101
|
Honegger A, Plückthun A. Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol 2001; 309:657-70. [PMID: 11397087 DOI: 10.1006/jmbi.2001.4662] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A common residue numbering scheme for all immunoglobulin variable domains (immunoglobulin light chain lambda (V(lambda)) and kappa (V(kappa)) variable domains, heavy chain variable domains (V(H)) and T-cell receptor alpha (V(alpha)), beta (V(beta)), gamma (V(gamma)) and delta (V(delta)) variable domains) has been devised. Based on the spatial alignment of known three-dimensional structures of immunoglobulin domains, it places the alignment gaps in a way that minimizes the average deviation from the averaged structure of the aligned domains. This residue numbering scheme was applied to the immunoglobulin variable domain structures in the PDB database to automate the extraction of information on structural variations in homologous positions of the different molecules. A number of methods are presented that allow the automated projection of information derived from individual structures or from the comparison of multi-structure alignments onto a graphical representation of the sequence alignment.
Collapse
Affiliation(s)
- A Honegger
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland.
| | | |
Collapse
|
102
|
Carrasco YR, Ramiro AR, Trigueros C, de Yébenes VG, García-Peydró M, Toribio ML. An endoplasmic reticulum retention function for the cytoplasmic tail of the human pre-T cell receptor (TCR) alpha chain: potential role in the regulation of cell surface pre-TCR expression levels. J Exp Med 2001; 193:1045-58. [PMID: 11342589 PMCID: PMC2193431 DOI: 10.1084/jem.193.9.1045] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pre-T cell receptor (TCR), which consists of a TCR-beta chain paired with pre-TCR-alpha (pTalpha) and associated with CD3/zeta components, is a critical regulator of T cell development. For unknown reasons, extremely low pre-TCR levels reach the plasma membrane of pre-T cells. By transfecting chimeric TCR-alpha-pTalpha proteins into pre-T and mature T cell lines, we show here that the low surface expression of the human pre-TCR is pTalpha chain dependent. Particularly, the cytoplasmic domain of pTalpha is sufficient to reduce surface expression of a conventional TCR-alpha/beta to pre-TCR expression levels. Such reduced expression cannot be attributed to qualitative differences in the biochemical composition of the CD3/zeta modules associated with pre-TCR and TCR surface complexes. Rather, evidence is provided that the pTalpha cytoplasmic tail also causes a reduced surface expression of individual membrane molecules such as CD25 and CD4, which are shown to be retained in the endoplasmic reticulum (ER). Native pTalpha is also observed to be predominantly ER localized. Finally, sequential truncations along the pTalpha cytoplasmic domain revealed that removal of the COOH-terminal 48 residues is sufficient to release a CD4-pTalpha chimera from ER retention, and to restore native CD4 surface expression levels. As such a truncation in pTalpha also correlates with enhanced pre-TCR expression, the observed pTalpha ER retention function may contribute to the regulation of surface pre-TCR expression on pre-T cells.
Collapse
Affiliation(s)
- Yolanda R. Carrasco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Almudena R. Ramiro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - César Trigueros
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Virginia G. de Yébenes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Marina García-Peydró
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - María L. Toribio
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
103
|
Willard-Gallo KE, Furtado M, Burny A, Wolinsky SM. Down-modulation of TCR/CD3 surface complexes after HIV-1 infection is associated with differential expression of the viral regulatory genes. Eur J Immunol 2001; 31:969-79. [PMID: 11298321 DOI: 10.1002/1521-4141(200104)31:4<969::aid-immu969>3.0.co;2-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have investigated the mechanism(s) involved in progressive abrogation of CD3-gamma gene expression after HIV-1 or HIV-2 infection. A comparison of intracellular virus expression with T cell receptor surface density, revealed both high and low levels of viral p24 antigen in the TCR/CD3(hi), TCR/CD3(lo), and TCR/CD3(-) cells. Furthermore, in non-productively infected cells expressing the multiply spliced, virally encoded tat, rev, and nef regulatory gene transcripts, the same progressive loss of surface TCR/CD3 complexes was observed. We treated HIV-1-infected cells with antisense (AS) phosphorothioate oligodeoxynucleotides (P-OdN) targeted to the viral regulatory genes. All of the HIV-1 sequence-specific AS-P-OdN's inhibited intracellular p24 antigen expression in a time- and dose-dependent manner; although, blocking p24 expression alone was not sufficient to modulate TCR/CD3 surface density. Only Tat-AS and Nef-AS were able to delay TCR/CD3 down-modulation on receptor-positive cells or drive receptor up-regulation on receptor-negative cells. In contrast, Rev-AS accelerated TCR/CD3 loss on receptor-positive cells. RT-PCR revealed that Tat-AS and Nef-AS reduce the level of tat, nef, and rev transcripts, while Rev-AS increases the level of tat and nef transcripts in infected cells. Thus, when intracellular conditions favor expression of tat and/or nef in the absence of rev, CD3-gamma gene transcripts and TCR/CD3 surface density are down-modulated.
Collapse
MESH Headings
- CD3 Complex/metabolism
- Cell Line
- Dose-Response Relationship, Drug
- Down-Regulation
- Flow Cytometry
- Gene Expression Regulation, Viral
- Gene Products, nef/genetics
- Gene Products, nef/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- HIV Core Protein p24/metabolism
- HIV-1/genetics
- HIV-1/growth & development
- HIV-1/physiology
- Humans
- Oligonucleotides, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Time Factors
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- K E Willard-Gallo
- Laboratory of Experimental Hematology, University of Brussels (ULB), Brussels, Belgium.
| | | | | | | |
Collapse
|
104
|
Abstract
Almost all of the key molecules involved in the innate and adaptive immune response are glycoproteins. In the cellular immune system, specific glycoforms are involved in the folding, quality control, and assembly of peptide-loaded major histocompatibility complex (MHC) antigens and the T cell receptor complex. Although some glycopeptide antigens are presented by the MHC, the generation of peptide antigens from glycoproteins may require enzymatic removal of sugars before the protein can be cleaved. Oligosaccharides attached to glycoproteins in the junction between T cells and antigen-presenting cells help to orient binding faces, provide protease protection, and restrict nonspecific lateral protein-protein interactions. In the humoral immune system, all of the immunoglobulins and most of the complement components are glycosylated. Although a major function for sugars is to contribute to the stability of the proteins to which they are attached, specific glycoforms are involved in recognition events. For example, in rheumatoid arthritis, an autoimmune disease, agalactosylated glycoforms of aggregated immunoglobulin G may induce association with the mannose-binding lectin and contribute to the pathology.
Collapse
Affiliation(s)
- P M Rudd
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | |
Collapse
|
105
|
Xiong Y, Kern P, Chang H, Reinherz E. T Cell Receptor Binding to a pMHCII Ligand Is Kinetically Distinct from and Independent of CD4. J Biol Chem 2001; 276:5659-67. [PMID: 11106664 DOI: 10.1074/jbc.m009580200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Immune recognition of pMHCII ligands by a helper T lymphocyte involves its antigen-specific T cell receptor (TCR) and CD4 coreceptor. We have characterized the binding of both molecules to the same pMHCII. The D10 alphabeta TCR heterodimer binds to conalbumin/I-A(k) with virtually identical kinetics and affinity as the single chain ValphaVbeta domain module (scD10) (Kd = 6-8 microm). The CD4 ectodomain does not alter either interaction. Moreover, CD4 alone demonstrates weak pMHCII binding (Kd = 200 microm), with no discernable affinity for the alphabeta TCR heterodimer. Hence, rather than providing a major contribution to binding energy, the critical role for the coreceptor in antigen-specific activation likely results from transient inducible recruitment of the CD4 cytoplasmic tail-associated lck tyrosine kinase to the pMHCII-ligated TCR complex.
Collapse
MESH Headings
- Antigen Presentation
- CD4 Antigens/genetics
- CD4 Antigens/metabolism
- Genes, MHC Class II
- Histocompatibility Antigens Class II
- Humans
- Kinetics
- Ligands
- Lymphocyte Activation
- Models, Immunological
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Peptides/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Y Xiong
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
106
|
Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 2001; 409:733-9. [PMID: 11217864 DOI: 10.1038/35055582] [Citation(s) in RCA: 689] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T-cell activation requires clustering of a threshold number of T-cell receptors (TCRs) at the site of antigen presentation, a number that is reduced by CD28 co-receptor recruitment of signalling proteins to TCRs. Here we demonstrate that a deficiency in beta1,6 N-acetylglucosaminyltransferase V (Mgat5), an enzyme in the N-glycosylation pathway, lowers T-cell activation thresholds by directly enhancing TCR clustering. Mgat5-deficient mice showed kidney autoimmune disease, enhanced delayed-type hypersensitivity, and increased susceptibility to experimental autoimmune encephalomyelitis. Recruitment of TCRs to agonist-coated beads, TCR signalling, actin microfilament re-organization, and agonist-induced proliferation were all enhanced in Mgat5-/- T cells. Mgat5 initiates GlcNAc beta1,6 branching on N-glycans, thereby increasing N-acetyllactosamine, the ligand for galectins, which are proteins known to modulate T-cell proliferation and apoptosis. Indeed, galectin-3 was associated with the TCR complex at the cell surface, an interaction dependent on Mgat5. Pre-treatment of wild-type T cells with lactose to compete for galectin binding produced a phenocopy of Mgat5-/- TCR clustering. These data indicate that a galectin-glycoprotein lattice strengthened by Mgat5-modified glycans restricts TCR recruitment to the site of antigen presentation. Dysregulation of Mgat5 in humans may increase susceptibility to autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- M Demetriou
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
107
|
|
108
|
Berger MA, Carleton M, Rhodes M, Sauder JM, Trop S, Dunbrack RL, Hugo P, Wiest DL. Identification of a novel pre-TCR isoform in which the accessibility of the TCR beta subunit is determined by occupancy of the 'missing' V domain of pre-T alpha. Int Immunol 2000; 12:1579-91. [PMID: 11058578 DOI: 10.1093/intimm/12.11.1579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have identified a novel pre-TCR isoform that is structurally distinct from conventional pre-TCR complexes and whose TCR beta chains are inaccessible to anti-TCR beta antibodies. We term this pre-TCR isoform the MB (masked beta)-pre-TCR. Pre-T alpha (pT alpha) subunits of MB-pre-TCR complexes have a larger apparent mol. wt due to extensive modification with O:-linked carbohydrates; however, preventing addition of O-glycans does not restore antibody recognition of the TCR beta subunits of MB-pre-TCR complexes. Importantly, accessibility of TCR beta chains in MB-pre-TCR complexes is restored by filling in the 'missing' variable (V) domain of pT alpha with a V domain from TCR alpha. Moreover, the proportion of pre-TCR complexes in which the TCR beta subunits are accessible to anti-TCR beta antibody varies with the cellular context, suggesting that TCR beta accessibility is controlled by a trans-acting factor. The way in which this factor might control TCR beta accessibility as well as the physiologic relevance of TCR beta masking for pre-TCR function are discussed.
Collapse
MESH Headings
- Animals
- Carbohydrate Sequence
- Dimerization
- Gene Transfer Techniques
- Glycosylation
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Protein Isoforms/biosynthesis
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/isolation & purification
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/isolation & purification
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M A Berger
- Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Reiser JB, Darnault C, Guimezanes A, Grégoire C, Mosser T, Schmitt-Verhulst AM, Fontecilla-Camps JC, Malissen B, Housset D, Mazza G. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat Immunol 2000; 1:291-7. [PMID: 11017099 DOI: 10.1038/79728] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many T cell receptors (TCRs) that are selected to respond to foreign peptide antigens bound to self major histocompatibility complex (MHC) molecules are also reactive with allelic variants of self-MHC molecules. This property, termed alloreactivity, causes graft rejection and graft-versus-host disease. The structural features of alloreactivity have yet to be defined. We now present a basis for this cross-reactivity, elucidated by the crystal structure of a complex involving the BM3.3 TCR and a naturally processed octapeptide bound to the H-2Kb allogeneic MHC class I molecule. A distinguishing feature of this complex is that the eleven-residue-long complementarity-determining region 3 (CDR3) found in the BM3.3 TCR alpha chain folds away from the peptide binding groove and makes no contact with the bound peptide, the latter being exclusively contacted by the BM3.3 CDR3 beta. Our results formally establish that peptide-specific, alloreactive TCRs interact with allo-MHC in a register similar to the one they use to contact self-MHC molecules.
Collapse
Affiliation(s)
- J B Reiser
- Laboratoire de Cristallographie et Cristallogénèse des Protéines, Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Kim KS, Sun ZY, Wagner G, Reinherz EL. Heterodimeric CD3epsilongamma extracellular domain fragments: production, purification and structural analysis. J Mol Biol 2000; 302:899-916. [PMID: 10993731 DOI: 10.1006/jmbi.2000.4098] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CD3 polypeptides (epsilon, gamma, and delta) are non-covalently associated signaling subunits of the T cell receptor which form non-disulfide linked epsilongamma and epsilondelta heterodimers. With the goal of investigating their structure, Escherichia coli expression was utilized to produce CD3 ectodomain fragments including the murine CD3epsilon subunit N-terminal Ig-like extracellular domain alone or as a single chain construct with that of CD3gamma. The latter links the CD3gamma segment to the C terminus of the CD3epsilon segment via a 26 amino acid peptide (scCD3epsilongamma26). Although CD3epsilon could be produced at high yield when directed to inclusion bodies, the refolded monomeric CD3epsilon was not native as judged by monoclonal antibody binding using surface plasmon resonance and was largely unstructured by (15)N-(1)H two-dimensional NMR analysis. In contrast, scCD3epsilongamma26 could be refolded readily into a native state as shown by CD, NMR and mAb reactivity. The linker length between CD3epsilon and CD3gamma is critical since scCD3epsilongamma16 containing a 16 residue connector failed to generate a stable heterodimer. Collectively, the results demonstrate that: (i) soluble heterodimeric fragments of CD3 can be produced; (ii) cotranslation of CD3 chains insures proper folding even in the absence of the conserved ectodomain stalk region (CxxCxE); and (iii) CD3epsilon has a more stable tertiary protein fold than CD3gamma.
Collapse
Affiliation(s)
- K S Kim
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
111
|
Johnson KG, Bromley SK, Dustin ML, Thomas ML. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc Natl Acad Sci U S A 2000; 97:10138-43. [PMID: 10963676 PMCID: PMC27752 DOI: 10.1073/pnas.97.18.10138] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Accepted: 06/28/2000] [Indexed: 11/18/2022] Open
Abstract
Transmembrane protein tyrosine phosphatases, such as CD45, can act as both positive and negative regulators of cellular signaling. CD45 positively modulates T cell receptor (TCR) signaling by constitutively priming p56lck through the dephosphorylation of the C-terminal negative regulatory phosphotyrosine site. However, CD45 can also exert negative effects on cellular processes, including events triggered by integrin-mediated adhesion. To better understand these opposing actions of tyrosine phosphatases, the subcellular compartmentalization of CD45 was imaged by using laser scanning confocal microscopy during functional TCR signaling of live T lymphocytes. On antigen engagement, CD45 was first excluded from the central region of the interface between the T cell and the antigen-presenting surface where CD45 would inhibit integrin activation. Subsequently, CD45 was recruited back to the center of the contact to an area adjacent to the site of sustained TCR engagement. Thus, CD45 is well positioned within a supramolecular assembly in the vicinity of the engaged TCR, where CD45 would be able to maintain src-kinase activity for the duration of TCR engagement.
Collapse
Affiliation(s)
- K G Johnson
- Howard Hughes Medical Institute and Department of Pathology and Immunology, Washington University School of Medicine, St Louis MO 63110, USA
| | | | | | | |
Collapse
|
112
|
Qadri A, Radu CG, Thatte J, Cianga P, Ober BT, Ober RJ, Ward ES. A role for the region encompassing the c" strand of a TCR V alpha domain in T cell activation events. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:820-9. [PMID: 10878356 DOI: 10.4049/jimmunol.165.2.820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The distinct strand topology of TCR V alpha domains results in a flatter surface in the region encompassing the c" strand than the corresponding region in Ig V domains. In the current study a possible role for this region in T cell activation has been investigated by inserting a potential glycosylation site at V alpha residue 82. This residue is in proximity to the c" strand and distal to the putative interaction site for cognate peptide:MHC ligand. An additional N-linked carbohydrate at this position would create a protrusion on the V alpha domain surface, and this may interfere with TCR aggregation and/or recruitment of signaling molecules. The modified TCR has been expressed in transfected T cells, and the phenotype following stimulation has been compared with that of cells expressing the wild-type TCR. The mutation has significant effects on activation-induced cell death and TCR internalization, but, unexpectedly, does not affect IL-2 secretion. Furthermore, analyses with tetrameric, peptide:MHC class II complexes suggest that the mutation decreases the ability of the TCR to aggregate into a configuration compatible with avid binding by these multivalent ligands.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/analysis
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Line
- Down-Regulation/genetics
- Down-Regulation/immunology
- Immunoblotting
- Interleukin-2/metabolism
- Lymphocyte Activation/genetics
- Mice
- Myelin Basic Protein/genetics
- Myelin Basic Protein/immunology
- Myelin Basic Protein/pharmacology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Phosphotyrosine/immunology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transfection/immunology
Collapse
Affiliation(s)
- A Qadri
- Center for Immunology and Cancer Immunobiology Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Göbel TW, Bolliger L. Evolution of the T cell receptor signal transduction units. Curr Top Microbiol Immunol 2000; 248:303-20. [PMID: 10793484 DOI: 10.1007/978-3-642-59674-2_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- T W Göbel
- Basel Institute for Immunology, Switzerland
| | | |
Collapse
|
114
|
Tissot AC, Pecorari F, Plückthun A. Characterizing the functionality of recombinant T-cell receptors in vitro: a pMHC tetramer based approach. J Immunol Methods 2000; 236:147-65. [PMID: 10699587 DOI: 10.1016/s0022-1759(99)00226-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The very low affinity of the T-cell receptor (TCR) for the peptide-major histocompatibility complex (pMHC) has made it very challenging to design assays for testing the functionality of these molecules on small scales, which in turn has severely hampered the progress in developing expression and refolding methodologies for the TCR. We have now developed an ELISA assay for detecting pMHC binding to functional recombinant TCRs. It uses tetramers of biotinylated pMHCs bound to a neutravidin-horseradish peroxidase conjugate and detects the presence of functional TCR, bound in a productive orientation to an immobilized anti-Cbeta antibody. Specificity can be stringently demonstrated by inhibition with monomeric pMHCs. The assay is very sensitive and specific, and requires only very small amounts of protein. It has allowed us to study the unstable recombinant TCR P14, which we expressed and refolded from Escherichia coli. The TCR P14 is directed against the most abundant epitope of LCMV. We have confirmed the specificity of the interaction by BIAcore, and were able to determine the dissociation constant of the interaction of the P14 TCR and of the gp33-pMHC as 6 microM. This affinity ranks it among the tighter ones of TCR-pMHC interactions, and unusually low affinity thus does not seem to be the cause of the modest protective power of these T-cells, compared to others elicited in the anti-LCMV response. This strategy of multimerizing one partner and immobilizing the other in both a native form and productive orientation should be generally useful for characterizing the weak interactions of cell-surface molecules.
Collapse
Affiliation(s)
- A C Tissot
- Biochemisches Institut, Universität Zürich, Winterthurstrasse 190, CH-8057, Zürich, Switzerland
| | | | | |
Collapse
|
115
|
Foote J, Raman A. A relation between the principal axes of inertia and ligand binding. Proc Natl Acad Sci U S A 2000; 97:978-83. [PMID: 10655470 PMCID: PMC15493 DOI: 10.1073/pnas.97.3.978] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1999] [Accepted: 11/29/1999] [Indexed: 11/18/2022] Open
Abstract
The principal axes of inertia are eigenvectors that can be calculated for any rigid body. We report studies of the position of the principal axes in crystallographically solved protein molecules. We find with high frequency that at least one principal axis penetrates the surface of the respective protein in a region used for ligand binding. In antibody variable regions, an axis goes through the third hypervariable loop of the heavy chain. In major histocompatibility complex proteins, an axis goes through the peptide-binding groove. In protein-protein heterodimers, a principal axis of one subunit will often penetrate the interface formed with the other subunit. In many of these protein-protein complexes, the axis specifically intersects residues known to be critical for molecular recognition.
Collapse
Affiliation(s)
- J Foote
- Program in Molecular Medicine, Fred Hutchinson Cancer Research Center, C3-168, P.O. Box 19024, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
116
|
Al-Lazikani B, Lesk AM, Chothia C. Canonical structures for the hypervariable regions of T cell alphabeta receptors. J Mol Biol 2000; 295:979-95. [PMID: 10656805 DOI: 10.1006/jmbi.1999.3358] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cell alphabeta receptors have binding sites for peptide-MHC complexes formed by six hypervariable regions. Analysis of the six atomic structures known for Valpha and for Vbeta domains shows that their first and second hypervariable regions have one of three or four different main-chain conformations (canonical structures). Six of these canonical structures have the same conformation in complexes with peptide-MHC complexes, the free receptor and/or in an isolated V domain. Thus, for at least the first and second hypervariable regions in the currently known structures, the conformation of the canonical structures is well defined in the free state and is conserved on formation of complexes with peptide-MHC. We identified the key residues that are mainly responsible for the conformation of each canonical structure. The first and second hypervariable regions of Valpha and Vbeta domains are encoded by the germline V segments. Humans have 37 functional Valpha segments and 47 Vbeta segments, and mice have 20 Vbeta segments. Inspection of the size of their hypervariable regions, and of sites that contain key residues, indicates that close to 70 % of Valpha segments and 90 % of Vbeta segments have hypervariable regions with a conformation of one of the known canonical structures. The alpha and beta V gene segments in both humans and mice have only a few combinations of different canonical structure in their first and second hypervariable regions. In human Vbeta domains, the number of different sequences with these canonical structure combinations is larger than in mice, whilst for Valpha domains it is probably smaller.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Genetic Variation
- Humans
- Hydrogen Bonding
- Mice
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- B Al-Lazikani
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
117
|
Rognan D, Stryhn A, Fugger L, Lyngbaek S, Engberg J, Andersen PS, Buus S. Modeling the interactions of a peptide-major histocompatibility class I ligand with its receptors. I. Recognition by two alpha beta T cell receptors. J Comput Aided Mol Des 2000; 14:53-69. [PMID: 10702925 DOI: 10.1023/a:1008142830353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A three-dimensional model of the complex between an Influenza Hemagglutinin peptide, Ha255-262, and its restricting element, the mouse major histocompatibility complex (MHC) class I molecule, Kk, was built by homology modeling and subsequently refined by simulated annealing and restrained molecular dynamics. Next, three-dimensional models of two different T cell receptors (TCRs) both specific for the Ha255-262/Kk complex were generated based on previously published TCR X-ray structures. Finally, guided by the recently published X-ray structures of ternary TCR/peptide/MHC-I complexes, the TCR models were successfully docked into the Ha255-262/Kk model. We have previously used a systematic and exhaustive panel of 144 single amino acid substituted analogs to analyze both MHC binding and T cell recognition of the parental viral peptide. This large body of experimental data was used to evaluate the models. They were found to account well for the experimentally obtained data, lending considerable support to the proposed models and suggesting a universal docking mode for alpha beta TCRs to MHC-peptide complexes. Such models may also be useful in guiding future rational experimentation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Crystallography, X-Ray
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Ligands
- Macromolecular Substances
- Mice
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- D Rognan
- Department of Pharmacy, Swiss Federal Institute of Technology, Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
118
|
Garcia KC. Molecular interactions between extracellular components of the T-cell receptor signaling complex. Immunol Rev 1999; 172:73-85. [PMID: 10631938 DOI: 10.1111/j.1600-065x.1999.tb01357.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural and biochemical basis of antigen recognition by the T-cell receptor (TCR)-CD3 signaling complex has been illuminated greatly over the past few years. Structural biology has contributed enormously to this understanding through the determination of crystal structures of many of the individual components of this complex, and some of the complexes. A number of general principles can be derived for the structure of the alpha beta TCR and its interaction with peptide-major histocompatibility complex (pMHC) in class I systems, as well as interaction of the CD8 co-receptor with MHC. Large buried surface areas within the protein-protein interfaces, and varying degrees of shape complementarity appear critical for modulating the stability of the multicomponent, low-affinity macromolecular complexes consisting of TCR, pMHC, CD8 or CD4, and CD3 gamma, delta, epsilon and zeta. Significant structural alterations in TCR and pMHC, upon complex formation, hint at an as yet unclear role for conformational change in both recognition and activation. Subtle chemical alterations in key peptide residues which contact the TCR can have dramatic agonist or antagonist effects on receptor activation, which correlate only loosely with the TCR/pMHC complex affinity, implying an ability of the signaling complex to "sense" fine differences in the interface. The stoichiometry of an activated TCR signaling complex is still an unresolved issue, as is the structure and disposition of the CD3 components. However, functional experiments are bridging this gap and providing us with preliminary working models of the multimeric assemblies.
Collapse
Affiliation(s)
- K C Garcia
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5124, USA.
| |
Collapse
|
119
|
Degermann S, Sollami G, Karjalainen K. Impaired NK1.1 T cell development in mice transgenic for a T cell receptor beta chain lacking the large, solvent-exposed cbeta FG loop. J Exp Med 1999; 190:1357-62. [PMID: 10544207 PMCID: PMC2195682 DOI: 10.1084/jem.190.9.1357] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A striking feature of the T cell receptor (TCR) beta chain structure is the large FG loop that protrudes freely into the solvent on the external face of the Cbeta domain. We have already shown that a transgene-encoded Vbeta8.2(+) TCR beta chain lacking the complete Cbeta FG loop supports normal development and function of conventional alpha/beta T cells. Thus, the FG loop is not absolutely necessary for TCR signaling. However, further analysis has revealed that a small population of alpha/beta T cells coexpressing NK1.1 are severely depleted in these transgenic mice. The few remaining NK1.1 T cells have a normal phenotype but express very low levels of TCR. We find that the TCR Vbeta8.2(+) chain lacking the Cbeta FG loop cannot pair efficiently with the invariant Valpha14-Jalpha281 TCR alpha chain commonly expressed by this T cell family. Consequently, fewer NK1.1 T cells develop in these mice. Our results suggest that expression of the Valpha14(+) TCR alpha chain is particularly sensitive to TCR-beta conformation. Development of NK1.1 T cells appears to need a TCR-beta conformation dependent on the presence of the Cbeta loop that is not necessarily required for assembly and function of TCRs on most alpha/beta T cells.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Flow Cytometry
- Gene Expression Regulation, Developmental/immunology
- Killer Cells, Natural/metabolism
- Liver/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Signal Transduction/immunology
Collapse
Affiliation(s)
- S Degermann
- Basel Institute for Immunology, CH-4005 Basel, Switzerland.
| | | | | |
Collapse
|
120
|
Rudd PM, Wormald MR, Stanfield RL, Huang M, Mattsson N, Speir JA, DiGennaro JA, Fetrow JS, Dwek RA, Wilson IA. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol 1999; 293:351-66. [PMID: 10529350 DOI: 10.1006/jmbi.1999.3104] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of cell surface receptors involved in antigen recognition by T cells and in the orchestration of the subsequent cell signalling events are glycoproteins. The length of a typical N-linked sugar is comparable with that of an immunoglobulin domain (30 A). Thus, by virtue of their size alone, oligosaccharides may be expected to play a significant role in the functions and properties of the cell surface proteins to which they are attached. A databank of oligosaccharide structures has been constructed from NMR and crystallographic data to aid in the interpretation of crystal structures of glycoproteins. As unambiguous electron density can usually only be assigned to the glycan cores, the remainder of the sugar is then modelled into the crystal lattice by superimposing the appropriate oligosaccharide from the database. This approach provides insights into the roles that glycosylation might play in cell surface receptors, by providing models that delineate potential close packing interactions on the cell surface. It has been proposed that the specific recognition of antigen by T cells results in the formation of an immunological synapse between the T cell and the antigen-presenting cell. The cell adhesion glycoproteins, such as CD2 and CD48, help to form a cell junction, providing a molecular spacer between opposing cells. The oligosaccharides located on the membrane proximal domains of CD2 and CD48 provide a scaffold to orient the binding faces, which leads to increased affinity. In the next step, recruitment of the peptide major histocompatibility complex (pMHC) by the T-cell receptors (TCRs) requires mobility on the membrane surface. The TCR sugars are located such that they could prevent non-specific aggregation. Importantly, the sugars limit the possible geometry and spacing of TCR/MHC clusters which precede cell signalling. We postulate that, in the final stage, the sugars could play a general role in controlling the assembly and stabilisation of the complexes in the synapse and in protecting them from proteolysis during prolonged T-cell engagement.
Collapse
Affiliation(s)
- P M Rudd
- Department of Biochemistry, University of Oxford, The Glycobiology Institute, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Ding YH, Baker BM, Garboczi DN, Biddison WE, Wiley DC. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 1999; 11:45-56. [PMID: 10435578 DOI: 10.1016/s1074-7613(00)80080-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The interactions of three singly substituted peptide variants of the HTLV-1 Tax peptide bound to HLA-A2 with the A6 T cell receptor have been studied using T cell assays, kinetic and thermodynamic measurements, and X-ray crystallography. The three peptide/MHC ligands include weak agonists and antagonists with different affinities for TCR. The three-dimensional structures of the three A6-TCR/peptide/HLA-A2 complexes are remarkably similar to each other and to the wild-type agonist complex, with minor adjustments at the interface to accommodate the peptide substitutions (P6A, V7R, and Y8A). The lack of correlation between structural changes and the type of T cell signals induced provides direct evidence that different signals are not generated by different ligand-induced conformational changes in the alphabeta TCR.
Collapse
MESH Headings
- Amino Acid Substitution/immunology
- Gene Products, tax/biosynthesis
- Gene Products, tax/chemistry
- Gene Products, tax/immunology
- HLA-A2 Antigen/biosynthesis
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/physiology
- Humans
- Kinetics
- Macromolecular Substances
- Major Histocompatibility Complex/physiology
- Peptides/agonists
- Peptides/antagonists & inhibitors
- Peptides/chemistry
- Peptides/immunology
- Receptors, Antigen, T-Cell, alpha-beta/agonists
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/immunology
- Surface Properties
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- Y H Ding
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
122
|
Plaksin D, Chacko S, Navaza J, Margulies DH, Padlan EA. The X-ray crystal structure of a Valpha2.6Jalpha38 mouse T cell receptor domain at 2.5 A resolution: alternate modes of dimerization and crystal packing. J Mol Biol 1999; 289:1153-61. [PMID: 10373358 DOI: 10.1006/jmbi.1999.2855] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe here the structure of a murine T cell receptor (TCR) Valpha2.6Jalpha38 (TCRAV2S6J38) domain, derived from a T cell hybridoma with specificity for the H-2Ddmajor histocompatibility complex class I molecule bound to a decamer peptide, P18-I10, from the HIV envelope glycoprotein gp120, determined by X-ray crystallography at 2.5 A resolution. Unlike other TCR Valpha domains that have been studied in isolation, this one does not dimerize in solution at concentrations below 1 mM, and the crystal fails to show dimer contacts that are likely to be physiological. In comparison to other Valpha domains, this Valpha2.6 shows great similarity in the packing of its core residues, and exhibits the same immunoglobulin-like fold characteristic of other TCR Valpha domains. There is good electron density in all three complementarity-determining regions (CDRs), where the differences between this Valpha domain and others are most pronounced, in particular in CDR3. Examination of crystal contacts reveals an association of Valpha domains distinct from those previously seen. Comparison with other Valpha domain structures reveals variability in all loop regions, as well as in the first beta strand where placement and configuration of a proline residue at position 6, 7, 8, or 9 affects the backbone structure. The great variation in CDR3 conformations among TCR structures is consistent with an evolving view that CDR3 of TCR plays a plastic role in the interaction of the TCR with the MHC/peptide complex as well as with CDR3 of the paired TCR chain.
Collapse
Affiliation(s)
- D Plaksin
- Laboratory of Immunology NIAID, Bethesda, MD 20892-1892, USA
| | | | | | | | | |
Collapse
|
123
|
Malissen B, Ardouin L, Lin SY, Gillet A, Malissen M. Function of the CD3 subunits of the pre-TCR and TCR complexes during T cell development. Adv Immunol 1999; 72:103-48. [PMID: 10361573 DOI: 10.1016/s0065-2776(08)60018-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- B Malissen
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
124
|
Wang JH, Smolyar A, Tan K, Liu JH, Kim M, Sun ZY, Wagner G, Reinherz EL. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 1999; 97:791-803. [PMID: 10380930 DOI: 10.1016/s0092-8674(00)80790-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interaction between CD2 and its counterreceptor, CD58 (LFA-3), on opposing cells optimizes immune recognition, facilitating contacts between helper T lymphocytes and antigen-presenting cells as well as between cytolytic effectors and target cells. Here, we report the crystal structure of the heterophilic adhesion complex between the amino-terminal domains of human CD2 and CD58. A strikingly asymmetric, orthogonal, face-to-face interaction involving the major beta sheets of the respective immunoglobulin-like domains with poor shape complementarity is revealed. In the virtual absence of hydrophobic forces, interdigitating charged amino acid side chains form hydrogen bonds and salt links at the interface (approximately 1200 A2), imparting a high degree of specificity albeit with low affinity (K(D) of approximately microM). These features explain CD2-CD58 dynamic binding, offering insights into interactions of related immunoglobulin superfamily receptors.
Collapse
Affiliation(s)
- J H Wang
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Superantigens (SAGs) are a class of immunostimulatory and disease-causing proteins of bacterial or viral origin with the ability to activate large fractions (5-20%) of the T cell population. Activation requires simultaneous interaction of the SAG with the V beta domain of the T cell receptor (TCR) and with major histocompatibility complex (MHC) class II molecules on the surface of an antigen-presenting cell. Recent advances in knowledge of the three-dimensional structure of bacterial SAGs, and of their complexes with MHC class II molecules and the TCR beta chain, provide a framework for understanding the molecular basis of T cell activation by these potent mitogens. These structures along with those of TCR-peptide/MHC complexes reveal how SAGs circumvent the normal mechanism for T cell activation by peptide/MHC and how they stimulate T cells expressing TCR beta chains from a number of different families, resulting in polyclonal T cell activation. The crystal structures also provide insights into the basis for the specificity of different SAGs for particular TCR beta chains, and for the observed influence of the TCR alpha chain on SAG reactivity. These studies open the way to the design of SAG variants with altered binding properties for TCR and MHC for use as tools in dissecting structure-activity relationships in this system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoimmune Diseases/immunology
- Foodborne Diseases/immunology
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/metabolism
- Humans
- Immunotherapy
- Kinetics
- Lymphocyte Activation/physiology
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Shock, Septic/immunology
- Superantigens/administration & dosage
- Superantigens/chemistry
- Superantigens/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- H Li
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | |
Collapse
|
126
|
Abstract
Exciting breakthroughs in the last two years have begun to elucidate the structural basis of cellular immune recognition. Crystal structures have been determined for full-length and truncated forms of alpha beta T cell receptor (TCR) heterodimers, both alone and in complex with their peptide-MHC (pMHC) ligands or with anti-TCR antibodies. In addition, a truncated CD8 coreceptor has been visualized with a pMHC. Aided in large part by the substantial body of knowledge accumulated over the last 25 years on antibody structure, a number of general conclusions about TCR structure and its recognition of antigen can already be derived from the relatively few TCR structures that have been determined. Small, but important, variations between TCR and antibody structures bear on their functional differences as well as on their specific antigen recognition requirements. As observed in antibodies, canonical CDR loop structures are already emerging for some of the TCR CDR loops. Highly similar docking orientations of the TCR V alpha domains in the TCR/pMHC complex appear to play a primary role in dictating orientation, but the V beta positions diverge widely. Similar TCR contact positions, but whose exact amino acid content can vary, coupled with relatively poor interface shape complementarity, may explain the flexibility and short half-lives of many TCR interactions with pMHC. Here we summarize the current state of this field, and suggest that the knowledge gap between the three-dimensional structure and the signaling function of the TCR can be bridged through a synthesis of molecular biological and biophysical techniques.
Collapse
Affiliation(s)
- K C Garcia
- Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
127
|
Qadri A, Thatte J, Radu CG, Ober B, Ward ES. Characterization of the interaction of a TCR alpha chain variable domain with MHC II I-A molecules. Int Immunol 1999; 11:967-77. [PMID: 10360971 DOI: 10.1093/intimm/11.6.967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The alphabeta TCR recognizes peptides bound to MHC molecules. In the present study, we analyzed the interaction of a soluble TCR alpha chain variable domain (Valpha4.2-Jalpha40; abbreviated to Valpha4.2) with the MHC class II molecule I-Au. Valpha4.2 bound specifically to I-Au expressed on the surface of a transfected thymoma cell line. Modifications in the amino acid residues located within the three complementarity-determining regions (CDRs) of the Valpha domain did not markedly affect this interaction. However, mutation of glutamic acid to alanine at position 69 of the fourth hypervariable region (HV4alpha) significantly increased the binding. Antibody inhibition studies suggested that the binding site was partly contributed by a region of the beta chain of I-Au. Furthermore, the binding of Valpha4.2 to the MHC molecule was dependent on the nature of the peptide bound in the groove. Soluble Valpha4.2 specifically inhibited the activation of TCR transfectants by I-Au-expressing cells pulsed with an N-terminal peptide of myelin basic protein. Valpha4.2 also bound to MHC class II-expressing spleen cell populations from mice of the H-2(u) and H-2(d) haplotypes. The binding of Valpha4.2 to I-A molecules might explain the immunoregulatory effects reported previously for TCR alpha chains. This Valpha4.2 interaction may also be relevant to models of antigen presentation involving the binding of intact proteins to MHC class II molecules followed by their processing to generate epitopes suitable for T cell recognition.
Collapse
Affiliation(s)
- A Qadri
- Center for Immunology and Cancer Immunobiology Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-8576, USA
| | | | | | | | | |
Collapse
|
128
|
Degermann S, Sollami G, Karjalainen K. T cell receptor beta chain lacking the large solvent-exposed Cbeta FG loop supports normal alpha/beta T cell development and function in transgenic mice. J Exp Med 1999; 189:1679-84. [PMID: 10330447 PMCID: PMC2193633 DOI: 10.1084/jem.189.10.1679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Revised: 01/21/1999] [Indexed: 11/04/2022] Open
Abstract
The striking and unique structural feature of the T cell receptor (TCR) beta chain is the bulky solvent-exposed FG loop on the Cbeta domain, the size of almost half an immunoglobulin domain. The location and size of this loop suggested immediately that it could be a crucial structural link between the invariant CD3 subunits and antigen-recognizing alpha/beta chains during TCR signaling. However, functional analysis does not support the above notion, since transgene coding for TCR beta chain lacking the complete FG loop supports normal alpha/beta T cell development and function.
Collapse
MESH Headings
- Animals
- Cell Division
- Cell Line
- Flow Cytometry
- Hybridomas
- Immunoglobulin G/analysis
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Mutagenesis
- Nitrohydroxyiodophenylacetate/immunology
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Sequence Deletion
- T-Lymphocytes/immunology
- Transfection
Collapse
Affiliation(s)
- S Degermann
- Basel Institute for Immunology, CH-4005 Basel, Switzerland.
| | | | | |
Collapse
|
129
|
Mazza G, Housset D, Piras C, Grégoire C, Fontecilla-Camps JC, Malissen B. Structural features of the interaction between an anti-clonotypic antibody and its cognate T-cell antigen receptor. J Mol Biol 1999; 287:773-80. [PMID: 10191145 DOI: 10.1006/jmbi.1999.2645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of the complex between a single chain Fv fragment of the KB5-C20 T-cell antigen receptor (TCR) and the specific anti-clonotypic antibody (Ab) Désiré-1 provides the first description of the interface between a clonotype and an anti-clonotype. In the four idiotype/anti-idiotype complexes of known three-dimensional structures, the interacting Fv fragments associate largely through their complementarity-determining regions (CDRs). In marked contrast, Désiré-1 binds to a face of the KB5-C20 TCR that is almost perpendicular to the TCR antigen binding site, and recognizes discontinuous stretches of TCR Valpha and Vbeta residues that belong to both the CDRs and the framework. Despite this peculiar mode of interaction, Désiré-1 constitutes a genuine anti-clonotypic Ab. Moreover, in spite of the fact that the Désiré-1 contact residues do not constitute a molecular mimic of the physiological ligand normally recognized by the KB5-C20 TCR, the bivalent Désiré-1 Ab is capable of efficiently activating T-cells expressing the KB5-C20 TCR.
Collapse
Affiliation(s)
- G Mazza
- Centre d'Immunologie, INSERM-CNRS de Marseille-Luminy, Marseille Cedex 9, 13288, France
| | | | | | | | | | | |
Collapse
|
130
|
Andersen PS, Lavoie PM, Sékaly RP, Churchill H, Kranz DM, Schlievert PM, Karjalainen K, Mariuzza RA. Role of the T cell receptor alpha chain in stabilizing TCR-superantigen-MHC class II complexes. Immunity 1999; 10:473-83. [PMID: 10229190 DOI: 10.1016/s1074-7613(00)80047-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Superantigens (SAGs) activate T cells by simultaneously binding the Vbeta domain of the TCR and MHC class II molecules on antigen-presenting cells. The preferential expression of certain Valpha regions among SAG-reactive T cells has suggested that the TCR alpha chain may modulate the level of activation through an interaction with MHC. We demonstrate that the TCR alpha chain is required for maximum stabilization of the TCR-SAG-MHC complex and that the alpha chain increases the half-life of the complex to match those of TCR-peptide/MHC complexes. The site on the TCR alpha chain responsible for these effects is CDR2. Thus, the overall stability of the TCR-SAG-MHC complex is determined by the combination of three distinct interactions: TCR-SAG, SAG-MHC, and MHC-TCR.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Amino Acid Substitution/immunology
- Animals
- Enterotoxins/chemistry
- Enterotoxins/metabolism
- HLA-DR1 Antigen/chemistry
- HLA-DR1 Antigen/metabolism
- Humans
- Macromolecular Substances
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Superantigens/chemistry
- Superantigens/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P S Andersen
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Fernández-Miguel G, Alarcón B, Iglesias A, Bluethmann H, Alvarez-Mon M, Sanz E, de la Hera A. Multivalent structure of an alphabetaT cell receptor. Proc Natl Acad Sci U S A 1999; 96:1547-52. [PMID: 9990061 PMCID: PMC15512 DOI: 10.1073/pnas.96.4.1547] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1998] [Accepted: 12/10/1998] [Indexed: 11/18/2022] Open
Abstract
Whether there is one or multiple alphabetaT cell antigen receptor (TCR) recognition modules in a given TCR/CD3 complex is a long-standing controversy in immunology. We show that T cells from transgenic mice that coexpress comparable amounts of two distinct TCRbeta chains incorporate at least two alphabetaTCRs in a single TCR/CD3 complex. Evidence for bispecific alphabetaTCRs was obtained by immunoprecipitation and immunoblotting and confirmed on the surface of living cells both by fluorescence resonance energy transfer and comodulation assays by using antibodies specific for TCRbeta-variable regions. Such (alphabeta)2TCR/CD3 or higher-order complexes were evident in T cells studied either ex vivo or after expansion in vitro. T cell activation is thought by many, but not all, to require TCR cross-linking by its antigen/major histocompatibility complex ligand. The implications of a multivalent (alphabeta)2TCR/CD3 complex stoichiometry for the ordered docking of specific antigen/major histocompatibility complex, CD4, or CD8 coreceptors and additional TCRs are discussed.
Collapse
MESH Headings
- Animals
- Cell Line
- Crosses, Genetic
- Flow Cytometry
- Green Fluorescent Proteins
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Macromolecular Substances
- Mice
- Mice, Transgenic
- Models, Molecular
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombinant Fusion Proteins/biosynthesis
- Spleen/immunology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- G Fernández-Miguel
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Department of Medicine, Alcalá University, Velázquez 144, Madrid, E-28006, Spain
| | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
The non-covalent assembly of proteins that fold separately is central to many biological processes, and differs from the permanent macromolecular assembly of protein subunits in oligomeric proteins. We performed an analysis of the atomic structure of the recognition sites seen in 75 protein-protein complexes of known three-dimensional structure: 24 protease-inhibitor, 19 antibody-antigen and 32 other complexes, including nine enzyme-inhibitor and 11 that are involved in signal transduction.The size of the recognition site is related to the conformational changes that occur upon association. Of the 75 complexes, 52 have "standard-size" interfaces in which the total area buried by the components in the recognition site is 1600 (+/-400) A2. In these complexes, association involves only small changes of conformation. Twenty complexes have "large" interfaces burying 2000 to 4660 A2, and large conformational changes are seen to occur in those cases where we can compare the structure of complexed and free components. The average interface has approximately the same non-polar character as the protein surface as a whole, and carries somewhat fewer charged groups. However, some interfaces are significantly more polar and others more non-polar than the average. Of the atoms that lose accessibility upon association, half make contacts across the interface and one-third become fully inaccessible to the solvent. In the latter case, the Voronoi volume was calculated and compared with that of atoms buried inside proteins. The ratio of the two volumes was 1.01 (+/-0.03) in all but 11 complexes, which shows that atoms buried at protein-protein interfaces are close-packed like the protein interior. This conclusion could be extended to the majority of interface atoms by including solvent positions determined in high-resolution X-ray structures in the calculation of Voronoi volumes. Thus, water molecules contribute to the close-packing of atoms that insure complementarity between the two protein surfaces, as well as providing polar interactions between the two proteins.
Collapse
Affiliation(s)
- L Lo Conte
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB1 1JX, England
| | | | | |
Collapse
|
133
|
Pecorari F, Tissot AC, Plückthun A. Folding, heterodimeric association and specific peptide recognition of a murine alphabeta T-cell receptor expressed in Escherichia coli. J Mol Biol 1999; 285:1831-43. [PMID: 9917415 DOI: 10.1006/jmbi.1998.2422] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a systematic study of the murine T-cell receptor UZ3-4, expressed and refolded from inclusion bodies in Escherichia coli, it was found that functional molecules can be obtained only under a very narrow set of conditions. The refolded T-cell receptor UZ3-4 specifically recognizes its cognate peptide (from mycobacterial Hsp60) in the context of H-2Db, but not another peptide bound to H-2Db, and the dissociation constant was determined by BIAcore as 10(-4) M. Using T-cell receptor constructs comprising all extracellular domains (ValphaCalpha and VbetaCbeta), found to be necessary for stability of the final product, significant amounts of native molecules were obtained only if the intermolecular Calpha-Cbeta disulfide bridge bond was deleted, even though the interaction between the complete alpha and beta-chain was determined to be very weak and fully reversible (KD approximately 10(-7) to 10(-6) M). Fusion of Jun and Fos to the constant domains also decreased the folding yield, because of premature association of intermediates leading to aggregation. Furthermore, only in a very narrow set of concentrations of oxidized and reduced glutathione, native disulfide bonds dominated. This shows that T-cell receptor domains are very prone to aggregation and misassociation during folding, compounded by incorrect disulfide bond formation. Once folded, however, the heterodimeric molecule is very stable and could be concentrated to millimolar concentration.
Collapse
Affiliation(s)
- F Pecorari
- Biochemisches Institut, Universität Zürich, Winterthurerstr. 190, Zürich, CH-8057, Switzerland
| | | | | |
Collapse
|
134
|
Grant EP, Degano M, Rosat JP, Stenger S, Modlin RL, Wilson IA, Porcelli SA, Brenner MB. Molecular recognition of lipid antigens by T cell receptors. J Exp Med 1999; 189:195-205. [PMID: 9874576 PMCID: PMC1887682 DOI: 10.1084/jem.189.1.195] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1998] [Indexed: 11/10/2022] Open
Abstract
The T cell antigen receptor (TCR) mediates recognition of peptide antigens bound in the groove of major histocompatibility complex (MHC) molecules. This dual recognition is mediated by the complementarity-determining residue (CDR) loops of the alpha and beta chains of a single TCR which contact exposed residues of the peptide antigen and amino acids along the MHC alpha helices. The recent description of T cells that recognize hydrophobic microbial lipid antigens has challenged immunologists to explain, in molecular terms, the nature of this interaction. Structural studies on the murine CD1d1 molecule revealed an electrostatically neutral putative antigen-binding groove beneath the CD1 alpha helices. Here, we demonstrate that alpha/beta TCRs, when transferred into TCR-deficient recipient cells, confer specificity for both the foreign lipid antigen and CD1 isoform. Sequence analysis of a panel of CD1-restricted, lipid-specific TCRs reveals the incorporation of template-independent N nucleotides that encode diverse sequences and frequent charged basic residues at the V(D)J junctions. These sequences permit a model for recognition in which the TCR CDR3 loops containing charged residues project between the CD1 alpha helices, contacting the lipid antigen hydrophilic head moieties as well as adjacent CD1 residues in a manner that explains antigen specificity and CD1 restriction.
Collapse
Affiliation(s)
- E P Grant
- Lymphocyte Biology Section, Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
MESH Headings
- Animals
- Gene Products, tax/chemistry
- Gene Products, tax/genetics
- Gene Products, tax/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Major Histocompatibility Complex/genetics
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- D N Garboczi
- Structural Biology Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852-1727, USA.
| | | |
Collapse
|
136
|
Li H, Llera A, Tsuchiya D, Leder L, Ysern X, Schlievert PM, Karjalainen K, Mariuzza RA. Three-dimensional structure of the complex between a T cell receptor beta chain and the superantigen staphylococcal enterotoxin B. Immunity 1998; 9:807-16. [PMID: 9881971 DOI: 10.1016/s1074-7613(00)80646-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Superantigens (SAGs) are a class of immunostimulatory proteins of bacterial or viral origin that activate T cells by binding to the V beta domain of the T cell antigen receptor (TCR). The three-dimensional structure of the complex between a TCR beta chain (mouse V beta8.2) and the SAG staphylococcal enterotoxin B (SEB) at 2.4 A resolution reveals why SEB recognizes only certain V beta families, as well as why only certain SAGs bind mouse V beta8.2. Models of the TCR-SEB-peptide/MHC class II complex indicate that V alpha interacts with the MHC beta chain in the TCR-SAG-MHC complex. The extent of the interaction is variable and is largely determined by the geometry of V alpha/V beta domain association. This variability can account for the preferential expression of certain V alpha regions among T cells reactive with SEB.
Collapse
MESH Headings
- Animals
- Crystallography, X-Ray
- Enterotoxins/chemistry
- Enterotoxins/immunology
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/immunology
- Mice
- Models, Molecular
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptides/chemistry
- Peptides/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Staphylococcus aureus/immunology
- Superantigens/chemistry
- Superantigens/immunology
Collapse
Affiliation(s)
- H Li
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Feng M, Chou D, Liaw Y, Lai M. Conserved T-cell receptor class II major histocompatibility complex contact detected in a T-lymphocyte population. Immunol Suppl 1998; 95:185-92. [PMID: 9824474 PMCID: PMC1364303 DOI: 10.1046/j.1365-2567.1998.00589.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T-cell receptor (TCR) interacts with an antigenic peptide deeply buried in the major histocompatibility complex (MHC) molecule. How class II MHC is contacted by TCR during antigen recognition remains largely elusive. Here we used a panel of I-Ek mutants to identify two I-Ek residues that were frequently contacted by TCR among a large pool of T cells specific for the same antigen. The restricted TCR interaction with I-Ek was independent of the antigen peptides. We also identified a dominant heteroclitic residue on I-Ek, beta81H, in which mutation led to increased recognition of antigens in individual T-cell clones. Moreover, both the conserved TCR-I-Ek interaction and the heteroclitic TCR-I-Ek recognition were detected in T lymphocytes freshly isolated from mice primed with the specific antigens. The identical TCR-I-Ek interaction in a heterogeneous T-cell population suggested the dominance of invariant TCR-class II MHC interaction.
Collapse
MESH Headings
- Animals
- Antigen Presentation/physiology
- Dose-Response Relationship, Drug
- Epitopes
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Hybridomas
- Mice
- Mice, Inbred A
- Mice, Inbred C3H
- Mice, Inbred Strains
- Mutation
- Peptide Mapping
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- M Feng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
138
|
Ghendler Y, Teng MK, Liu JH, Witte T, Liu J, Kim KS, Kern P, Chang HC, Wang JH, Reinherz EL. Differential thymic selection outcomes stimulated by focal structural alteration in peptide/major histocompatibility complex ligands. Proc Natl Acad Sci U S A 1998; 95:10061-6. [PMID: 9707600 PMCID: PMC21461 DOI: 10.1073/pnas.95.17.10061] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Indexed: 11/18/2022] Open
Abstract
The T lineage repertoire is shaped by T cell receptor (TCR)-dependent positive and negative thymic selection processes. Using TCR-transgenic (N15tg) beta2-microglobulin-deficient (beta2m-/-) RAG-2(-/-) H-2(b) mice specific for the VSV8 (RGYVYQGL) octapeptide bound to Kb, we identified a single weak agonist peptide variant V4L (L4) inducing phenotypic and functional T cell maturation. The cognate VSV8 peptide, in contrast, triggers negative selection. The crystal structure of L4/Kb was determined and refined to 2.1 A for comparison with the VSV8/Kb structure at similar resolution. Aside from changes on the p4 side chain of L4 and the resulting alteration of the exposed Kb Lys-66 side chain, these two structures are essentially identical. Hence, a given TCR recognizes subtle distinctions between highly related ligands, resulting in dramatically different selection outcomes. Based on these finding and the recent structural elucidation of the N15-VSV8/Kb complex, moreover, it appears that the germ-line Valpha repertoire contributes in a significant way to positive selection.
Collapse
Affiliation(s)
- Y Ghendler
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Garcia KC, Teyton L. T-cell receptor peptide-MHC interactions: biological lessons from structural studies. Curr Opin Biotechnol 1998; 9:338-43. [PMID: 9720260 DOI: 10.1016/s0958-1669(98)80004-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fifteen years have passed since T-cell receptor (TCR) genes were identified (reviewed in [1]). Unlike the situation for antibodies, no direct structural information on the TCR proteins has been available for most of this time. Recently, however, the crystal structures of isolated alpha and beta chains were determined, shortly followed by the determination of the structure of an alpha beta heterodimer. Subsequently, the structures of two TCR peptide-MHC (pMHC) complexes have been reported. The windfall of this, and other more recent structural information, has elucidated some generalizations for TCR binding and recognition of pMHC. The crystal structures have, however, given us very little insight into the mechanisms of signal transduction by the TCR complex and the subsequent events which lead to activation of a T cell. Ultimately, the crystallographio results will be reconciled with experiments from other disciplines for a complete understanding of the molecular events of T cell activation.
Collapse
Affiliation(s)
- K C Garcia
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
140
|
Goyarts EC, Vegh Z, Kalergis AM, Hörig H, Papadopoulos NJ, Young AC, Thomson CT, Chang HC, Joyce S, Nathenson SG. Point mutations in the beta chain CDR3 can alter the T cell receptor recognition pattern on an MHC class I/peptide complex over a broad interface area. Mol Immunol 1998; 35:593-607. [PMID: 9823758 DOI: 10.1016/s0161-5890(98)00056-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To study how the T cell receptor interacts with its cognate ligand, the MHC/peptide complex, we used site directed mutagenesis to generate single point mutants that alter amino acids in the CDR3beta loop of a H-2Kb restricted TCR (N30.7) specific for an immunodominant peptide N52-N59 (VSV8) derived from the vesicular stomatitis virus nucleocapsid. The effect of each mutation on antigen recognition was analyzed using wild type H-2Kb and VSV8 peptide, as well as H-2Kb and VSV8 variants carrying single replacements at residues known to be exposed to the TCR. These analyses revealed that point mutations at some positions in the CDR3beta loop abrogated recognition entirely, while mutations at other CDR3beta positions caused an altered pattern of antigen recognition over a broad area on the MHC/peptide surface. This area included the N-terminus of the peptide, as well as residues of the MHC alpha1 and alpha2 helices flanking this region. Assuming that the N30 TCR docks on the MHC/peptide with an orientation similar to that recently observed in two different TCR-MHC/peptide crystal structures, our findings would suggest that single amino acid alterations within CDR3beta can affect the interaction of the TCR with an MHC surface region distal from the predicted CDR3beta-Kb/VSV8 interface. Such unique recognition capabilities are generated with minimal alterations in the CDR3 loops of the TCR. These observations suggest the hypothesis that extensive changes in the recognition pattern due to small perturbations in the CDR3 structure appears to be a structural strategy for generating a highly diversified TCR repertoire with specificity for a wide variety of antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigen Presentation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Hybridomas/immunology
- Interleukin-2/metabolism
- Lymphocyte Activation
- Macromolecular Substances
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleocapsid/chemistry
- Nucleocapsid/genetics
- Nucleocapsid/immunology
- Nucleocapsid Proteins
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Point Mutation
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Structure-Activity Relationship
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transfection
- Vesicular stomatitis Indiana virus/genetics
- Vesicular stomatitis Indiana virus/immunology
Collapse
Affiliation(s)
- E C Goyarts
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
|
142
|
Abstract
Superantigens (SAGs) are a class of disease-causing and immunostimulatory proteins of bacterial or viral origin that activate T cells by binding to the V beta domain of the T-cell antigen receptor (TCR). The three-dimensional structure of the complex between a TCR beta chain (mouse V beta 8.2-J beta 2.1-C beta 1) and the SAG staphylococcal enterotoxin C3 (SEC3) has been recently determined. The complementarity-determining region 2 (CDR2) of the beta chain and, to lesser extents, CDR1 and hypervariable region 4 (HV4) bind in a cleft between the small and large domains of the SAG. A model of the TCR-SAG-peptide/MHC complex constructed from available crystal structures reveals how the SAG acts as a wedge between the TCR and MHC, thereby displacing the antigenic peptide away from the TCR and circumventing the normal mechanism for T-cell activation by peptide/MHC. To evaluate the actual contribution of individual SAG residues to stabilizing the V beta C beta-SEC3 complex, as well as to investigate the relationship between the affinity of SAGs for TCB and MHC and their ability to activate T cells, we measured the binding of a set of SEC3 mutants to a soluble recombinant TCR beta chain and to the human MHC class II molecule HLA-DR1. We show that there is direct correlation between affinity and ability to stimulate T cells, with SAGs having the highest affinity for the TCR being the most biologically active. We also find that there is an interplay between TCR-SAG and SAG-MHC interactions in determining mitogenic potency, such that a small increase in the affinity of a SAG for MHC can overcome a large decrease in the SAG's affinity for the TCR. Finally, we observe that those SEC3 residues that make the greatest energetic contribution to stabilizing the V beta C beta-SEC3 complex are strictly conserved among enterotoxins reactive with mouse V beta 8.2, thereby explaining why SAGs having other residues at these positions show different V beta-binding specificities.
Collapse
Affiliation(s)
- H Li
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, USA
| | | | | |
Collapse
|
143
|
Mazza G, Housset D, Piras C, Gregoire C, Lin SY, Fontecilla-Camps JC, Malissen B. Glimpses at the recognition of peptide/MHC complexes by T-cell antigen receptors. Immunol Rev 1998; 163:187-96. [PMID: 9700511 DOI: 10.1111/j.1600-065x.1998.tb01197.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
More than a decade after the first description of the primary structure of a T-cell antigen receptor (TCR), the recent determination of the crystal structure of several unliganded TCR ectodomains and of two TCRs complexed to peptide-MHC ligand provides a structural basis for understanding the initial event that triggers T-cell activation. This review focuses on the topology of the variable (V) domains found in TCRs and immunoglobulins and attempts to delineate the structural features that may render the TCR complementarity-determining regions particularly suited to dock on the peptide/MHC surface. Finally, the available TCR structures provide an opportunity to re-evaluate the molecular basis for intrathymic positive selection as well as the mechanisms that make a given TCR neither infinitely specific, nor so flexible that it engages productively any MHC-binding peptides.
Collapse
Affiliation(s)
- G Mazza
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | | | | | |
Collapse
|
144
|
Ghendler Y, Smolyar A, Chang HC, Reinherz EL. One of the CD3epsilon subunits within a T cell receptor complex lies in close proximity to the Cbeta FG loop. J Exp Med 1998; 187:1529-36. [PMID: 9565644 PMCID: PMC2212265 DOI: 10.1084/jem.187.9.1529] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Revised: 03/05/1998] [Indexed: 11/17/2022] Open
Abstract
A recent crystal structure of the N15 alpha/beta-T cell receptor (TCR) in complex with an Fab derived from the H57 Cbeta-specific monoclonal antibody (mAb) shows the mAb fragment interacting with the elongated FG loop of the Cbeta domain. This loop creates one side wall of a cavity within the TCR Ti-alpha/beta constant region module (CalphaCbeta) while the CD and EF loops of the Calpha domain form another wall. The cavity size is sufficient to accommodate a single nonglycosylated Ig domain such as the CD3epsilon ectodomain. By using specific mAbs to mouse TCR-beta (H57) and CD3epsilon (2C11) subunits, we herein provide evidence that only one of the two CD3epsilon chains within the TCR complex is located in close proximity to the TCR Cbeta FG loop, in support of the above notion. Moreover, analysis of T cells isolated from transgenic mice expressing both human and mouse CD3epsilon genes shows that the heterologous human CD3epsilon component can replace the mouse CD3epsilon at this site. The location of one CD3epsilon subunit within the rigid constant domain module has implications for the mechanism of signal transduction throughout T cell development.
Collapse
Affiliation(s)
- Y Ghendler
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
145
|
Wang F, Ono T, Kalergis AM, Zhang W, DiLorenzo TP, Lim K, Nathenson SG. On defining the rules for interactions between the T cell receptor and its ligand: a critical role for a specific amino acid residue of the T cell receptor beta chain. Proc Natl Acad Sci U S A 1998; 95:5217-22. [PMID: 9560256 PMCID: PMC20241 DOI: 10.1073/pnas.95.9.5217] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/1998] [Indexed: 02/07/2023] Open
Abstract
The specificity of T cell-mediated immune responses is primarily determined by the interaction between the T cell receptor (TCR) and the antigenic peptide presented by the major histocompatibility complex (MHC) molecules. To refine our understanding of interactions between the TCR and the antigenic peptide of vesicular stomatitis virus (VSV) presented by the class I MHC molecule H-2Kb, we constructed a TCR alpha chain transgenic mouse in a TCR alpha-deficient background to define specific structural features in the TCR beta chain that are important for the recognition of the VSV/H-2Kb complex. We found that for a given peptide, a peptide-specific, highly conserved amino acid could always be identified at position 98 of the complementarity-determining region 3 (CDR3) loop of TCR beta chains. Further, we demonstrated that substitutions at position 6, but not position 1, of the VSV peptide induced compensatory changes in the TCR in both the amino acid residue at position 98 and the length of the CDR3beta loop. We conclude that the amino acid residue at position 98 of the CDR3beta loop is a key residue that plays a critical role in determining the specificity of TCR-VSV/H-2Kb interactions and that a specific length of the CDR3beta loop is required to facilitate such interactions. Further, these findings suggest that the alpha and beta chains of TCRs interact with amino acid residue(s) toward the N and C termini of the VSV peptide, respectively, providing functional evidence for the orientation of a TCR with its peptide/MHC ligand as observed in the crystal structures of TCR/peptide/MHC complexes.
Collapse
Affiliation(s)
- F Wang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Ding YH, Smith KJ, Garboczi DN, Utz U, Biddison WE, Wiley DC. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 1998; 8:403-11. [PMID: 9586631 DOI: 10.1016/s1074-7613(00)80546-4] [Citation(s) in RCA: 365] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three-dimensional structure of a human alphabeta T cell receptor (TCR), B7, bound to the HLA-A2 molecule/HTLV-1 Tax peptide complex was determined by x-ray crystallography. Although different from the A6 TCR, previously studied, in 16 of the 17 residues that contact HLA-A2/Tax, the B7 TCR binds in a similar diagonal manner, only slightly tipped and rotated, relative to the A6 TCR. The structure explains data from functional assays on the specificity differences between the B7 and A6 TCRs for agonist, partial agonist, and null peptides. The existence of a structurally similar diagonal binding mode for TCRs favors mechanisms based on the formation of geometrically defined supramolecular assemblies for initiating signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Binding Sites/genetics
- Crystallography, X-Ray
- Gene Products, tax/metabolism
- HLA-A2 Antigen/metabolism
- Humans
- In Vitro Techniques
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Y H Ding
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | |
Collapse
|
147
|
Teng MK, Smolyar A, Tse AG, Liu JH, Liu J, Hussey RE, Nathenson SG, Chang HC, Reinherz EL, Wang JH. Identification of a common docking topology with substantial variation among different TCR-peptide-MHC complexes. Curr Biol 1998; 8:409-12. [PMID: 9545202 DOI: 10.1016/s0960-9822(98)70160-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whether T-cell receptors (TCRs) recognize antigenic peptides bound to major histocompatability complex (MHC) molecules through common or distinct docking modes is currently uncertain. We report the crystal structure of a complex between the murine N15 TCR [1-4] and its peptide-MHC ligand, an octapeptide fragment representing amino acids 52-59 of the vesicular stomatitis virus nuclear capsid protein (VSV8) bound to the murine H-2Kb class I MHC molecule. Comparison of the structure of the N15 TCR-VSV8-H-2Kb complex with the murine 2C TCR-dEV8-H-2Kb [5] and the human A6 TCR-Tax-HLA-A2 [6] complexes revealed a common docking mode, regardless of TCR specificity or species origin, in which the TCR variable Valpha domain overlies the MHC alpha2 helix and the Vbeta domain overlies the MHC alpha1 helix. As a consequence, the complementary determining regions CDR1 and CDR3 of the TCR Valpha and Vbeta domains make the major contacts with the peptide, while the CDR2 loops interact primarily with the MHC. Nonetheless, in terms of the details of the relative orientation and disposition of binding, there is substantial variation in TCR parameters, which we term twist, tilt and shift, and which define the variation of the V module of the TCR relative to the MHC antigen-binding groove.
Collapse
MESH Headings
- Animals
- Binding Sites
- Capsid/chemistry
- Capsid/metabolism
- Crystallography, X-Ray
- Gene Products, tax/chemistry
- Gene Products, tax/metabolism
- H-2 Antigens/chemistry
- H-2 Antigens/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/metabolism
- Histocompatibility Antigens/chemistry
- Histocompatibility Antigens/metabolism
- Humans
- In Vitro Techniques
- Macromolecular Substances
- Mice
- Models, Molecular
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Peptides/chemistry
- Peptides/metabolism
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Vesicular stomatitis Indiana virus/chemistry
- Vesicular stomatitis Indiana virus/metabolism
Collapse
Affiliation(s)
- M K Teng
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Garcia KC, Degano M, Pease LR, Huang M, Peterson PA, Teyton L, Wilson IA. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 1998; 279:1166-72. [PMID: 9469799 DOI: 10.1126/science.279.5354.1166] [Citation(s) in RCA: 550] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The T cell receptor (TCR) inherently has dual specificity. T cells must recognize self-antigens in the thymus during maturation and then discriminate between foreign pathogens in the periphery. A molecular basis for this cross-reactivity is elucidated by the crystal structure of the alloreactive 2C TCR bound to self peptide-major histocompatibility complex (pMHC) antigen H-2Kb-dEV8 refined against anisotropic 3.0 angstrom resolution x-ray data. The interface between peptide and TCR exhibits extremely poor shape complementarity, and the TCR beta chain complementarity-determining region 3 (CDR3) has minimal interaction with the dEV8 peptide. Large conformational changes in three of the TCR CDR loops are induced upon binding, providing a mechanism of structural plasticity to accommodate a variety of different peptide antigens. Extensive TCR interaction with the pMHC alpha helices suggests a generalized orientation that is mediated by the Valpha domain of the TCR and rationalizes how TCRs can effectively "scan" different peptides bound within a large, low-affinity MHC structural framework for those that provide the slight additional kinetic stabilization required for signaling.
Collapse
MESH Headings
- Animals
- Crystallization
- Crystallography, X-Ray
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Ligands
- Mice
- Mice, Transgenic
- Models, Molecular
- Mutation
- Oligopeptides/chemistry
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Protein Conformation
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins
Collapse
Affiliation(s)
- K C Garcia
- Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|