101
|
Abstract
P element insertion is essentially random at the scale of the genome. However, P elements containing regulatory sequences from Drosophila engrailed and polyhomeotic genes and from the Bithorax and Antennapedia complexes show some insertional specificity by frequently inserting near the parent gene (homing) and/or near genes containing Polycomb group response elements (preferential insertion). This phenomenon is thought to be mediated by Polycomb group proteins. In this report, we describe a case of homing of P elements containing regulatory sequences of the linotte gene. This homing occurs with high frequency (up to 20% of the lines) and high precision (inserted into a region of <1 kilobase). We present evidence showing that it is not mediated by Polycomb group proteins but by a new, as yet unknown, mechanism. We also suggest that P element homing could be a more frequent phenomenon than generally assumed and that it could become a powerful tool of Drosophila reverse genetics, for which there is no other described gene targeting technique.
Collapse
Affiliation(s)
- E Taillebourg
- Laboratoire d'Embryologie Moléculaire, Centre National de la Recherche Scientifique/Unité de Recherche Associée 2227, Bâtiment 445, Université Paris Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
102
|
Affiliation(s)
- V Pirrotta
- Department of Zoology, University of Geneva, Switzerland
| |
Collapse
|
103
|
Stankunas K, Berger J, Ruse C, Sinclair DA, Randazzo F, Brock HW. The enhancer of polycomb gene of Drosophila encodes a chromatin protein conserved in yeast and mammals. Development 1998; 125:4055-66. [PMID: 9735366 DOI: 10.1242/dev.125.20.4055] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Polycomb group of genes in Drosophila are homeotic switch gene regulators that maintain homeotic gene repression through a possible chromatin regulatory mechanism. The Enhancer of Polycomb (E(Pc)) gene of Drosophila is an unusual member of the Polycomb group. Most PcG genes have homeotic phenotypes and are required for repression of homeotic loci, but mutations in E(Pc) exhibit no homeotic transformations and have only a very weak effect on expression of Abd-B. However, mutations in E(Pc) are strong enhancers of mutations in many Polycomb group genes and are also strong suppressors of position-effect variegation, suggesting that E(Pc) may have a wider role in chromatin formation or gene regulation than other Polycomb group genes. E(Pc) was cloned by transposon tagging, and encodes a novel 2023 amino acid protein with regions enriched in glutamine, alanine and asparagine. E(Pc) is expressed ubiquitously in Drosophila embryogenesis. E(Pc) is a chromatin protein, binding to polytene chromosomes at about 100 sites, including the Antennapedia but not the Bithorax complex, 29% of which are shared with Polycomb-binding sites. Surprisingly, E(Pc) was not detected in the heterochromatic chromocenter. This result suggests that E(Pc) has a functional rather than structural role in heterochromatin formation and argues against the heterochromatin model for PcG function. Using homology cloning techniques, we identified a mouse homologue of E(Pc), termed Epc1, a yeast protein that we name EPL1, and as well as additional ESTs from Caenorhabditis elegans, mice and humans. Epc1 shares a long, highly conserved domain in its amino terminus with E(Pc) that is also conserved in yeast, C. elegans and humans. The occurrence of E(Pc) across such divergent species is unusual for both PcG proteins and for suppressors of position-effect variegation, and suggests that E(Pc) has an important role in the regulation of chromatin structure in eukaryotes.
Collapse
Affiliation(s)
- K Stankunas
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | | | | | | | | | | |
Collapse
|
104
|
Belenkaya T, Soldatov A, Nabirochkina E, Biryukova I, Birjukova I, Georgieva S, Georgiev P. P-Element insertion at the polyhomeotic gene leads to formation of a novel chimeric protein that negatively regulates yellow gene expression in P-element-induced alleles of Drosophila melanogaster. Genetics 1998; 150:687-97. [PMID: 9755200 PMCID: PMC1460360 DOI: 10.1093/genetics/150.2.687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Polyhomeotic is a member of the Polycomb group (Pc-G) of homeotic repressors. The proteins encoded by the Pc-G genes form repressive complexes on the polycomb group response element sites. The phP1 mutation was induced by insertion of a 1.2-kb P element into the 5' transcribed nontranslated region of the proximal polyhomeotic gene. The phP1 allele confers no mutant phenotype, but represses transcription of P-element-induced alleles at the yellow locus. The phP1 allele encodes a chimeric P-PH protein, consisting of the DNA-binding domain of the P element and the PH protein lacking 12 amino-terminal amino acids. The P-PH, Polycomb (PC), and Posterior sex combs (PSC) proteins were immunohistochemically detected on polytene chromosomes in the regions of P-element insertions.
Collapse
Affiliation(s)
- T Belenkaya
- Department of the Control of Genetic Processes, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | | | | | |
Collapse
|
105
|
Hollick JB, Chandler VL. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action. Genetics 1998; 150:891-7. [PMID: 9755217 PMCID: PMC1460365 DOI: 10.1093/genetics/150.2.891] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using alleles of the maize purple plant locus (pl), which encodes a transcriptional regulator of anthocyanin pigment synthesis, we describe a case of single-locus heterosis, or overdominance, where the heterozygote displays a phenotype that is greater than either homozygote. The Pl-Rhoades (Pl-Rh) allele is subject to epigenetic changes in gene expression, resulting in quantitatively distinct expression states. Allelic states with low-expression levels, designated Pl'-mahogany (Pl'-mah), are dominant to the high-expression state of Pl-Rh. Pl'-mah states retain low-expression levels in subsequent generations when homozygous or heterozygous with Pl-Rh. However, Pl'-mah alleles frequently exhibit higher expression levels when heterozygous with other pl alleles; illustrating an overdominant allelic relationship. Higher expression levels are also observed when Pl'-mah is hemizygous. These results suggest that persistent allelic interactions between Pl'-mah and Pl-Rh are required to maintain the low-expression state and that other pl alleles are missing sequences required for this interaction. The Pl-Rh state can be sexually transmitted from Pl'-mah/pl heterozygotes, but not from Pl'-mah hemizygotes, suggesting that fixation of the high-expression state may involve synapsis. The existence of such allele-dependent regulatory mechanisms implicates a novel importance of allele polymorphisms in the genesis and maintenance of genetic variation.
Collapse
Affiliation(s)
- J B Hollick
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
106
|
Tie F, Furuyama T, Harte PJ. The Drosophila Polycomb Group proteins ESC and E(Z) bind directly to each other and co-localize at multiple chromosomal sites. Development 1998; 125:3483-96. [PMID: 9693151 DOI: 10.1242/dev.125.17.3483] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Polycomb Group gene esc encodes an evolutionarily conserved protein required for transcriptional silencing of the homeotic genes. Unlike other Polycomb Group genes, esc is expressed and apparently required only during early embryogenesis, suggesting it is required for the initial establishment of silencing but not for its subsequent maintenance. We present evidence that the ESC protein interacts directly with E(Z), another Polycomb Group protein required for silencing of the homeotic genes. We show that the most highly conserved region of ESC, containing seven WD motifs that are predicted to fold into a beta-propeller structure, mediate its binding to a conserved N-terminal region of E(Z). Mutations in the WD region that perturb ESC silencing function in vivo also perturb binding to E(Z) in vitro. The entire WD region forms a trypsin-resistant structure, like known beta -propeller domains, and mutations that would affect the predicted ESC beta-propeller perturb its trypsin-resistance, while a putative structure-conserving mutation does not. We show by co-immunoprecipitation that ESC and E(Z) are directly associated in vivo and that they also co-localize at many chromosomal binding sites. Since E(Z) is required for binding of other Polycomb Group proteins to chromosomes, these results suggest that formation of an E(Z):ESC complex at Polycomb Response Elements may be an essential prerequisite for the establishment of silencing.
Collapse
Affiliation(s)
- F Tie
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955, USA
| | | | | |
Collapse
|
107
|
Roche SE, Rio DC. Trans-silencing by P elements inserted in subtelomeric heterochromatin involves the Drosophila Polycomb group gene, Enhancer of zeste. Genetics 1998; 149:1839-55. [PMID: 9691041 PMCID: PMC1460262 DOI: 10.1093/genetics/149.4.1839] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drosophila P-element transposition is regulated by a maternally inherited state known as P cytotype. An important aspect of P cytotype is transcriptional repression of the P-element promoter. P cytotype can also repress non-P-element promoters within P-element ends, suggesting that P cytotype repression might involve chromatin-based transcriptional silencing. To learn more about the role of chromatin in P cytotype repression, we have been studying the P strain Lk-P(1A). This strain contains two full-length P elements inserted in the heterochromatic telomere-associated sequences (TAS elements) at cytological location 1A. Mutations in the Polycomb group gene (Pc-G gene), Enhancer of zeste (E(z)), whose protein product binds at 1A, resulted in a loss of Lk-P(1A) cytotype control. E(z) mutations also affected the trans-silencing of heterologous promoters between P-element termini by P-element transgenes inserted in the TAS repeats. These data suggest that pairing interactions between P elements, resulting in exchange of chromatin structures, may be a mechanism for controlling the expression and activity of P elements.
Collapse
Affiliation(s)
- S E Roche
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
108
|
|
109
|
Sipos L, Mihály J, Karch F, Schedl P, Gausz J, Gyurkovics H. Transvection in the Drosophila Abd-B domain: extensive upstream sequences are involved in anchoring distant cis-regulatory regions to the promoter. Genetics 1998; 149:1031-50. [PMID: 9611211 PMCID: PMC1460194 DOI: 10.1093/genetics/149.2.1031] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Abd-B gene, one of the three homeotic genes in the Drosophila bithorax complex (BX-C), is required for the proper identity of the fifth through the eighth abdominal segments (corresponding to parasegments 10-14) of the fruitfly. The morphological difference between these four segments is due to the differential expression of Abd-B, which is achieved by the action of the parasegment-specific cis-regulatory regions infra-abdominal-5 (iab-5), -6, -7 and -8. The dominant gain-of-function mutation Frontabdominal-7 (Fab-7) removes a boundary separating two of these cis-regulatory regions, iab-6 and iab-7. As a consequence of the Fab-7 deletion, the parasegment 12- (PS12-) specific iab-7 is ectopically activated in PS11. This results in the transformation of the sixth abdominal segment (A6) into the seventh (A7) in Fab-7 flies. Here we report that point mutations of the Abd-B gene in trans suppress the Fab-7 phenotype in a pairing-dependent manner and thus represent a type of transvection. We show that the observed suppression is the result of trans-regulation of the defective Abd-B gene by the ectopically activated iab-7. Unlike previously demonstrated cases of trans-regulation in the Abd-B locus, trans-suppression of Fab-7 is sensitive to heterozygosity for chromosomal rearrangements that disturb homologous pairing at the nearby Ubx locus. However, in contrast to Ubx, the transvection we observed in the Abd-B locus is insensitive to the allelic status of zeste. Analysis of different deletion alleles of Abd-B that enhance trans-regulation suggests that an extensive upstream region, different from the sequences required for transcription initiation, mediates interactions between the iab cis-regulatory regions and the proximal Abd-B promoter. Moreover, we find that the amount of DNA deleted in the upstream region is roughly proportional to the strength of trans-interaction, suggesting that this region consists of numerous discrete elements that cooperate in tethering the iab regulatory domains to Abd-B. Possible implications of the tethering complex for the regulation of Abd-B are discussed. In addition, we present evidence that the tenacity of trans-interactions in the Abd-B gene may vary, depending upon the tissue and stage of development.
Collapse
Affiliation(s)
- L Sipos
- Hungarian Academy of Sciences, Biological Research Center, Institute of Genetics, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
110
|
Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1998; 1:1057-64. [PMID: 9651589 DOI: 10.1016/s1097-2765(00)80106-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genes of the Polycomb group (PcG) of Drosophila encode proteins necessary for the maintenance of transcriptional repression of homeotic genes. PcG proteins are thought to act by binding as multiprotein complexes to DNA through Polycomb group response elements (PREs); however, specific DNA binding has not been demonstrated for any of the PcG proteins. We have identified a sequence-specific DNA binding protein that interacts with a PRE from the Drosophila engrailed gene. This protein (PHO) is a homolog of the ubiquitous mammalian transcription factor Yin Yang-1 and is encoded by pleiohomeotic, a known member of the PcG. We propose that PHO acts to anchor PcG protein complexes to DNA.
Collapse
Affiliation(s)
- J L Brown
- Laboratory of Developmental Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
111
|
Paro R, Strutt H, Cavalli G. Heritable chromatin states induced by the Polycomb and trithorax group genes. NOVARTIS FOUNDATION SYMPOSIUM 1998; 214:51-61; discussion 61-6, 104-13. [PMID: 9601011 DOI: 10.1002/9780470515501.ch4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Drosophila the Polycomb group (PcG) and trithorax group (trxG) genes are required to maintain differential expression patterns of many important developmental regulatory genes. The PcG is responsible for heritable silencing throughout development. At target genes PcG response elements (PREs) attract PcG protein complexes and induce the formation of higher-order chromatin structures. We have mapped the distribution of Polycomb and other PcG members at various target genes by using an improved formaldehyde cross-linking and chromatin immunoprecipitation technique. We find that Polycomb spreads locally from PREs over several kilobases, thereby probably stabilizing the silencing complexes. Members of the trxG co-localize at PREs. GAGA factor was found to be constitutively bound to PREs independently of gene activity. PREs associated with active genes appear to have increased amounts of bound GAGA. We have developed a system capable of switching a PRE between the on/off modes. PREs and trxG-regulated elements are common chromosomal elements through which the proteins of the PcG/trxG exert their maintenance function on adjacent chromatin structures.
Collapse
Affiliation(s)
- R Paro
- Zentrum für Molekular Biologie der Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
112
|
Cavalli G, Paro R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 1998; 93:505-18. [PMID: 9604927 DOI: 10.1016/s0092-8674(00)81181-2] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb group (PcG) and trithorax group (trxG) gene products are responsible for the maintenance of repressed and active expression patterns of many developmentally important regulatory genes including the homeotic genes. In Drosophila embryos, Polycomb protein and the trxG protein GAGA factor colocalize at the Fab-7 DNA element of the bithorax complex. In transgenic lines, the Fab-7 element induces extensive silencing on a flanking GAL4-driven lacZ reporter and mini-white genes. However, a short single pulse of GAL4 during embryogenesis is sufficient to release PcG-dependent silencing from the transgene. Such an activated state of Fab-7 is mitotically inheritable through development and can be transmitted in a GAL4-independent manner to the subsequent generations through female meiosis. Thus, Fab-7 is a switchable chromosomal element, which can convey memory of epigenetically determined active and repressed chromatin states.
Collapse
Affiliation(s)
- G Cavalli
- ZMBH, Universität Heidelberg, Germany
| | | |
Collapse
|
113
|
Sinclair DA, Clegg NJ, Antonchuk J, Milne TA, Stankunas K, Ruse C, Grigliatti TA, Kassis JA, Brock HW. Enhancer of Polycomb is a suppressor of position-effect variegation in Drosophila melanogaster. Genetics 1998; 148:211-20. [PMID: 9475733 PMCID: PMC1459761 DOI: 10.1093/genetics/148.1.211] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, B(SV), T(2;3)Sb(V) and In(2R)bw(VDe2). Using reversion of a Pelement insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV.
Collapse
Affiliation(s)
- D A Sinclair
- IMBB, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Mallin DR, Myung JS, Patton JS, Geyer PK. Polycomb group repression is blocked by the Drosophila suppressor of Hairy-wing [su(Hw)] insulator. Genetics 1998; 148:331-9. [PMID: 9475743 PMCID: PMC1459791 DOI: 10.1093/genetics/148.1.331] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The suppressor of Hairy-wing [SU(HW)] binding region disrupts communication between a large number of enhancers and promoters and protects transgenes from chromosomal position effects. These properties classify the SU(HW) binding region as an insulator. While enhancers are blocked in a general manner, protection from repressors appears to be more variable. In these studies, we address whether repression resulting from the Polycomb group genes can be blocked by the SU(HW) binding region. The effects of this binding region on repression established by an Ultrabithorax Polycomb group Response Element were examined. A transposon carrying two reporter genes, the yellow and white genes, was used so that repression and insulation could be assayed simultaneously. We demonstrate that the SU(HW) binding region is effective at preventing Polycomb group repression. These studies suggest that one role of the su(Hw) protein may be to restrict the range of action of repressors, such as the Polycomb group proteins, throughout the euchromatic regions of the genome.
Collapse
Affiliation(s)
- D R Mallin
- Department of Biochemistry, The University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
115
|
Abstract
The Polycomb-Group proteins form chromatin complexes that can silence gene expression over large distances. The formation of these complexes at homeotic genes depends on early developmental events but the repressed state is then maintained through many cell divisions. In vivo, complexes formed at one genomic site can interact with those at other sites, suggesting that they, like heterochromatin complexes, affect the folding of chromatin and the organization of chromosomes in the nucleus.
Collapse
Affiliation(s)
- V Pirrotta
- Department of Zoology, University of Geneva, Switzerland.
| |
Collapse
|
116
|
Henikoff S. Nuclear organization and gene expression: homologous pairing and long-range interactions. Curr Opin Cell Biol 1997; 9:388-95. [PMID: 9159074 DOI: 10.1016/s0955-0674(97)80012-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic studies have demonstrated that pairing interactions between homologous chromosomes and long-range associations between nonhomologous sites can influence gene expression. Recent work has revealed that such influences are widespread in eukaryotes and that chromosome architecture is likely to be of fundamental importance for nuclear structure and function.
Collapse
Affiliation(s)
- S Henikoff
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA.
| |
Collapse
|
117
|
Mihaly J, Hogga I, Gausz J, Gyurkovics H, Karch F. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development 1997; 124:1809-20. [PMID: 9165128 DOI: 10.1242/dev.124.9.1809] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parasegmental (PS)-specific expression of the homeotic genes of the bithorax-complex (BX-C) appears to depend upon the subdivision of the complex into a series of functionally independent cis-regulatory domains. Fab-7 is a regulatory element that lies between iab-6 and iab-7 (the PS11- and PS12-specific cis-regulatory domains, respectively). Deletion of Fab-7 causes ectopic expression of iab-7 in PS11 (where normally only iab-6 is active). Two models have been proposed to account for the dominant Fab-7 phenotype. The first considers that Fab-7 functions as a boundary element that insulates iab-6 and iab-7. The second model envisages that Fab-7 contains a silencer element that keeps iab-7 repressed in parasegments anterior to PS12. Using a P-element inserted in the middle of the Fab-7 region (the bit transposon), we have generated an extensive collection of new Fab-7 mutations that allow us to subdivide Fab-7 into a boundary element and a Polycomb-respond element (PRE). The boundary lies within 1 kb of DNA on the proximal side of the bit transposon (towards iab-6). Deletions removing this element alone cause a complex gain- and loss-of-function phenotype in PS11; in some groups of cells, both iab-6 and iab-7 are active, while in others both iab-6 and iab-7 are inactive. Thus, deletion of the boundary allows activating as well as repressing activities to travel between iab-6 and iab-7. We also provide evidences that the boundary region contains an enhancer blocker element. The Polycomb-response element lies within 0.5 kb of DNA immediately distal to the boundary (towards iab-7). Deletions removing the PRE alone do not typically cause any visible phenotype as homozygotes. Interestingly, weak ectopic activation of iab-7 is observed in hemizygous PRE deletions, suggesting that the mechanisms that keep iab-7 repressed in the absence of this element may depend upon chromosome pairing. These results help to reconcile the previously contradictory models on Fab-7 function and to shed light on how a chromatin domain boundary and a nearby PRE concur in the setting up of the appropriate PS-specific expression of the Abd-B gene of the BX-C.
Collapse
Affiliation(s)
- J Mihaly
- Department of Zoology and Animal Biology, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
118
|
Whiteley M, Kassis JA. Rescue of Drosophila engrailed mutants with a highly divergent mosquito engrailed cDNA using a homing, enhancer-trapping transposon. Development 1997; 124:1531-41. [PMID: 9108369 DOI: 10.1242/dev.124.8.1531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specific fragments of Drosophila regulatory DNA can alter the insertional specificity of transposable elements causing them to ‘home’ to their parent gene. We used this property to insert a transposon-encoded functional coding region near a defective one and rescue a null mutation. This approach differs from homologous recombination in that the endogenous defective coding region is left in place and the genomic DNA is altered by the addition of the therapeutic transposon. We constructed a P-element-based transposon in which an engrailed cDNA from Anopheles gambiae (a mosquito) is expressed from a Drosophila engrailed minimal promoter. The promoter fragment used includes 2.6 kb of regulatory DNA that causes transposons to home to the endogenous Drosophila engrailed gene at high frequencies. We inserted this transposon onto a Drosophila chromosome that produces no functional engrailed proteins. When this transposon integrated near the engrailed promoter, adult viability was restored to engrailed mutant flies showing that the highly divergent mosquito engrailed protein can replace the Drosophila engrailed protein at all stages of development. Insertion of this transposon into the adjacent invected gene, which is transcribed in a pattern similar to engrailed, led to only embryonic rescue, suggesting an important difference in the regulation of these two genes.
Collapse
Affiliation(s)
- M Whiteley
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892-4555, USA
| | | |
Collapse
|
119
|
Abstract
Silencing complexes in yeast and in the fly have many similarities. This repressive complex is assembled by a chain of recruitment; its extent and stability depend on the concentration of components and affect an extended chromatin region, probably through interactions with nucleosomes. Recent results show that assembly of the complex is antagonized by transcriptional activity in the region but is favored by interactions with other complexes nearby or in other regions that associate in the same nuclear environment. How such a complex interferes with transcriptional activity is not entirely clear but current evidence suggests that they compete with the chromatin structure required for the binding of activators.
Collapse
Affiliation(s)
- V Pirrotta
- Department of Zoology, University of Geneva, 30 quai Ernest Ansermet, CH1211, Geneva, Switzerland.
| |
Collapse
|
120
|
Poux S, Kostic C, Pirrotta V. Hunchback-independent silencing of late Ubx enhancers by a Polycomb Group Response Element. EMBO J 1996; 15:4713-22. [PMID: 8887562 PMCID: PMC452203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Drosophila homeotic genes are kept silent outside of their appropriate expression domains by a repressive chromatin complex formed by the Polycomb Group proteins. In the case of the Ubx gene, it has been proposed that the early repressor HB, binding at enhancers, recruits the Polycomb complex and specifies the domain of repression. We show that some Ubx enhancers are activated after blastoderm. If a Polycomb Response Element (PRE) is combined with such late enhancers, repression of a reporter gene can be established everywhere in the embryo, irrespective of the presence or absence of hunchback protein. If, however, these late enhancers are combined with a Ubx early enhancer, as well as a PRE, repression is established only where the reporter gene was inactive at early stages. These results imply that the Polycomb complex is not dependent on hunchback and suggest that the pattern of silencing reflects rather the state of activity of the gene at the time the Polycomb complex is formed.
Collapse
Affiliation(s)
- S Poux
- Department of Zoology, University of Geneva, Switzerland
| | | | | |
Collapse
|
121
|
Golic MM, Golic KG. A quantitative measure of the mitotic pairing of alleles in Drosophila melanogaster and the influence of structural heterozygosity. Genetics 1996; 143:385-400. [PMID: 8722790 PMCID: PMC1207271 DOI: 10.1093/genetics/143.1.385] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Drosophila there exist several examples of gene expression that can be modified by an interaction between alleles; this effect is known as transvection. The inference that alleles interact comes from the observations that homologous chromosomes pair in mitotically dividing cells, and that chromosome rearrangements can alter the phenotype produced by a pair of alleles. It is thought that heterozygous rearrangements impede the ability of alleles to pair and interact. However, because the existing data are inconsistent, this issue is not fully settled. By measuring the frequency of site-specific recombination between homologous chromosomes, we show that structural heterozygosity inhibits the pairing of alleles that lie distal to a rearrangement breakpoint. We suggest that some of the apparent conflicts may owe to variations in cell-cycle lengths in the tissues where the relevant allelic interactions occur. Cells with a longer cell cycle have more time to establish the normal pairing relationships that have been disturbed by rearrangements. In support, we show that Minute mutations, which slow the rate of cell division, partially restore a transvection effect that is disrupted by inversion heterozygosity.
Collapse
Affiliation(s)
- M M Golic
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
122
|
Fuse N, Hirose S, Hayashi S. Determination of wing cell fate by the escargot and snail genes in Drosophila. Development 1996; 122:1059-67. [PMID: 8620833 DOI: 10.1242/dev.122.4.1059] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inset appendages such as the wing and the leg are formed in response to inductive signals in the embryonic field. In Drosophila, cells receiving such signals initiate developmental programs which allow them to become imaginal discs. Subsequently, these discs autonomously organize patterns specific for each appendage. We here report that two related transcription factors, Escargot and Snail that are expressed in the embryonic wing disc, function as intrinsic determinants of the wing cell fate. In escargot or snail mutant embryos, wing-specific expression of Snail, Vestigial and beta-galactosidase regulated by escargot enhancer were found as well as in wild-type embryos. However, in escargot snail double mutant embryos, wing development proceeded until stage 13, but the marker expression was not maintained in later stages, and the invagination of the primordium was absent. From such analyses, it was concluded that Escargot and Snail expression in the wing disc are maintained by their auto- and crossactivation. Ubiquitous escargot or snail expression induced from the hsp70 promoter rescued the escargot snail double mutant phenotype with the effects confined to the prospective wing cells. Similar DNA binding specificities of Escargot and Snail suggest that they control the same set of genes required for wing development. We thus propose the following scenario for early wing disc development. Prospective wing cells respond to the induction by turning on escargot and snail transcription, and become competent for regulation by Escargot and Snail. Such cells initiate auto- and crossregulatory circuits of escargot and snail. The sustained Escargot and Snail expression then activates vestigial and other target genes that are essential for wing development. This maintains the commitment to the wing cell fate and induces wing-specific cell shape change.
Collapse
Affiliation(s)
- N Fuse
- Genetic Stock Research Center, National Institute of Genetics, Shizuoka-ken, Japan
| | | | | |
Collapse
|
123
|
Search for Drosophila genes based on patterned expression of mini-white reporter gene of a P lacW vector in adult eyes. ACTA ACUST UNITED AC 1995; 205:114-121. [DOI: 10.1007/bf00357757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1995] [Accepted: 06/28/1995] [Indexed: 10/26/2022]
|
124
|
Judd BH. Mutations of zeste that mediate transvection are recessive enhancers of position-effect variegation in Drosophila melanogaster. Genetics 1995; 141:245-53. [PMID: 8536972 PMCID: PMC1206722 DOI: 10.1093/genetics/141.1.245] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Evidence is presented demonstrating that mutations of zeste, particularly the null state, are strong recessive enhancers of position-effect variegation (PEV) for the white, roughest and Notch loci. The zeste locus encodes a DNA-binding protein that acts as a transcription factor and mediates transvection phenomena at several loci. Its involvement with these seemingly diverse phenomena suggests that the normal zeste product functions in the decondensation of chromatin. A model is presented proposing that zeste is important for opening and stabilizing domains of chromatin, a step in gene determination and the establishment of cell memory. It postulates that chromatin domains that have been structurally modified by chromosomal rearrangement or by insertion of transposable elements are particularly sensitive to the absence or modification of the zeste protein. Such a view unifies the role of zeste in transcription, transvection and PEV.
Collapse
Affiliation(s)
- B H Judd
- Laboratory of Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
125
|
Abstract
Polycomb-group proteins form chromatin complexes at target genes such as Ubx, providing a cellular memory of gene activity in early development and determining the later activity of the gene. The complexes, whose constituents vary depending on site and genomic context, initiate at specific sites, but can extend to involve larger chromatin domains. How they persist through cell proliferation and how they silence gene activity are still open issues.
Collapse
Affiliation(s)
- V Pirrotta
- Department of Zoology, University of Geneva, Switzerland
| |
Collapse
|
126
|
Kapoun AM, Kaufman TC. Regulatory regions of the homeotic gene proboscipedia are sensitive to chromosomal pairing. Genetics 1995; 140:643-58. [PMID: 7498743 PMCID: PMC1206641 DOI: 10.1093/genetics/140.2.643] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have identified regulatory regions of the homeotic gene proboscipedia that are capable of repressing a linked white minigene in a manner that is sensitive to chromosomal pairing. Normally, the eye color of transformants containing white in a P-element vector is affected by the number of copies of the transgene; homozygous flies have darker eyes than heterozygotes. However, we found that flies homozygous for select pb DNA-containing transgenes had lighter eyes than heterozygotes. Several pb DNA fragments are capable of causing this pairing sensitive (PS) negative regulation of white. Two fragments in the upstream DNA of pb, 0.58 and 0.98 kb, are PS; additionally, two PS sites are located in the second intron, including a 0.5-kb region and 49-bp sequence. This phenotype is not observed when two PS sites are located at different chromosomal insertion sites (in trans-heterozygous transgenic animals), indicating that the pb-DNA-mediated repression of white is dependent on the pairing or proximity of the PS regions. The observed phenomenon is similar to transvection in which certain alleles of a gene can complement each other, but only when homologous chromosomes are paired. Interestingly, the intronic PS regions contain positive regulatory sequences for pb, whereas the upstream PS sites contain pb negative regulatory elements.
Collapse
Affiliation(s)
- A M Kapoun
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
127
|
Chiang A, O'Connor MB, Paro R, Simon J, Bender W. Discrete Polycomb-binding sites in each parasegmental domain of the bithorax complex. Development 1995; 121:1681-9. [PMID: 7600985 DOI: 10.1242/dev.121.6.1681] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Polycomb protein of Drosophila melanogaster maintains the segmental expression limits of the homeotic genes in the bithorax complex. Polycomb-binding sites within the bithorax complex were mapped by immunostaining of salivary gland polytene chromosomes. Polycomb bound to four DNA fragments, one in each of four successive parasegmental regulatory regions. These fragments correspond exactly to the ones that can maintain segmentally limited expression of a lacZ reporter gene. Thus, Polycomb acts directly on discrete multiple sites in bithorax regulatory DNA. Constructs combining fragments from different regulatory regions demonstrate that Polycomb-dependent maintenance elements can act on multiple pattern initiation elements, and that maintenance elements can work together. The cooperative action of maintenance elements may motivate the linear order of the bithorax complex.
Collapse
Affiliation(s)
- A Chiang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
128
|
Wu CT, Howe M. A genetic analysis of the Suppressor 2 of zeste complex of Drosophila melanogaster. Genetics 1995; 140:139-81. [PMID: 7635282 PMCID: PMC1206544 DOI: 10.1093/genetics/140.1.139] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The zeste1 (z1) mutation of Drosophila melanogaster produces a mutant yellow eye color instead of the wild-type red. Genetic and molecular data suggest that z1 achieves this change by altering expression of the wild-type white gene in a manner that exhibits transvection effects. There exist suppressor and enhancer mutations that modify the z1 eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C]. The Su(z)2-C consists of at least three subregions called Psc (Posterior sex combs), Su(z)2 and Su(z)2D (Distal). The products of these subregions are proposed to act at the level of chromatin. Complementation analyses predict that the products are functionally similar and interacting. The alleles of Psc define two overlapping phenotypic classes, the hopeful and hapless. The distinctions between these two classes and the intragenic complementation seen among some of the Psc alleles are consistent with a multidomain structure for the product of Psc. Psc is a member of the homeotic Polycomb group of genes. A general discussion of the Polycomb and trithorax group of genes, position-effect variegation, transvection, chromosome pairing and chromatin structure is presented.
Collapse
Affiliation(s)
- C T Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
129
|
Gindhart JG, Kaufman TC. Identification of Polycomb and trithorax group responsive elements in the regulatory region of the Drosophila homeotic gene Sex combs reduced. Genetics 1995; 139:797-814. [PMID: 7713433 PMCID: PMC1206382 DOI: 10.1093/genetics/139.2.797] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Drosophila homeotic gene Sex combs reduced (Scr) is necessary for the establishment and maintenance of the morphological identity of the labial and prothoracic segments. In the early embryo, its expression pattern is established through the activity of several gap and segmentation gene products, as well as other transcription factors. Once established, the Polycomb group (Pc-G) and trithorax group (trx-G) gene products maintain the spatial pattern of Scr expression for the remainder of development. We report the identification of DNA fragments in the Scr regulatory region that may be important for its regulation by Polycomb and trithorax group gene products. When DNA fragments containing these regulatory sequences are subcloned into P-element vectors containing a white minigene, transformants containing these constructs exhibit mosaic patterns of pigmentation in the adult eye, indicating that white minigene expression is repressed in a clonally heritable manner. The size of pigmented and nonpigmented clones in the adult eye suggests that the event determining whether a cell in the eye anlagen will express white occurs at least as early as the first larval instar. The amount of white minigene repression is reduced in some Polycomb group mutants, whereas repression is enhanced in flies mutant for a subset of trithorax group loci. The repressor activity of one fragment, normally located in Scr Intron 2, is increased when it is able to homologously pair, a property consistent with genetic data suggesting that Scr exhibits transvection. Another Scr regulatory fragment, normally located 40 kb upstream of the Scr promoter, silences ectopic expression of an Scr-lacZ fusion gene in the embryo and does so in a Polycomb-dependent manner. We propose that the regulatory sequences located within these DNA fragments may normally mediate the regulation of Scr by proteins encoded by members of the Polycomb and trithorax group loci.
Collapse
Affiliation(s)
- J G Gindhart
- Howard Hughes Medical Institute, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
130
|
Affiliation(s)
- S Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| |
Collapse
|
131
|
Cheng NN, Sinclair DA, Campbell RB, Brock HW. Interactions of polyhomeotic with Polycomb group genes of Drosophila melanogaster. Genetics 1994; 138:1151-62. [PMID: 7896097 PMCID: PMC1206254 DOI: 10.1093/genetics/138.4.1151] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Polycomb (Pc) group genes of Drosophila are negative regulators of homeotic genes, but individual loci have pleiotropic phenotypes. It has been suggested that Pc group genes might form a regulatory hierarchy, or might be members of a multimeric complex that obeys the law of mass action. Recently, it was shown that polyhomeotic (ph) immunoprecipitates in a multimeric complex that includes Pc. Here, we show that duplications of ph suppress homeotic transformations of Pc and Pcl, supporting a mass-action model for Pc group function. We crossed ph alleles to all members of the Polycomb group, and to E(Pc) and Su(z)2 to look for synergistic effects. We observed extragenic noncomplementation between ph503 and Pc, Psc1 and Su(z)2(1) in females, and between ph409 and Sce1, ScmD1 and E(z)1 mutations in males, suggesting that these gene products might interact directly with ph. Males hemizygous for a temperature-sensitive allele, ph2, are lethal when heterozygous with mutants in Asx, Pc, Pcl, Psc, Sce and Scm, and with E(Pc) and Su(z)2. Mutations in trithorax group genes were not able to suppress the lethality of ph2/Y; Psc1/+ males. ph2 was not lethal with extra sex combs, E(z), super sex combs (sxc) or l(4)102EFc heterozygotes, but did cause earlier lethality in embryos homozygous for E(z), sxc and l(4)102EFc. However, ph503 did not enhance homeotic phenotypes of esc heterozygotes derived from homozygous esc- mothers. We examined the embryonic phenotypes of ph2 embryos that were lethal when heterozygous or homozygous for other mutations. Based on this phenotypic analysis, we suggest that ph may perform different functions in conjunction with differing subsets of Pc group genes.
Collapse
Affiliation(s)
- N N Cheng
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
132
|
Pirrotta V, Rastelli L. White gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays 1994; 16:549-56. [PMID: 7916186 DOI: 10.1002/bies.950160808] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The use of Drosophila chromosomal rearrangements and transposon constructs involving the white gene reveals the existence of repressive chromatin domains that can spread over considerable genomic distances. One such type of domain is found in heterochromatin and is responsible for classical position-effect variegation. Another type of repressive domain is established, beginning at specific sequences, by complexes of Polycomb Group proteins. Such complexes, which normally regulate the expression of many genes, including the homeotic loci, are responsible for silencing, white gene variegation, pairing-dependent effects and insertional targeting.
Collapse
Affiliation(s)
- V Pirrotta
- Department of Zoology, University of Geneva, Switzerland
| | | |
Collapse
|