101
|
Abstract
The importance of genetic influences on cognitive disability has been recognized for a long time, but molecular analysis has only recently begun to yield insights into the pathogenesis of this common and disabling condition. The availability of genome sequences has enabled the characterization of the chromosomal deletions and trisomies that result in cognitive disability, and mutations in rare single-gene conditions are being discovered. The molecular pathology of cognitive disability is turning out to be as heterogeneous as the condition itself, with unexpected complexities even in apparently simple gene-deletion syndromes. One remarkable finding from studies on X-linked mental retardation is that mutations in different small guanosine triphosphate (GTP)-binding proteins result in cognitive disability without other somatic features. Advances are also being made in cognitive disability with polygenic origins, such as dyslexia and autism. However, the genetic basis of mild intellectual disability has yet to be satisfactorily explained.
Collapse
|
102
|
Hiatt KK, Ingram DA, Zhang Y, Bollag G, Clapp DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells. J Biol Chem 2001; 276:7240-5. [PMID: 11080503 DOI: 10.1074/jbc.m009202200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Ras superfamily of signaling proteins modulate fundamental cellular processes by cycling between an active GTP-bound conformation and an inactive GDP-bound form. Neurofibromin, the protein product of the NF1 tumor suppressor gene, and p120GAP are GTPase-activating proteins (GAPs) for p21(Ras) (Ras) and negatively regulate output by accelerating GTP hydrolysis on Ras. Neurofibromin and p120GAP differ markedly outside of their conserved GAP-related domains (GRDs), and it is therefore unknown if the respective GRDs contribute functional specificity. To address this question, we expressed the GRDs of neurofibromin and p120GAP in primary cells from Nf1 mutant mice in vitro and in vivo. Here we show that expression of neurofibromin GRD, but not the p120GAP GRD, restores normal growth and cytokine signaling in three lineages of primary Nf1-deficient cells that have been implicated in the pathogenesis of neurofibromatosis type 1 (NF1). Furthermore, utilizing a GAP-inactive mutant NF1 GRD identified in a family with NF1, we demonstrate that growth restoration is a function of NF1 GRD GAP activity on p21(Ras). Thus, the GRDs of neurofibromin and p120GAP specify nonoverlapping functions in multiple primary cell types.
Collapse
Affiliation(s)
- K K Hiatt
- Herman B Wells Center for Pediatric Research, Departments of Microbiology/Immunology and Pediatrics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
103
|
Flint J. Genetic basis of cognitive disability. DIALOGUES IN CLINICAL NEUROSCIENCE 2001; 3:37-46. [PMID: 22034445 PMCID: PMC3181642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The importance of genetic influences on cognitive disability has been recognized for a long time, but molecular analysis has only recently begun to yield insights into the pathogenesis of this common and disabling condition. The availability of genome sequences has enabled the characterization of the chromosomal deletions and trisomies that result in cognitive disability, and mutations in rare single-gene conditions are being discovered. The molecular pathology of cognitive disability is turning out to be as heterogeneous as the condition itself, with unexpected complexities even in apparently simple gene-deletion syndromes. One remarkable finding from studies on X-linked mental retardation is that mutations in different small guanosine triphosphate (GTP)-binding proteins result in cognitive disability without other somatic features. Advances are also being made in cognitive disability with polygenic origins, such as dyslexia and autism. However, the genetic basis of mild intellectual disability has yet to be satisfactorily explained.
Collapse
|
108
|
Rak A, Fedorov R, Alexandrov K, Albert S, Goody RS, Gallwitz D, Scheidig AJ. Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins. EMBO J 2000; 19:5105-13. [PMID: 11013213 PMCID: PMC302102 DOI: 10.1093/emboj/19.19.5105] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present the 1.9 A resolution crystal structure of the catalytic domain of Gyp1p, a specific GTPase activating protein (GAP) for Ypt proteins, the yeast homologues of Rab proteins, which are involved in vesicular transport. Gyp1p is a member of a large family of eukaryotic proteins with shared sequence motifs. Previously, no structural information was available for any member of this class of proteins. The GAP domain of Gyp1p was found to be fully alpha-helical. However, the observed fold does not superimpose with other alpha-helical GAPs (e.g. Ras- and Cdc42/Rho-GAP). The conserved and catalytically crucial arginine residue, identified by mutational analysis, is in a comparable position to the arginine finger in the Ras- and Cdc42-GAPs, suggesting that Gyp1p utilizes an arginine finger in the GAP reaction, in analogy to Ras- and Cdc42-GAPs. A model for the interaction between Gyp1p and the Ypt protein satisfying biochemical data is given.
Collapse
Affiliation(s)
- A Rak
- Max-Planck-Institute for Molecular Physiology, Department of Physical Biochemistry, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
109
|
Fahsold R, Hoffmeyer S, Mischung C, Gille C, Ehlers C, Kücükceylan N, Abdel-Nour M, Gewies A, Peters H, Kaufmann D, Buske A, Tinschert S, Nürnberg P. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 2000; 66:790-818. [PMID: 10712197 PMCID: PMC1288164 DOI: 10.1086/302809] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Accepted: 10/14/1999] [Indexed: 11/03/2022] Open
Abstract
More than 500 unrelated patients with neurofibromatosis type 1 (NF1) were screened for mutations in the NF1 gene. For each patient, the whole coding sequence and all splice sites were studied for aberrations, either by the protein truncation test (PTT), temperature-gradient gel electrophoresis (TGGE) of genomic PCR products, or, most often, by direct genomic sequencing (DGS) of all individual exons. A total of 301 sequence variants, including 278 bona fide pathogenic mutations, were identified. As many as 216 or 183 of the genuine mutations, comprising 179 or 161 different ones, can be considered novel when compared to the recent findings of Upadhyaya and Cooper, or to the NNFF mutation database. Mutation-detection efficiencies of the various screening methods were similar: 47.1% for PTT, 53.7% for TGGE, and 54.9% for DGS. Some 224 mutations (80.2%) yielded directly or indirectly premature termination codons. These mutations showed even distribution over the whole gene from exon 1 to exon 47. Of all sequence variants determined in our study, <20% represent C-->T or G-->A transitions within a CpG dinucleotide, and only six different mutations also occur in NF1 pseudogenes, with five being typical C-->T transitions in a CpG. Thus, neither frequent deamination of 5-methylcytosines nor interchromosomal gene conversion may account for the high mutation rate of the NF1 gene. As opposed to the truncating mutations, the 28 (10.1%) missense or single-amino-acid-deletion mutations identified clustered in two distinct regions, the GAP-related domain (GRD) and an upstream gene segment comprising exons 11-17. The latter forms a so-called cysteine/serine-rich domain with three cysteine pairs suggestive of ATP binding, as well as three potential cAMP-dependent protein kinase (PKA) recognition sites obviously phosphorylated by PKA. Coincidence of mutated amino acids and those conserved between human and Drosophila strongly suggest significant functional relevance of this region, with major roles played by exons 12a and 15 and part of exon 16.
Collapse
Affiliation(s)
- Raimund Fahsold
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Sven Hoffmeyer
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Claudia Mischung
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Christoph Gille
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Christian Ehlers
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Nazan Kücükceylan
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Maher Abdel-Nour
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Andreas Gewies
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Hartmut Peters
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Dieter Kaufmann
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Annegret Buske
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Sigrid Tinschert
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| | - Peter Nürnberg
- Gemeinschaftspraxis B. Prager & A. Junge, Dresden; Epidauros AG, Bernried; Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin; Institut für Biochemie, Universitätsklinikum Charité, Berlin; Abteilung Humangenetik, Universität Ulm, Ulm
| |
Collapse
|