101
|
Abstract
Disulfide bonds in proteins play various important roles. They are either formed as structural features to stabilize the protein or are found only transiently as part of a catalytic or regulatory cycle. In vivo, the formation and reduction of disulfide bonds is catalyzed by specialized thiol-disulfide exchanging enzymes that contain an active site with the sequence motif Cys-X-X-Cys. These proteins have structurally evolved to catalyze predominantly either oxidative reactions or reductive steps. There is mounting evidence that, in addition to the thiol redox potential, the spatial distribution within different cell compartments and the overall redox state of the cell are equally important. In the cytoplasm, multiple pathways play overlapping roles in the reduction of disulfide bonds and additionally, the expression of several components of thiol-redox pathways was shown to respond to the changes in the cellular thiol-redox equilibrium. In the periplasm, two systems coexist, one catalyzing thiol oxidation and the other disulfide reduction. Recent results suggest that two different mechanisms are used to translocate reducing power from the cytoplasm or to dissipate the electrons after oxidation.
Collapse
Affiliation(s)
- D Ritz
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
102
|
Kranz RG, Beckett CS, Goldman BS. Genomic analyses of bacterial respiratory and cytochrome c assembly systems: Bordetella as a model for the system II cytochrome c biogenesis pathway. Res Microbiol 2002; 153:1-6. [PMID: 11881892 DOI: 10.1016/s0923-2508(01)01278-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An analysis of thirty-three genomes of selected bacteria for the presence of specific respiratory pathways and cytochrome c biogenesis systems has led to observations on respiration and biogenesis. A table summarizing these results is presented. The data suggested that Bordetella pertussis would be an excellent genetic model to study the System II cytochrome c biogenesis pathway. These observations are discussed and the results of genetic studies on System II biogenesis in B. pertussis are presented as a case for the power of comparative genomics. System II is present in organisms as diverse as Helicobacter, Neisseria, Porphyromonas, mycobacteria, cyanobacteria, and plants (chloroplasts), indicating this pathway's prominence and that horizontal transfer of system II (and/or System I) must have occurred on multiple occasions.
Collapse
Affiliation(s)
- Robert G Kranz
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|
103
|
Haebel PW, Wichman S, Goldstone D, Metcalf P. Crystallization and initial crystallographic analysis of the disulfide bond isomerase DsbC in complex with the alpha domain of the electron transporter DsbD. J Struct Biol 2001; 136:162-6. [PMID: 11886218 DOI: 10.1006/jsbi.2001.4430] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The protein disulfide bond isomerase DsbC catalyzes the rearrangement of incorrect disulfide bonds during oxidative protein folding in the periplasm of Escherichia coli. The active site cysteines of DsbC are maintained in the active reduced form by the transmembrane electron transporter DsbD. DsbD obtains electrons from the cytoplasm, transports them across the inner membrane, and passes them onto periplasmic substrates, such as DsbC. The electron transport process involves several thiol disulfide exchange reactions between different classes of thiol oxidoreductase. We were able to trap the final electron transport reaction using active site mutants yielding a stable DsbC-DsbDalpha complex. This disulfide cross-linked complex was purified to homogeneity and crystallized. Dehydration of the tetragonal crystals changed the unit cell dimensions from a approximately b = 73 A, c = 267.5 A to a = b = 68.9 A, c = 230.3 A, reducing the cell volume by 23% and the solvent content from 55 to 41%. Crystal dehydration and cryo-cooling improved the diffraction quality of the crystals from 7 to 2.3 A resolution.
Collapse
Affiliation(s)
- P W Haebel
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
104
|
Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC. Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 2001; 183:6107-18. [PMID: 11567011 PMCID: PMC99690 DOI: 10.1128/jb.183.20.6107-6118.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2001] [Accepted: 07/17/2001] [Indexed: 11/20/2022] Open
Abstract
Many photosynthetic bacteria use inorganic sulfur compounds as electron donors for carbon dioxide fixation. A thiosulfate-induced cytochrome c has been purified from the photosynthetic alpha-proteobacterium Rhodovulum sulfidophilum. This cytochrome c(551) is a heterodimer of a diheme 30-kDa SoxA subunit and a monoheme 15-kDa SoxX subunit. The cytochrome c(551) structural genes are part of an 11-gene sox locus. Sequence analysis suggests that the ligands to the heme iron in SoxX are a methionine and a histidine, while both SoxA hemes are predicted to have unusual cysteine-plus-histidine coordination. A soxA mutant strain is unable to grow photoautotrophically on or oxidize either thiosulfate or sulfide. Cytochrome c(551) is thus essential for the metabolism of both these sulfur species. Periplasmic extracts of wild-type R. sulfidophilum exhibit thiosulfate:cytochrome c oxidoreductase activity. However, such activity can only be measured for a soxA mutant strain if the periplasmic extract is supplemented with purified cytochrome c(551). Gene clusters similar to the R. sulfidophilum sox locus can be found in the genome of a green sulfur bacterium and in phylogenetically diverse nonphotosynthetic autotrophs.
Collapse
Affiliation(s)
- C Appia-Ayme
- Center for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
105
|
de Crouy-Chanel A, Richarme G. Amount and redox state of cytoplasmic, membrane and periplasmic proteins in Escherichia coli redox mutants. Res Microbiol 2001; 152:663-9. [PMID: 11605986 DOI: 10.1016/s0923-2508(01)01245-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyzed the amount and redox state of cytoplasmic, membrane and periplasmic proteins in Escherichia coli mutants deficient in thioredoxin, thioredoxin reductase, glutathione and DsbA, by observing the electrophoretic profile of bacterial extracts after in vivo labelling with monobromobimane. Our results show that these mutations affected not only the amount and the redox state of proteins localized in the same compartment as the deficient oxidoreductase, but also those of the proteins localized in other compartments. These results concord with the hypothesis that there is a link between the redox reactions that occur in the cytoplasm and the periplasm.
Collapse
Affiliation(s)
- A de Crouy-Chanel
- Biochimie génétique, Institut Jacques Monod, Université Paris 7, France
| | | |
Collapse
|
106
|
Bardischewsky F, Friedrich CG. The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccus pantotrophus GB17: a novel function for lithotrophy. FEMS Microbiol Lett 2001; 202:215-20. [PMID: 11520617 DOI: 10.1111/j.1574-6968.2001.tb10806.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The shxVW genes of Paracoccus pantotrophus were identified to be essential for lithotrophic oxidation of sulfur and hydrogen. shxV predicts a membrane protein which is 42% identical to CcdA of P. pantotrophus essential for cytochrome c biogenesis. shxW predicts a periplasmic thioredoxin. Disruption of shxV by an Omega-kanamycin interposon disabled the resulting mutant GB(Omega)V to grow with thiosulfate or molecular hydrogen and to express ShxW while cytochrome c formation was not affected. Mixotrophic growth with succinate and thiosulfate of strain GB(Omega)V revealed 2% of the thiosulfate-dependent oxygen uptake rate as compared to the wild-type while antigens of proteins essential for sulfur oxidation were present in both strains. Mixotrophic growth of strain GB(Omega)V with succinate and molecular hydrogen revealed neither hydrogenase activity nor antigens. Complementation analysis with plasmid pBHP6 carrying the shxVW genes revealed the wild-type phenotype of strain GB(Omega)V(pBHP6).
Collapse
Affiliation(s)
- F Bardischewsky
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Chemietechnik, Universität Dortmund, D-44221 Dortmund, Germany
| | | |
Collapse
|
107
|
Goldstone D, Haebel PW, Katzen F, Bader MW, Bardwell JC, Beckwith J, Metcalf P. DsbC activation by the N-terminal domain of DsbD. Proc Natl Acad Sci U S A 2001; 98:9551-6. [PMID: 11493705 PMCID: PMC55490 DOI: 10.1073/pnas.171315498] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The correct formation of disulfide bonds in the periplasm of Escherichia coli involves Dsb proteins, including two related periplasmic disulfide-bond isomerases, DsbC and DsbG. DsbD is a membrane protein required to maintain the functional oxidation state of DsbC and DsbG. In this work, purified proteins were used to investigate the interaction between DsbD and DsbC. A 131-residue N-terminal fragment of DsbD (DsbDalpha) was expressed and purified and shown to form a functional folded domain. Gel filtration results indicate that DsbDalpha is monomeric. DsbDalpha was shown to interact directly with and to reduce the DsbC dimer, thus increasing the isomerase activity of DsbC. The DsbC-DsbDalpha complex was characterized, and formation of the complex was shown to require the N-terminal dimerization domain of DsbC. These results demonstrate that DsbD interacts directly with full-length DsbC and imply that no other periplasmic components are required to maintain DsbC in the functional reduced state.
Collapse
Affiliation(s)
- D Goldstone
- School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
108
|
Kurokawa Y, Yanagi H, Yura T. Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J Biol Chem 2001; 276:14393-9. [PMID: 11279016 DOI: 10.1074/jbc.m100132200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of eukaryotic proteins with multiple disulfide bonds in the Escherichia coli periplasm often encounters difficulty in obtaining soluble products with native structure. Human nerve growth factor beta (NGF) contains three disulfide bonds between nonconsecutive cysteine residues and forms insoluble aggregates when expressed in E. coli. We now report that overexpression of Dsb proteins known to catalyze formation and isomerization of disulfide bonds can substantially enhance periplasmic production of NGF. A set of pACYC184-based plasmids that permit dsb expression under the araB promoter were introduced into cells carrying a compatible plasmid that expresses NGF. The efficiency of periplasmic production of NGF fused to the OmpT signal peptide was strikingly improved by coexpression of DsbCD or DsbABCD proteins (up to 80% of total NGF produced). Coexpression of DsbAB was hardly effective, whereas that of DsbAC increased the total yield but not the periplasmic expression. These results suggest synergistic roles of DsbC and DsbD in disulfide isomerization that appear to become limiting upon NGF production. Furthermore, recombinant NGF produced with excess DsbCD (or DsbABCD) was biologically active judged by the neurite outgrowth assay using rat PC12 cells.
Collapse
Affiliation(s)
- Y Kurokawa
- HSP Research Institute, Kyoto Research Park, Kyoto 600-8813, Japan
| | | | | |
Collapse
|
109
|
Fernández LA, de Lorenzo V. Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Mol Microbiol 2001; 40:332-46. [PMID: 11309117 DOI: 10.1046/j.1365-2958.2001.02410.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this work, we have investigated whether the bacterial type I secretion pathway, which does not have a periplasmic intermediate of the secreted protein, allows the formation of disulphide bridges. To this end, the formation of disulphide bonds has been studied in an antibody single-chain Fv (scFv) fragment secreted by the Escherichia coli haemolysin (Hly) transporter (a paradigm of type I secretion). The scFv antibody fragment was used as a disulphide bond and protein-folding reporter, as it contains two disulphide bridges that are required for its correct folding (i.e. to preserve its antigen-binding activity). We show that an scFv-HlyA hybrid secreted by Hly type I transporter (TolC, HlyB, HlyD) is accumulated in the extracellular medium with the disulphide bonds correctly formed. Neither periplasmic and inner membrane-bound Dsb enzymes (e.g. DsbC, DsbG, DsbB and DsbD) nor cytoplasmic thioredoxins (TrxA and TrxC) were required for scFv-HlyA oxidation. However, a mutation of the thioredoxin reductase gene (trxB), which leads to the cytoplasmic accumulation of the oxidized forms of thioredoxins, had a specific inhibitory effect on the Hly-dependent secretion of disulphide-containing proteins. These data suggest that premature cytoplasmic oxidation of the substrate may interfere with the secretion process. Taken together, these results indicate not only that the type I system tolerates secretion of disulphide-containing proteins, but also that disulphide bonds are specifically formed during the passage of the polypeptide through the export conduit.
Collapse
Affiliation(s)
- L A Fernández
- Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
110
|
Reid E, Cole J, Eaves DJ. The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem J 2001; 355:51-8. [PMID: 11256948 PMCID: PMC1221711 DOI: 10.1042/0264-6021:3550051] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In Escherichia coli K-12, c-type cytochromes are synthesized only during anaerobic growth with trimethylamine-N-oxide, nitrite or low concentrations of nitrate as the terminal electron acceptor. A thioredoxin-like protein, CcmG, is one of 12 proteins required for their assembly in the periplasm. Its postulated function is to reduce disulphide bonds formed between correctly paired cysteine residues in the cytochrome c apoproteins prior to haem attachment by CcmF and CcmH. We report that loss of CcmG synthesis by mutation was not compensated by a second mutation in disulphide-bond-forming proteins, DsbA or DsbB, or by the chemical reductant, 2-mercaptoethanesulphonic acid. An anti-CcmG polyclonal antibody was used in Western-blot analysis to probe the redox state of CcmG in mutants defective in the synthesis of other proteins essential for cytochrome c assembly. The oxidized form of CcmG accumulated not only in trxA or dipZ mutants defective in the transfer of electrons from the cytoplasm for disulphide isomerization and reduction reactions in the periplasm, but also in ccmF and ccmH mutants. The requirement of both CcmF and CcmH for the reduction of the disulphide bond in CcmG indicates that CcmG functions later than CcmF and CcmH in cytochrome c assembly, rather than in electron transfer from the membrane-associated DipZ (also known as DsbD) to CcmH. The data support a model proposed by others in which CcmG catalyses one of the last reactions specific to cytochrome c assembly.
Collapse
Affiliation(s)
- E Reid
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | | |
Collapse
|
111
|
Krupp R, Chan C, Missiakas D. DsbD-catalyzed transport of electrons across the membrane of Escherichia coli. J Biol Chem 2001; 276:3696-701. [PMID: 11085993 DOI: 10.1074/jbc.m009500200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dsb proteins catalyze folding and oxidation of polypeptides in the periplasm of Escherichia coli. DsbC reduces wrongly paired disulfides by transferring electrons from its catalytic dithiol motif (98)CGYC. Genetic evidence suggests that recycling of this motif requires at least three proteins, the cytoplasmic thioredoxin reductase (TrxB) and thioredoxin (TrxA) as well as the DsbD membrane protein. We demonstrate here that electrons are transferred directly from thioredoxin to DsbD and from DsbD to DsbC. Three cysteine pairs within DsbD undergo reversible disulfide rearrangements. Our results suggest a novel mechanism for electron transport across membranes whereby electrons are transferred sequentially from cysteine pairs arranged in a thioredoxin-like motif (CXXC) to a cognate reactive disulfide.
Collapse
Affiliation(s)
- R Krupp
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
112
|
Abstract
DsbC, a member of the Dsb family in the periplasm of Gram-negative bacteria, is not only a disulfide isomerase but also a chaperone. Five DsbC mutants with Cys in the active site sequence of Cys(98)-Gly-Tyr-Cys(101) and the nonactive site disulfide Cys(141)-Cys(163) replaced by Ser have been studied. The results show that the active site Cys residues are necessary for enzyme activities but not required for chaperone activity, while the lack of the nonactive site disulfide results in a decreased chaperone activity in assisting the reactivation of denatured d-glyceraldehyde-3-phosphate dehydrogenase but has no effect on enzyme activities. Wild-type DsbC was overexpressed and correctly processed as a soluble periplasmic protein. Mutation in one of these Cys residues results in aggregation or extracellular/membrane locations, but does not affect the proper processing. DsbC mutated in either Cys residue of nonactive site disulfide shows higher sensitivity to unfolding by guanidine hydrochloride and slower refolding compared with wild-type DsbC and the active site Cys mutants. The above results provide experimental evidence for structural role of the nonactive site disulfide in folding and biological activities of DsbC.
Collapse
Affiliation(s)
- X Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, 15 Datun Road, Beijing 100101, China
| | | |
Collapse
|
113
|
Bardischewsky F, Friedrich CG. Identification of ccdA in Paracoccus pantotrophus GB17: disruption of ccdA causes complete deficiency in c-type cytochromes. J Bacteriol 2001; 183:257-63. [PMID: 11114924 PMCID: PMC94873 DOI: 10.1128/jb.183.1.257-263.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2000] [Accepted: 10/05/2000] [Indexed: 11/20/2022] Open
Abstract
A transposon Tn5-mob insertional mutant of Paracoccus pantotrophus GB17, strain TP43, was unable to oxidize thiosulfate aerobically or to reduce nitrite anaerobically, and the cellular yields were generally decreased by 11 to 20%. Strain TP43 was unable to form functional c-type cytochromes, as determined by difference spectroscopy and heme staining. However, formation of apocytochromes and their transport to the periplasm were not affected, as seen with SoxD, a c-type cytochrome associated with the periplasmic sulfite dehydrogenase homologue. The Tn5-mob-containing DNA region of strain TP43 was cloned into pSUP205 to produce pE18TP43. With the aid of pE18TP43 the corresponding wild-type gene region of 15 kb was isolated from a heterogenote recombinant to produce pEF15. Sequence analysis of 2.8 kb of the relevant region uncovered three open reading frames, designated ORFA, ccdA, and ORFB, with the latter being oriented divergently. ORFA and ccdA were constitutively cotranscribed as determined by primer extension analysis. In strain TP43 Tn5-mob was inserted into ccdA. The deduced ORFA product showed no similarity to any protein in databases. However, the ccdA gene product exhibited similarities to proteins assigned to different functions in bacteria, such as cytochrome c biogenesis. For these proteins at least six transmembrane helices are predicted with the potential to form a channel with two conserved cysteines. This structural identity suggests that these proteins transfer reducing equivalents from the cytoplasm to the periplasm and that the cysteines bring about this transfer to enable the various specific functions via specific redox mediators such as thioredoxins. CcdA of P. pantotrophus is 42% identical to a protein predicted by ORF2, and its location within the sox gene cluster coding for lithotrophic sulfur oxidation suggested a different function.
Collapse
Affiliation(s)
- F Bardischewsky
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Chemietechnik, Universität Dortmund, D-44221 Dortmund, Germany
| | | |
Collapse
|
114
|
Urban A, Leipelt M, Eggert T, Jaeger KE. DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. J Bacteriol 2001; 183:587-96. [PMID: 11133952 PMCID: PMC94914 DOI: 10.1128/jb.183.2.587-596.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DsbA and DsbC proteins involved in the periplasmic formation of disulfide bonds in Pseudomonas aeruginosa were identified and shown to play an important role for the formation of extracellular enzymes. Mutants deficient in either dsbA or dsbC or both genes were constructed, and extracellular elastase, alkaline phosphatase, and lipase activities were determined. The dsbA mutant no longer produced these enzymes, whereas the lipase activity was doubled in the dsbC mutant. Also, extracellar lipase production was severely reduced in a P. aeruginosa dsbA mutant in which an inactive DsbA variant carrying the mutation C34S was expressed. Even when the lipase gene lipA was constitutively expressed in trans in a lipA dsbA double mutant, lipase activity in cell extracts and culture supernatants was still reduced to about 25%. Interestingly, the presence of dithiothreitol in the growth medium completely inhibited the formation of extracellular lipase whereas the addition of dithiothreitol to a cell-free culture supernatant did not affect lipase activity. We conclude that the correct formation of the disulfide bond catalyzed in vivo by DsbA is necessary to stabilize periplasmic lipase. Such a stabilization is the prerequisite for efficient secretion using the type II pathway.
Collapse
Affiliation(s)
- A Urban
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
115
|
Katzen F, Beckwith J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 2000; 103:769-79. [PMID: 11114333 DOI: 10.1016/s0092-8674(00)00180-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cytoplasmic membrane protein DsbD transfers electrons from the cytoplasm to the periplasm of E. coli, where its reducing power is used to maintain cysteines in certain proteins in the reduced state. We split DsbD into three structural domains, each containing two essential cysteines. Remarkably, when coexpressed, these truncated proteins restore DsbD function. Utilizing this three piece system, we were able to determine a pathway of the electrons through DsbD. Our findings strongly suggest that the pathway is based on a series of multistep redox reactions that include direct interactions between thioredoxin and DsbD, and between DsbD and its periplasmic substrates. A thioredoxin-fold domain in DsbD appears to have the novel role of intramolecular electron shuttle.
Collapse
Affiliation(s)
- F Katzen
- Department of Microbiology and Molecular Genetics Harvard Medical School 200 Longwood Avenue Boston, MA 02115, USA
| | | |
Collapse
|
116
|
Beckett CS, Loughman JA, Karberg KA, Donato GM, Goldman WE, Kranz RG. Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model. Mol Microbiol 2000; 38:465-81. [PMID: 11069671 DOI: 10.1046/j.1365-2958.2000.02174.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Unlike other cytochromes, c-type cytochromes have two covalent bonds formed between the two vinyl groups of haem and two cysteines of the protein. This haem ligation requires specific assembly proteins in prokaryotes or eukaryotic mitochondria and chloroplasts. Here, it is shown that Bordetella pertussis is an excellent bacterial model for the widespread system II cytochrome c synthesis pathway. Mutations in four different genes (ccsA, ccsB, ccsX and dipZ) result in B. pertussis strains unable to synthesize any of at least seven c-type cytochromes. Using a cytochrome c4:alkaline phosphatase fusion protein as a bifunctional reporter, it was demonstrated that the B. pertussis wild-type and mutant strains secrete an active alkaline phosphatase fusion protein. However, unlike the wild type, all four mutants are unable to attach haem covalently, resulting in a degraded N-terminal apocytochrome c4 component. Thus, apocytochrome c secretion is normal in each of the four mutants, but all are defective in a periplasmic assembly step (or export of haem). CcsX is related to thioredoxins, which possess a conserved CysXxxXxxCys motif. Using phoA gene fusions as reporters, CcsX was proven to be a periplasmic thioredoxin-like protein. Both the B. pertussis dipZ (i. e. dsbD) and ccsX mutants are corrected for their assembly defects by the thiol-reducing compounds, dithiothreitol and 2-mercaptoethanesulphonic acid. These results indicate that DipZ and CcsX are required for the periplasmic reduction of the cysteines of apocytochromes c before ligation. In contrast, the ccsA and ccsB mutants are not corrected by exogenous reducing agents, suggesting that CcsA and CcsB are required for the haem ligation step itself in the periplasm (or export of haem to the periplasm). Related to this suggestion, the topology of CcsB was determined experimentally, demonstrating that CcsB has four transmembrane domains and a large 435-amino-acid periplasmic region.
Collapse
Affiliation(s)
- C S Beckett
- Departments of Biology, and Molecular Microbiology, Campus Box 1137, Washington University, One Brookings Drive, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
117
|
Benham AM, Cabibbo A, Fassio A, Bulleid N, Sitia R, Braakman I. The CXXCXXC motif determines the folding, structure and stability of human Ero1-Lalpha. EMBO J 2000; 19:4493-502. [PMID: 10970843 PMCID: PMC302061 DOI: 10.1093/emboj/19.17.4493] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The presence of correctly formed disulfide bonds is crucial to the structure and function of proteins that are synthesized in the endoplasmic reticulum (ER). Disulfide bond formation occurs in the ER owing to the presence of several specialized catalysts and a suitable redox potential. Work in yeast has indicated that the ER resident glycoprotein Ero1p provides oxidizing equivalents to newly synthesized proteins via protein disulfide isomerase (PDI). Here we show that Ero1-Lalpha, the human homolog of Ero1p, exists as a collection of oxidized and reduced forms and covalently binds PDI. We analyzed Ero1-Lalpha cysteine mutants in the presumed active site C(391)VGCFKC(397). Our results demonstrate that this motif is important for protein folding, structural integrity, protein half-life and the stability of the Ero1-Lalpha-PDI complex.
Collapse
Affiliation(s)
- A M Benham
- Department of Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
118
|
Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 2000; 182:4677-87. [PMID: 10940005 PMCID: PMC111341 DOI: 10.1128/jb.182.17.4677-4687.2000] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene region coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17 is located on a 13-kb insert of plasmid pEG12. Upstream of the previously described six open reading frames (ORFs) soxABCDEF with a partial sequence of soxA and soxF (C. Wodara, F. Bardischewsky, and C. G. Friedrich, J. Bacteriol. 179:5014-5023, 1997), 4,350 bp were sequenced. The sequence completed soxA, and uncovered six new ORFs upstream of soxA, designated ORF1, ORF2, and ORF3, and soxXYZ. ORF1 could encode a 275-amino-acid polypeptide of 29,332 Da with a 61 to 63% similarity to LysR transcriptional regulators. ORF2 could encode a 245-amino-acid polypeptide of 26,022 Da with the potential to form six transmembrane helices and with a 48 to 51% similarity to proteins involved in redox transport in cytochrome c biogenesis. ORF3 could encode a periplasmic polypeptide of 186 amino acids of 20,638 Da with a similarity to thioredoxin-like proteins and with a putative signal peptide of 21 amino acids. Purified SoxXA, SoxYZ, and SoxB are essential for thiosulfate or sulfite-dependent cytochrome c reduction in vitro. N-terminal and internal amino acid sequences identified SoxX, SoxY, SoxZ, and SoxA to be coded by the respective genes. The molecular masses of the mature proteins determined by electrospray ionization spectroscopy (SoxX, 14,834 Da; SoxY, 11,094 Da; SoxZ, 11,717 Da; and SoxA, 30,452 Da) were identical or close to those deduced from the nucleotide sequence with differences for the covalent heme moieties. SoxXA represents a novel type of periplasmic c-type cytochromes, with SoxX as a monoheme and SoxA as a hybrid diheme cytochrome c. SoxYZ is an as-yet-unprecedented soluble protein. SoxY has a putative signal peptide with a twin arginine motif and possibly cotransports SoxZ to the periplasm. SoxYZ neither contains a metal nor a complex redox center, as proposed for proteins likely to be transported via the Tat system.
Collapse
Affiliation(s)
- C G Friedrich
- Lehrstuhl für Technische Mikrobiologie, Universität Dortmund, D-44227 Dortmund, Germany.
| | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The chemistry of disulfide exchange in biological systems is well studied. However, very little information is available concerning the actual origin of disulfide bonds. Here we show that DsbB, a protein required for disulfide bond formation in vivo, uses the oxidizing power of quinones to generate disulfides de novo. This is a novel catalytic activity, which to our knowledge has not yet been described. This catalytic activity is apparently the major source of disulfides in vivo. We developed a new assay to characterize further this previously undescribed enzymatic activity, and we show that quinones get reduced during the course of the reaction. DsbB contains a single high affinity quinone-binding site. We reconstitute oxidative folding in vitro in the presence of the following components that are necessary in vivo: DsbA, DsbB, and quinone. We show that the oxidative refolding of ribonuclease A is catalyzed by this system in a quinone-dependent manner. The disulfide isomerase DsbC is required to regain ribonuclease activity suggesting that the DsbA-DsbB system introduces at least some non-native disulfide bonds. We show that the oxidative and isomerase systems are kinetically isolated in vitro. This helps explain how the cell avoids oxidative inactivation of the disulfide isomerization pathway.
Collapse
Affiliation(s)
- M W Bader
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
120
|
Thöny-Meyer L. Haem-polypeptide interactions during cytochrome c maturation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:316-24. [PMID: 11004446 DOI: 10.1016/s0005-2728(00)00167-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cytochrome c maturation involves the translocation of a polypeptide, the apocytochrome, and its cofactor, haem, through a membrane, before the two molecules are ligated covalently. This review article focuses on the current knowledge on the journey of haem during this process, which is known best in the Gram-negative bacterium Escherichia coli. As haem always occurs bound to protein, its passage across the cytoplasmic membrane and incorporation into the apocytochrome appears to be mediated by a set of proteinaceous maturation factors, the Ccm (cytochrome c maturation) proteins. At least three of them, CcmC, CcmE and CcmF, are thought to interact directly with haem. CcmE binds haem covalently, thus representing an intermediate of the haem trafficking pathway. CcmC is required for binding of haem to CcmE, and CcmF for releasing it from CcmE and transferring it onto the apocytochrome. The mechanism by which haem crosses the cytoplasmic membrane is currently unknown.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Institute of Microbiology, ETH Zürich, Schmelzbergstrasse 7, CH-8092, Zürich, Switzerland.
| |
Collapse
|
121
|
Fabianek RA, Hennecke H, Thöny-Meyer L. Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev 2000; 24:303-16. [PMID: 10841975 DOI: 10.1111/j.1574-6976.2000.tb00544.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli.
Collapse
Affiliation(s)
- R A Fabianek
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092, Zurich, Switzerland
| | | | | |
Collapse
|
122
|
Abstract
The synthesis of holocytochromes in plastids is a catalyzed process. Several proteins, including plastid CcsA, Ccs1, possibly CcdA and a thioredoxin, plus at least two additional Ccs factors, are required in sub-stoichiometric amounts for the conversion of apocytochromes f and c(6) to their respective holoforms. CcsA, proposed to be a heme delivery factor, and Ccs1, an apoprotein chaperone, are speculated to interact physically in vivo. The formation of holocytochrome b(6) is a multi-step pathway in which at least four, as yet unidentified, Ccb factors are required for association of the b(H) heme. The specific requirement of reduced heme for in vitro synthesis of a cytochrome b(559)-derived holo-beta(2) suggests that cytochrome b synthesis in PSII might also be catalyzed in vivo.
Collapse
Affiliation(s)
- S S Nakamoto
- Department of Chemistry and Biochemistry, University of California, Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
123
|
Abstract
Cytochromes of c-type contain covalently bound haem and in bacteria are located on the periplasmic side of the cytoplasmic membrane. More than eight different gene products have been identified as being specifically required for the synthesis of cytochromes c in Gram-negative bacteria. Corresponding genes are not found in the genome sequences of Gram-positive bacteria. Using two random mutagenesis approaches, we have searched for cytochrome c biogenesis genes in the Gram-positive bacterium Bacillus subtilis. Three genes, resB, resC and ccdA, were identified. CcdA has been found previously and is required for a late step in cytochrome c synthesis and also plays a role in spore synthesis. No function has previously been assigned for ResB and ResC but these predicted membrane proteins show sequence similarity to proteins required for cytochrome c synthesis in chloroplasts. Attempts to inactivate resB and resC in B. subtilis have indicated that these genes are essential for growth. We demonstrate that various nonsense mutations in resB or resC can block synthesis of cytochromes c with no effect on other types of cytochromes and little effect on sporulation and growth. The results strongly support the recent proposal that Gram-positive bacteria, cyanobacteria, epsilon-proteobacteria, and chloroplasts have a similar type of machinery for cytochrome c synthesis (System II), which is very different from those of most Gram-negative bacteria (System I) and mitochondria (System III).
Collapse
Affiliation(s)
- N E Le Brun
- Department of Microbiology, Lund University, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
124
|
Schiött T, Hederstedt L. Efficient spore synthesis in Bacillus subtilis depends on the CcdA protein. J Bacteriol 2000; 182:2845-54. [PMID: 10781554 PMCID: PMC101994 DOI: 10.1128/jb.182.10.2845-2854.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CcdA is known to be required for the synthesis of c-type cytochromes in Bacillus subtilis, but the exact function of this membrane protein is not known. We show that CcdA also plays a role in spore synthesis. The expression of ccdA and the two downstream genes yneI and yneJ was analyzed. There is a promoter for each gene, but there is only one transcription terminator, located after the yneJ gene. The promoter for ccdA was found to be weak and was active mainly during the transition from exponential growth to stationary phase. The promoters for yneI and yneJ were both active in the exponential growth phase. The levels of the CcdA and YneJ proteins in the membrane were consistent with the observed promoter activities. The ccdA promoter activity was independent of whether the ccdA-yneI-yneJ gene products were absent or overproduced in the cell. It is shown that the four known cytochromes c in B. subtilis and the YneI and YneJ proteins are not required for sporulation. The combined data from analysis of sporulation-specific sigma factor activity, resistance properties of spores, and spore morphology indicate that CcdA deficiency affects stage V in sporulation. We conclude that CcdA, YneI, and YneJ are functionally unrelated proteins and that the role of CcdA in cytochrome c and spore synthesis probably relates to sulfhydryl redox chemistry on the outer surface of the cytoplasmic membrane.
Collapse
Affiliation(s)
- T Schiött
- Department of Microbiology, Lund University, Lund, Sweden
| | | |
Collapse
|