using only internal branches of influenza virus phylogenetic trees is insufficient to correct for passaging artifacts. These artifacts can only be safely avoided by excluding passaged sequences entirely from subsequent analysis. We conclude that future influenza virus evolutionary analyses should appropriately control for potentially confounding effects of passaging adaptations.
Collapse
Affiliation(s)
- Claire D. McWhite
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin,
Austin, TX 78712, USA
| | - Austin G. Meyer
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Center for Computational Biology and Bioinformatics, The University of Texas
at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin,
Austin, TX 78712, USA
| | - Claus O. Wilke
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Center for Computational Biology and Bioinformatics, The University of Texas
at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin,
Austin, TX 78712, USA
| |
Collapse
|
102
|
Li C, Hatta M, Burke DF, Ping J, Zhang Y, Ozawa M, Taft AS, Das SC, Hanson AP, Song J, Imai M, Wilker PR, Watanabe T, Watanabe S, Ito M, Iwatsuki-Horimoto K, Russell CA, James SL, Skepner E, Maher EA, Neumann G, Klimov AI, Kelso A, McCauley J, Wang D, Shu Y, Odagiri T, Tashiro M, Xu X, Wentworth DE, Katz JM, Cox NJ, Smith DJ, Kawaoka Y. Selection of antigenically advanced variants of seasonal influenza viruses. Nat Microbiol 2016; 1:16058. [PMID: 27572841 PMCID: PMC5087998 DOI: 10.1038/nmicrobiol.2016.58] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/30/2016] [Indexed: 11/21/2022]
Abstract
Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. We also selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014-2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigenic Variation
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Evolution, Molecular
- Ferrets/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immune Evasion
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/epidemiology
- Influenza, Human/prevention & control
- Mice
- Orthomyxoviridae Infections/prevention & control
- Seasons
Collapse
Affiliation(s)
- Chengjun Li
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Masato Hatta
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - David F. Burke
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- World Health Organization Collaborating Centre for Modelling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK
| | - Jihui Ping
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Ying Zhang
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Makoto Ozawa
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Andrew S. Taft
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Subash C. Das
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Anthony P. Hanson
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Jiasheng Song
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Masaki Imai
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Peter R. Wilker
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Tokiko Watanabe
- ERATO Infection-Induced Host Responses Project, Saitama 332-0012, Japan
| | - Shinji Watanabe
- ERATO Infection-Induced Host Responses Project, Saitama 332-0012, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Colin A. Russell
- World Health Organization Collaborating Centre for Modelling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK
- Fogarty International Center, National Institutes of Health, Bethesda, 20892 Maryland USA
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Sarah L. James
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- World Health Organization Collaborating Centre for Modelling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK
| | - Eugene Skepner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- World Health Organization Collaborating Centre for Modelling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK
| | - Eileen A. Maher
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
| | - Alexander I. Klimov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30033 Georgia USA
| | - Anne Kelso
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL) at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000 Victoria Australia
| | - John McCauley
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuelong Shu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashi-Murayama, 208-0011 Tokyo Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashi-Murayama, 208-0011 Tokyo Japan
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30033 Georgia USA
| | - David E. Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30033 Georgia USA
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30033 Georgia USA
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30033 Georgia USA
| | - Derek J. Smith
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- World Health Organization Collaborating Centre for Modelling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK
- Department of Virology, Erasmus Medical Center, Rotterdam 3000 CA, Netherlands
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53711 Wisconsin USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- ERATO Infection-Induced Host Responses Project, Saitama 332-0012, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
105
|
Belanov SS, Bychkov D, Benner C, Ripatti S, Ojala T, Kankainen M, Kai Lee H, Wei-Tze Tang J, Kainov DE. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates. Genome Biol Evol 2015; 7:3472-83. [PMID: 26615216 PMCID: PMC4700966 DOI: 10.1093/gbe/evv240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009–2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009–2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates.
Collapse
Affiliation(s)
- Sergei S Belanov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Dmitrii Bychkov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland Welcome Trust Sanger Institute, Cambridgeshire, United Kingdom
| | - Teija Ojala
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Hong Kai Lee
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| | - Julian Wei-Tze Tang
- Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|