101
|
Yang Z. A likelihood ratio test of speciation with gene flow using genomic sequence data. Genome Biol Evol 2010; 2:200-11. [PMID: 20624726 PMCID: PMC2997537 DOI: 10.1093/gbe/evq011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2010] [Indexed: 11/12/2022] Open
Abstract
Genomic sequence data may be used to test hypotheses about the process of species formation. In this paper, I implement a likelihood ratio test of variable species divergence times over the genome, which may be considered a test of the null model of allopatric speciation without gene flow against the alternative model of parapatric speciation with gene flow. Two models are implemented in the likelihood framework, which accommodate coalescent events in the ancestral populations in a phylogeny of three species. One model assumes a constant species divergence time over the genome, whereas another allows it to vary. Computer simulation shows that the test has acceptable false positive rate but to achieve reasonable power, hundreds or even thousands of genomic loci may be necessary. The test is applied to genomic data from the human, chimpanzee, and gorilla.
Collapse
Affiliation(s)
- Ziheng Yang
- Galton Laboratory, Department of Biology, University College London, United Kingdom.
| |
Collapse
|
102
|
Abstract
In the absence of recent admixture between species, bipartitions of individuals in gene trees that are shared across loci can potentially be used to infer the presence of two or more species. This approach to species delimitation via molecular sequence data has been constrained by the fact that genealogies for individual loci are often poorly resolved and that ancestral lineage sorting, hybridization, and other population genetic processes can lead to discordant gene trees. Here we use a Bayesian modeling approach to generate the posterior probabilities of species assignments taking account of uncertainties due to unknown gene trees and the ancestral coalescent process. For tractability, we rely on a user-specified guide tree to avoid integrating over all possible species delimitations. The statistical performance of the method is examined using simulations, and the method is illustrated by analyzing sequence data from rotifers, fence lizards, and human populations.
Collapse
|
103
|
Abstract
Most methods for studying divergence with gene flow rely upon data from many individuals at few loci. Such data can be useful for inferring recent population history but they are unlikely to contain sufficient information about older events. However, the growing availability of genome sequences suggests a different kind of sampling scheme, one that may be more suited to studying relatively ancient divergence. Data sets extracted from whole-genome alignments may represent very few individuals but contain a very large number of loci. To take advantage of such data we developed a new maximum-likelihood method for genomic data under the isolation-with-migration model. Unlike many coalescent-based likelihood methods, our method does not rely on Monte Carlo sampling of genealogies, but rather provides a precise calculation of the likelihood by numerical integration over all genealogies. We demonstrate that the method works well on simulated data sets. We also consider two models for accommodating mutation rate variation among loci and find that the model that treats mutation rates as random variables leads to better estimates. We applied the method to the divergence of Drosophila melanogaster and D. simulans and detected a low, but statistically significant, signal of gene flow from D. simulans to D. melanogaster.
Collapse
|
104
|
Abstract
Species delimitation and species tree inference are difficult problems in cases of recent divergence, especially when different loci have different histories. This paper quantifies the difficulty of jointly finding the division of samples to species and estimating a species tree without constraining the possible assignments a priori. It introduces a parametric and a nonparametric method, including new heuristic search strategies, to do this delimitation and tree inference using individual gene trees as input. The new methods were evaluated using thousands of simulations and 4 empirical data sets. These analyses suggest that the new methods, especially the nonparametric one, may provide useful insights for systematists working at the species level with molecular data. However, they still often return incorrect results.
Collapse
Affiliation(s)
- Brian C O'Meara
- Department of Ecology & EvolutionaryBiology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996-1610, USA.
| |
Collapse
|
105
|
Abstract
Genome assemblies are now available for nine primate species, and large-scale sequencing projects are underway or approved for six others. An explicitly evolutionary and phylogenetic approach to comparative genomics, called phylogenomics, will be essential in unlocking the valuable information about evolutionary history and genomic function that is contained within these genomes. However, most phylogenomic analyses so far have ignored the effects of variation in ancestral populations on patterns of sequence divergence. These effects can be pronounced in the primates, owing to large ancestral effective population sizes relative to the intervals between speciation events. In particular, local genealogies can vary considerably across loci, which can produce biases and diminished power in many phylogenomic analyses of interest, including phylogeny reconstruction, the identification of functional elements, and the detection of natural selection. At the same time, this variation in genealogies can be exploited to gain insight into the nature of ancestral populations. In this Perspective, I explore this area of intersection between phylogenetics and population genetics, and its implications for primate phylogenomics. I begin by "lifting the hood" on the conventional tree-like representation of the phylogenetic relationships between species, to expose the population-genetic processes that operate along its branches. Next, I briefly review an emerging literature that makes use of the complex relationships among coalescence, recombination, and speciation to produce inferences about evolutionary histories, ancestral populations, and natural selection. Finally, I discuss remaining challenges and future prospects at this nexus of phylogenetics, population genetics, and genomics.
Collapse
Affiliation(s)
- Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
106
|
Kubatko LS. Identifying Hybridization Events in the Presence of Coalescence via Model Selection. Syst Biol 2009; 58:478-88. [DOI: 10.1093/sysbio/syp055] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laura Salter Kubatko
- Department of Statistics
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
107
|
Kubatko LS, Carstens BC, Knowles LL. STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics 2009; 25:971-3. [DOI: 10.1093/bioinformatics/btp079] [Citation(s) in RCA: 380] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
108
|
Hurt C, Anker A, Knowlton N. A MULTILOCUS TEST OF SIMULTANEOUS DIVERGENCE ACROSS THE ISTHMUS OF PANAMA USING SNAPPING SHRIMP IN THE GENUSALPHEUS. Evolution 2009; 63:514-30. [PMID: 19154357 DOI: 10.1111/j.1558-5646.2008.00566.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carla Hurt
- Department of Biology, University of Miami, Coral Gables, Florida 33124, USA.
| | | | | |
Collapse
|
109
|
Klein J. Understanding the molecular epidemiology of foot-and-mouth-disease virus. INFECTION GENETICS AND EVOLUTION 2008; 9:153-61. [PMID: 19100342 PMCID: PMC7172361 DOI: 10.1016/j.meegid.2008.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/20/2008] [Accepted: 11/20/2008] [Indexed: 12/28/2022]
Abstract
The use of molecular epidemiology is an important tool in understanding and consequently controlling FMDV. In this review I will present basic information about the disease, needed to perform molecular epidemiology. I will give a short introduction to the history and impact of foot-and-mouth disease, clinical picture, infection route, subclinical and persistent infections, general aspects of the transmission of FMDV, serotype-specific epidemiological characteristics, field epidemiology of FMDV, evolution and molecular epidemiology of FMDV. This is followed by two chapters describing the molecular epidemiology of foot-and-mouth disease in global surveillance and molecular epidemiology of foot-and-mouth disease in outbreak investigation.
Collapse
Affiliation(s)
- Joern Klein
- Norwegian University of Science and Technology, Faculty of Medicine, Department of Cancer Research and Molecular Medicine, N-7489 Trondheim, Norway.
| |
Collapse
|
110
|
Affiliation(s)
- Bruce Rannala
- Genome Center and Department of Evolution and Ecology, University of California, Davis, California 95616;
| | - Ziheng Yang
- Department of Biology, University College London, London WC1E 6BT United Kingdom; Laboratory of Biometrics, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan;
| |
Collapse
|
111
|
Burgess R, Yang Z. Estimation of Hominoid Ancestral Population Sizes under Bayesian Coalescent Models Incorporating Mutation Rate Variation and Sequencing Errors. Mol Biol Evol 2008; 25:1979-94. [DOI: 10.1093/molbev/msn148] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
112
|
Ewing GB, Ebersberger I, Schmidt HA, von Haeseler A. Rooted triple consensus and anomalous gene trees. BMC Evol Biol 2008; 8:118. [PMID: 18439266 PMCID: PMC2409437 DOI: 10.1186/1471-2148-8-118] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 04/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anomalous gene trees (AGTs) are gene trees with a topology different from a species tree that are more probable to observe than congruent gene trees. In this paper we propose a rooted triple approach to finding the correct species tree in the presence of AGTs. RESULTS Based on simulated data we show that our method outperforms the extended majority rule consensus strategy, while still resolving the species tree. Applying both methods to a metazoan data set of 216 genes, we tested whether AGTs substantially interfere with the reconstruction of the metazoan phylogeny. CONCLUSION Evidence of AGTs was not found in this data set, suggesting that erroneously reconstructed gene trees are the most significant challenge in the reconstruction of phylogenetic relationships among species with current data. The new method does however rule out the erroneous reconstruction of deep or poorly resolved splits in the presence of lineage sorting.
Collapse
Affiliation(s)
- Gregory B Ewing
- Center for Integrative Bioinformatics Vienna, Max F, Perutz Laboratories, Dr, Bohr Gasse 9, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
113
|
Xu Q, Cheng CHC, Hu P, Ye H, Chen Z, Cao L, Chen L, Shen Y, Chen L. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes. Mol Biol Evol 2008; 25:1099-112. [PMID: 18310660 DOI: 10.1093/molbev/msn056] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepcidin is a small bioactive peptide with dual roles as an antimicrobial peptide and as the principal hormonal regulator of iron homeostasis in human and mouse. Hepcidin homologs of very similar structures are found in lower vertebrates, all comprise approximately 20-25 amino acids with 8 highly conserved cysteines forming 4 intramolecular disulfide bonds, giving hepcidin a hairpin structure. Hepcidins are particularly diverse in teleost fishes, which may be related to the diversity of aquatic environments with varying degree of pathogen challenge, oxygenation, and iron concentration, factors known to alter hepcidin expression in mammals. We characterized the diversity of hepcidin genes of the Antarctic notothenioid fishes that are endemic to the world's coldest and most oxygen-rich marine water. Notothenioid fishes have at least 4 hepcidin variants, in 2 distinctive structural types. Type I hepcidins comprise 3 distinct variants that are homologs of the widespread 8-cysteine hepcidins. Type II is a novel 4-cysteine variant and therefore only 2 possible disulfide bonds, highly expressed in hematopoietic tissues. Analyses of d(N)/d(S) substitution rate ratios and likelihood ratio test under site-specific models detected significant signal of positive Darwinian selection on the mature hepcidin-coding sequence, suggesting adaptive evolution of notothenioid hepcidins. Genomic polymerase chain reaction and Southern hybridization showed that the novel type II hepcidin occurs exclusively in lineages of the Antarctic notothenioid radiation but not in the basal non-Antarctic taxa, and lineage-specific positive selection was detected on the branch leading to the type II hepcidin clade under branch-site models, suggesting adaptive evolution of the reduced cysteine variant in response to the polar environment. We also isolated a structurally distinct 4-cysteine (4cys) hepcidin from an Antarctic eelpout that is unrelated to the notothenioids but inhabits the same freezing water. Neighbor-Joining (NJ) analyses of teleost hepcidins showed that the eelpout 4cys variant arose independently from the notothenioid version, which lends support to adaptive evolution of reduced cysteine hepcidin variants on cold selection. The NJ tree also showed taxonomic-specific expansions of hepcidin variants, indicating that duplication and diversification of hepcidin genes play important roles in evolutionary response to diverse ecological conditions.
Collapse
Affiliation(s)
- Qianghua Xu
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Zhou R, Zeng K, Wu W, Chen X, Yang Z, Shi S, Wu CI. Population genetics of speciation in nonmodel organisms: I. Ancestral polymorphism in mangroves. Mol Biol Evol 2007; 24:2746-54. [PMID: 17906000 DOI: 10.1093/molbev/msm209] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The level of DNA polymorphism in the ancestral species at the time of speciation can be estimated using DNA sequences from many loci sampled from 2 or more extant species. The comparison between ancestral and extant polymorphism can be informative about the population genetics of speciation. In this study, we collected and analyzed DNA sequences of approximately 60 genes from 4 species of Sonneratia, a common genus of mangroves on the Indo-Pacific coasts. We found that the 3 ancestral species were comparable to each other in terms of level of polymorphism. However, the ancestral species at the time of speciation were substantially more polymorphic than the extant geographical populations. This ancestral polymorphism is in fact larger than, or at least equal to, the level of polymorphism of the entire species across extant geographical populations. The observations are not fully compatible with speciation by strict allopatry. We suggest that, at the time of speciation, the ancestral species consisted of interconnected but strongly divided geographical populations. This population structure would give rise to high level of polymorphism across species range. This approach of studying the speciation history by genomic means should be applicable to nonmodel organisms.
Collapse
Affiliation(s)
- Renchao Zhou
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Patterns of genetic variation can provide valuable insights for deciphering the relative roles of different evolutionary processes in species differentiation. However, population-genetic models for studying divergence in geographically structured species are generally lacking. Since these are the biogeographic settings where genetic drift is expected to predominate, not only are population-genetic tests of hypotheses in geographically structured species constrained, but generalizations about the evolutionary processes that promote species divergence may also be potentially biased. Here we estimate a population-divergence model in montane grasshoppers from the sky islands of the Rocky Mountains. Because this region was directly impacted by Pleistocene glaciation, both the displacement into glacial refugia and recolonization of montane habitats may contribute to differentiation. Building on the tradition of using information from the genealogical relationships of alleles to infer the geography of divergence, here the additional consideration of the process of gene-lineage sorting is used to obtain a quantitative estimate of population relationships and historical associations (i.e., a population tree) from the gene trees of five anonymous nuclear loci and one mitochondrial locus in the broadly distributed species Melanoplus oregonensis. Three different approaches are used to estimate a model of population divergence; this comparison allows us to evaluate specific methodological assumptions that influence the estimated history of divergence. A model of population divergence was identified that significantly fits the data better compared to the other approaches, based on per-site likelihood scores of the multiple loci, and that provides clues about how divergence proceeded in M. oregonensis during the dynamic Pleistocene. Unlike the approaches that either considered only the most recent coalescence (i.e., information from a single individual per population) or did not consider the pattern of coalescence in the gene genealogies, the population-divergence model that best fits the data was estimated by considering the pattern of gene lineage coalescence across multiple individuals, as well as loci. These results indicate that sampling of multiple individuals per population is critical to obtaining an accurate estimate of the history of divergence so that the signal of common ancestry can be separated from the confounding influence of gene flow-even though estimates suggest that gene flow is not a predominant factor structuring patterns of genetic variation across these sky island populations. They also suggest that the gene genealogies contain information about population relationships, despite the lack of complete sorting of gene lineages. What emerges from the analyses is a model of population divergence that incorporates both contemporary distributions and historical associations, and shows a latitudinal and regional structuring of populations reminiscent of population displacements into multiple glacial refugia. Because the population-divergence model itself is built upon the specific events shaping the history of M. oregonensis, it provides a framework for estimating additional population-genetic parameters relevant to understanding the processes governing differentiation in geographically structured species and avoids the problems of relying on overly simplified and inaccurate divergence models. The utility of these approaches, as well as the caveats and future improvements, for estimating population relationships and historical associations relevant to genetic analyses of geographically structured species are discussed.
Collapse
|
116
|
Russell AL, Ranivo J, Palkovacs EP, Goodman SM, Yoder AD. Working at the interface of phylogenetics and population genetics: a biogeographical analysis of Triaenops spp. (Chiroptera: Hipposideridae). Mol Ecol 2007; 16:839-51. [PMID: 17284215 DOI: 10.1111/j.1365-294x.2007.03192.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeographical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylogenetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar's Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses. While the phylogeny cannot determine whether Africa or Madagascar was the centre of origin for the species investigated, it serves as the essential backbone for the application of coalescent and population genetic methods. From the application of these methods, we conclude that a hypothesis of two independent but unidirectional dispersal events from Africa to Madagascar is best supported by the data.
Collapse
Affiliation(s)
- A L Russell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
117
|
Edwards SV, Liu L, Pearl DK. High-resolution species trees without concatenation. Proc Natl Acad Sci U S A 2007; 104:5936-41. [PMID: 17392434 PMCID: PMC1851595 DOI: 10.1073/pnas.0607004104] [Citation(s) in RCA: 487] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Indexed: 11/18/2022] Open
Abstract
The vast majority of phylogenetic models focus on resolution of gene trees, despite the fact that phylogenies of species in which gene trees are embedded are of primary interest. We analyze a Bayesian model for estimating species trees that accounts for the stochastic variation expected for gene trees from multiple unlinked loci sampled from a single species history after a coalescent process. Application of the model to a 106-gene data set from yeast shows that the set of gene trees recovered by statistically acknowledging the shared but unknown species tree from which gene trees are sampled is much reduced compared with treating the history of each locus independently of an overarching species tree. The analysis also yields a concentrated posterior distribution of the yeast species tree whose mode is congruent with the concatenated gene tree but can do so with less than half the loci required by the concatenation method. Using simulations, we show that, with large numbers of loci, highly resolved species trees can be estimated under conditions in which concatenation of sequence data will positively mislead phylogeny, and when the proportion of gene trees matching the species tree is <10%. However, when gene tree/species tree congruence is high, species trees can be resolved with just two or three loci. These results make accessible an alternative paradigm for combining data in phylogenomics that focuses attention on the singularity of species histories and away from the idiosyncrasies and multiplicities of individual gene histories.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
118
|
Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, Turissini DA, Fang S, Wang HY, Hudson RR, Nielsen R, Chen Z, Wu CI. Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci U S A 2007; 104:2271-6. [PMID: 17284599 PMCID: PMC1892965 DOI: 10.1073/pnas.0610385104] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Indexed: 11/18/2022] Open
Abstract
Determining the extent of adaptive evolution at the genomic level is central to our understanding of molecular evolution. A suitable observation for this purpose would consist of polymorphic data on a large and unbiased collection of genes from two closely related species, each having a large and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species is expected to be 25-40% higher than the A:S ratio for polymorphism when data are pooled across the genome. (iii) The observed A/S ratio between species among the 419 loci is 28.9% higher than the (adjusted) neutral expectation. We estimate that nearly 30% of the amino acid substitutions between D. melanogaster and its close relatives were adaptive. (iv) This signature of adaptive evolution is observable only in regions of normal recombination. Hence, the low level of polymorphism observed in regions of reduced recombination may not be driven primarily by positive selection. Finally, we discuss the theories and data pertaining to the interpretation of adaptive evolution in genomic studies.
Collapse
Affiliation(s)
| | - Wei Huang
- Department of Genetics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Chenhui Zhang
- Department of Genetics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | | | - Jian Lu
- Departments of *Ecology and Evolution and
| | | | - Shu Fang
- Departments of *Ecology and Evolution and
| | | | | | - Rasmus Nielsen
- Institute of Biology, University of Copenhagen, DK-1100 Copenhagen, Denmark
| | - Zhu Chen
- Department of Genetics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201203, China; and
| | - Chung-I Wu
- Departments of *Ecology and Evolution and
- **International Center for Evolutionary and Genomic Studies, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
119
|
Abstract
Contrasting patterns of X-linked vs. autosomal diversity may be indicative of the mode of selection operating in natural populations. A number of observations have shown reduced X-linked (or Z-linked) diversity relative to autosomal diversity in various organisms, suggesting a large impact of genetic hitchhiking. However, the relative contribution of other forces such as population bottlenecks, variation in reproductive success of the two sexes, and differential introgression remains unclear. Here, we survey 13 loci, 6 X-linked and 7 autosomal, in natural populations of the house mouse (Mus musculus) subspecies complex. We studied seven populations of three different subspecies, the eastern house mouse M. musculus castaneus, the central house mouse M. m. musculus, and the western house mouse M. m. domesticus, including putatively ancestral and derived populations for each. All populations display lower diversity on the X chromosomes relative to autosomes, and this effect is most pronounced in derived populations. To assess the role of demography, we fit the demographic parameters that gave the highest likelihood of the data using coalescent simulations. We find that the reduction in X-linked diversity is too large to be explained by a simple demographic model in at least two of four derived populations. These observations are also not likely to be explained by differences in reproductive success between males and females. They are consistent with a greater impact of positive selection on the X chromosome, and this is supported by the observation of an elevated K(A) and elevated K(A)/K(S) ratios on the rodent X chromosome. A second contribution may be that the X chromosome less readily introgresses across subspecies boundaries.
Collapse
Affiliation(s)
- John F Baines
- Institute for Genetics, Department of Evolutionary Genetics, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
120
|
Hobolth A, Christensen OF, Mailund T, Schierup MH. Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model. PLoS Genet 2006; 3:e7. [PMID: 17319744 PMCID: PMC1802818 DOI: 10.1371/journal.pgen.0030007] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 11/29/2006] [Indexed: 11/19/2022] Open
Abstract
The genealogical relationship of human, chimpanzee, and gorilla varies along the genome. We develop a hidden Markov model (HMM) that incorporates this variation and relate the model parameters to population genetics quantities such as speciation times and ancestral population sizes. Our HMM is an analytically tractable approximation to the coalescent process with recombination, and in simulations we see no apparent bias in the HMM estimates. We apply the HMM to four autosomal contiguous human-chimp-gorilla-orangutan alignments comprising a total of 1.9 million base pairs. We find a very recent speciation time of human-chimp (4.1 +/- 0.4 million years), and fairly large ancestral effective population sizes (65,000 +/- 30,000 for the human-chimp ancestor and 45,000 +/- 10,000 for the human-chimp-gorilla ancestor). Furthermore, around 50% of the human genome coalesces with chimpanzee after speciation with gorilla. We also consider 250,000 base pairs of X-chromosome alignments and find an effective population size much smaller than 75% of the autosomal effective population sizes. Finally, we find that the rate of transitions between different genealogies correlates well with the region-wide present-day human recombination rate, but does not correlate with the fine-scale recombination rates and recombination hot spots, suggesting that the latter are evolutionarily transient.
Collapse
Affiliation(s)
- Asger Hobolth
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | |
Collapse
|
121
|
Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O'Brien SJ. The late Miocene radiation of modern Felidae: a genetic assessment. Science 2006; 311:73-7. [PMID: 16400146 DOI: 10.1126/science.1122277] [Citation(s) in RCA: 410] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern felid species descend from relatively recent (<11 million years ago) divergence and speciation events that produced successful predatory carnivores worldwide but that have confounded taxonomic classifications. A highly resolved molecular phylogeny with divergence dates for all living cat species, derived from autosomal, X-linked, Y-linked, and mitochondrial gene segments (22,789 base pairs) and 16 fossil calibrations define eight principal lineages produced through at least 10 intercontinental migrations facilitated by sea-level fluctuations. A ghost lineage analysis indicates that available felid fossils underestimate (i.e., unrepresented basal branch length) first occurrence by an average of 76%, revealing a low representation of felid lineages in paleontological remains. The phylogenetic performance of distinct gene classes showed that Y-chromosome segments are appreciably more informative than mitochondrial DNA, X-linked, or autosomal genes in resolving the rapid Felidae species radiation.
Collapse
Affiliation(s)
- Warren E Johnson
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
122
|
Reed FA, Akey JM, Aquadro CF. Fitting background-selection predictions to levels of nucleotide variation and divergence along the human autosomes. Genome Res 2005; 15:1211-21. [PMID: 16140989 PMCID: PMC1199535 DOI: 10.1101/gr.3413205] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The roles of positive directional selection (selective sweeps) and negative selection (background selection) in shaping the genome-wide distribution of genetic variation in humans remain largely unknown. Here, we optimize the parameter values of a model of the removal of deleterious mutations (background selection) to observed levels of human polymorphism, controlling for mutation rate heterogeneity by using interspecific divergence. A point of "best fit" was found between background-selection predictions and estimates of human effective population sizes, with reasonable parameter estimates whose uncertainty was assessed by bootstrapping. The results suggest that the purging of deleterious alleles has had some influence on shaping levels of human variation, although the effects may be subtle over the majority of the human genome. A significant relationship was found between background-selection predictions and measures of skew in the allele frequency distribution. The genome-wide action of selection (positive and/or negative) is required to explain this observation.
Collapse
Affiliation(s)
- Floyd A Reed
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
123
|
Kivisild T, Shen P, Wall DP, Do B, Sung R, Davis K, Passarino G, Underhill PA, Scharfe C, Torroni A, Scozzari R, Modiano D, Coppa A, de Knijff P, Feldman M, Cavalli-Sforza LL, Oefner PJ. The role of selection in the evolution of human mitochondrial genomes. Genetics 2005; 172:373-87. [PMID: 16172508 PMCID: PMC1456165 DOI: 10.1534/genetics.105.043901] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High mutation rate in mammalian mitochondrial DNA generates a highly divergent pool of alleles even within species that have dispersed and expanded in size recently. Phylogenetic analysis of 277 human mitochondrial genomes revealed a significant (P < 0.01) excess of rRNA and nonsynonymous base substitutions among hotspots of recurrent mutation. Most hotspots involved transitions from guanine to adenine that, with thymine-to-cytosine transitions, illustrate the asymmetric bias in codon usage at synonymous sites on the heavy-strand DNA. The mitochondrion-encoded tRNAThr varied significantly more than any other tRNA gene. Threonine and valine codons were involved in 259 of the 414 amino acid replacements observed. The ratio of nonsynonymous changes from and to threonine and valine differed significantly (P = 0.003) between populations with neutral (22/58) and populations with significantly negative Tajima's D values (70/76), independent of their geographic location. In contrast to a recent suggestion that the excess of nonsilent mutations is characteristic of Arctic populations, implying their role in cold adaptation, we demonstrate that the surplus of nonsynonymous mutations is a general feature of the young branches of the phylogenetic tree, affecting also those that are found only in Africa. We introduce a new calibration method of the mutation rate of synonymous transitions to estimate the coalescent times of mtDNA haplogroups.
Collapse
Affiliation(s)
- Toomas Kivisild
- Department of Human and Clinical Genetics, Leiden University Medical Center, 2333 AL Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Walsh HE, Jones IL, Friesen VL. A test of founder effect speciation using multiple loci in the auklets (Aethia spp.). Genetics 2005; 171:1885-94. [PMID: 16143621 PMCID: PMC1456112 DOI: 10.1534/genetics.105.043380] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether speciation results more frequently from the genetic consequences of founder events or from gradual genetic divergence of large populations is a matter of debate. In this study, multiple analyses were applied to data from three loci (cytochrome b, alpha-enolase intron VIII, and MHC class II B) to test for founder effects associated with speciation in Aethia (Aves: Alcidae), a genus of seabirds thought to have undergone a rapid founder-induced radiation. Effective population sizes (N(e)) were derived from estimators of based on allelic diversity and the coalescent and from data on trans-species polymorphism. Results indicated that N(e) has been on the order of 10(5)-10(6) individuals throughout the evolutionary histories of least and crested auklets (A. pusilla and A. cristatella, respectively) and that N(e) of the ancestral species was at least 16,000 individuals. Computer simulations of MHC evolution indicated that a single-generation bottleneck at speciation could not have involved <85 individuals for each species. More moderate simulation scenarios indicated that population size could not have dropped below 2000 individuals at the time of species founding. Demographic history appears to have been stable for the auklets throughout the past several million years, and a founder effect associated with their speciation is unlikely.
Collapse
Affiliation(s)
- H E Walsh
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | |
Collapse
|
125
|
Jennings WB, Edwards SV. SPECIATIONAL HISTORY OF AUSTRALIAN GRASS FINCHES (POEPHILA) INFERRED FROM THIRTY GENE TREES. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01072.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
126
|
Wang J. Estimation of effective population sizes from data on genetic markers. Philos Trans R Soc Lond B Biol Sci 2005; 360:1395-409. [PMID: 16048783 PMCID: PMC1847562 DOI: 10.1098/rstb.2005.1682] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effective population size (Ne) is an important parameter in ecology, evolutionary biology and conservation biology. It is, however, notoriously difficult to estimate, mainly because of the highly stochastic nature of the processes of inbreeding and genetic drift for which Ne is usually defined and measured, and because of the many factors (such as time and spatial scales, systematic forces) confounding such processes. Many methods have been developed in the past three decades to estimate the current, past and ancient effective population sizes using different information extracted from some genetic markers in a sample of individuals. This paper reviews the methodologies proposed for estimating Ne from genetic data using information on heterozygosity excess, linkage disequilibrium, temporal changes in allele frequency, and pattern and amount of genetic variation within and between populations. For each methodology, I describe mainly the logic and genetic model on which it is based, the data required and information used, the interpretation of the estimate obtained, some results from applications to simulated or empirical datasets and future developments that are needed.
Collapse
Affiliation(s)
- Jinliang Wang
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK.
| |
Collapse
|
127
|
Le Rouzic A, Capy P. The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 2005; 169:1033-43. [PMID: 15731520 PMCID: PMC1449084 DOI: 10.1534/genetics.104.031211] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are often considered as selfish DNA sequences able to invade the genome of their host species. Their evolutive dynamics are complex, due to the interaction between their intrinsic amplification capacity, selection at the host level, transposition regulation, and genetic drift. Here, we propose modeling the first steps of TE invasion, i.e., just after a horizontal transfer, when a single copy is present in the genome of one individual. If the element has a constant transposition rate, it will disappear in most cases: the elements with low-transposition rate are frequently lost through genetic drift, while those with high-transposition rate may amplify, leading to the sterility of their host. Elements whose transposition rate is regulated are able to successfully invade the populations, thanks to an initial transposition burst followed by a strong limitation of their activity. Self-regulation or hybrid dysgenesis may thus represent some genome-invasion parasitic strategies.
Collapse
Affiliation(s)
- Arnaud Le Rouzic
- Laboratoire Populations, Génétique, Evolution, 91198 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
128
|
Abstract
The strictly allopatric model of speciation makes definable predictions on the pattern of divergence, one of which is the uniformity in the divergence time across genomic regions. Using 345 coding and 143 intergenic sequences from the African great apes, we were able to reject the null hypothesis that the divergence time in the coding sequences (CDSs) and intergenic sequences (IGSs) is the same between human and chimpanzee. The conclusion is further supported by the analysis of whole-genome sequences between these species. The difference suggests a prolonged period of genetic exchange during the formation of these two species. Because the analysis should be generally applicable, collecting DNA sequence data from many genomic regions between closely related species should help to settle the debate over the prevalence of the allopatric mode of speciation.
Collapse
Affiliation(s)
- Naoki Osada
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
129
|
Harding RM, McVean G. A structured ancestral population for the evolution of modern humans. Curr Opin Genet Dev 2005; 14:667-74. [PMID: 15531162 DOI: 10.1016/j.gde.2004.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The view that modern humans evolved through a bottleneck from a single founding group of archaic Homo is being challenged by new analyses of contemporary genetic variation. A wide range of middle to late Pleistocene ages for gene genealogies and evidence for early population structures point to a diverse and scattered ancestry associated with a metapopulation history of local extinctions, re-colonization and admixture. A different balance of the same processes has shaped chimpanzee diversity.
Collapse
Affiliation(s)
- Rosalind M Harding
- Biological Anthropology Unit and Statistics Department, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK.
| | | |
Collapse
|
130
|
Abstract
Horizontal gene transfer (HGT) plays a critical role in evolution across all domains of life with important biological and medical implications. I propose a simple class of stochastic models to examine HGT using multiple orthologous gene alignments. The models function in a hierarchical phylogenetic framework. The top level of the hierarchy is based on a random walk process in "tree space" that allows for the development of a joint probabilistic distribution over multiple gene trees and an unknown, but estimable species tree. I consider two general forms of random walks. The first form is derived from the subtree prune and regraft (SPR) operator that mirrors the observed effects that HGT has on inferred trees. The second form is based on walks over complete graphs and offers numerically tractable solutions for an increasing number of taxa. The bottom level of the hierarchy utilizes standard phylogenetic models to reconstruct gene trees given multiple gene alignments conditional on the random walk process. I develop a well-mixing Markov chain Monte Carlo algorithm to fit the models in a Bayesian framework. I demonstrate the flexibility of these stochastic models to test competing ideas about HGT by examining the complexity hypothesis. Using 144 orthologous gene alignments from six prokaryotes previously collected and analyzed, Bayesian model selection finds support for (1) the SPR model over the alternative form, (2) the 16S rRNA reconstruction as the most likely species tree, and (3) increased HGT of operational genes compared to informational genes.
Collapse
Affiliation(s)
- Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, 90095-1766, USA.
| |
Collapse
|
131
|
Satta Y, Hickerson M, Watanabe H, O'hUigin C, Klein J. Ancestral population sizes and species divergence times in the primate lineage on the basis of intron and BAC end sequences. J Mol Evol 2005; 59:478-87. [PMID: 15638459 DOI: 10.1007/s00239-004-2639-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effective sizes of ancestral populations and species divergence times of six primate species (humans, chimpanzees, gorillas, orangutans, and representatives of Old World monkeys and New World monkeys) are estimated by applying the two-species maximum likelihood (ML) method to intron sequences of 20 different loci. Examination of rate heterogeneity of nucleotide substitutions and intragenic recombination identifies five outrageous loci (ODC1, GHR, HBE, INS, and HBG). The estimated ancestral polymorphism ranges from 0.21 to 0.96% at major divergences in primate evolution. One exceptionally low polymorphism occurs when African and Asian apes diverged. However, taking into consideration the possible short generation times in primate ancestors, it is concluded that the ancestral population size in the primate lineage was no smaller than that of extant humans. Furthermore, under the assumption of 6 million years (myr) divergence between humans and chimpanzees, the divergence time of humans from gorillas, orangutans. Old World monkeys, and New World monkeys is estimated as 7.2, 18, 34, and 65 myr ago, respectively, which are generally older than traditional estimates. Beside the intron sequences, three other data sets of orthologous sequences are used between the human and the chimpanzee comparison. The ML application to these data sets including 58,156 random BAC end sequences (BES) shows that the nucleotide substitution rate is as low as 0.6-0.8 x 10(-9) per site per year and the extent of ancestral polymorphism is 0.33-0.51%. With such a low substitution rate and short generation time, the relatively high extent of polymorphism suggests a fairly large effective population size in the ancestral lineage common to humans and chimpanzees.
Collapse
Affiliation(s)
- Yoko Satta
- Department of Biosystems Science, Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| | | | | | | | | |
Collapse
|
132
|
|
133
|
Jennings WB, Edwards SV. SPECIATIONAL HISTORY OF AUSTRALIAN GRASS FINCHES (POEPHILA) INFERRED FROM THIRTY GENE TREES*. Evolution 2005. [DOI: 10.1554/05-280.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
134
|
|
135
|
Abstract
Comparison of the levels of nucleotide diversity in humans and apes may provide valuable information for inferring the demographic history of these species, the effect of social structure on genetic diversity, patterns of past migration, and signatures of past selection events. Previous DNA sequence data from both the mitochondrial and the nuclear genomes suggested a much higher level of nucleotide diversity in the African apes than in humans. Noting that the nuclear DNA data from the apes were very limited, we previously conducted a DNA polymorphism study in humans and another in chimpanzees and bonobos, using 50 DNA segments randomly chosen from the noncoding, nonrepetitive parts of the human genome. The data revealed that the nucleotide diversity (pi) in bonobos (0.077%) is actually lower than that in humans (0.087%) and that pi in chimpanzees (0.134%) is only 50% higher than that in humans. In the present study we sequenced the same 50 segments in 15 western lowland gorillas and estimated pi to be 0.158%. This is the highest value among the African apes but is only about two times higher than that in humans. Interestingly, available mtDNA sequence data also suggest a twofold higher nucleotide diversity in gorillas than in humans, but suggest a threefold higher nucleotide diversity in chimpanzees than in humans. The higher mtDNA diversity in chimpanzees might be due to the unique pattern in the evolution of chimpanzee mtDNA. From the nuclear DNA pi values, we estimated that the long-term effective population sizes of humans, bonobos, chimpanzees, and gorillas are, respectively, 10,400, 12,300, 21,300, and 25,200.
Collapse
Affiliation(s)
- Ning Yu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
136
|
Abstract
To investigate patterns of diversity and the evolutionary history of Eurasians, we have sequenced a 2.8 kb region at Xp11.23 in a sample of African and Eurasian chromosomes. This region is in a long intron of CLCN5 and is immediately flanked by a highly variable minisatellite, DXS255, and a human-specific Ta0 LINE. Compared to Africans, Eurasians showed a marked reduction in sequence diversity. The main Euro-Asiatic haplotype seems to be the ancestral haplotype for the whole sample. Coalescent simulations, including recombination and exponential growth, indicate a median length of strong linkage disequilibrium, up to approximately 9 kb for this area. The Ka/Ks ratio between the coding sequence of human CLCN5 and its mouse orthologue is much less than 1. This implies that the region sequenced is unlikely to be under the strong influence of positive selective processes on CLCN5, mutations in which have been associated with disorders such as Dent's disease. In contrast, a scenario based on a population bottleneck and exponential growth seems a more likely explanation for the reduced diversity observed in Eurasians. Coalescent analysis and linked minisatellite diversity (which reaches a gene diversity value greater than 98% in Eurasians) suggest an estimated age of origin of the Euro-Asiatic diversity compatible with a recent out-of-Africa model for colonization of Eurasia by modern Homo sapiens.
Collapse
Affiliation(s)
- S Alonso
- Dept. Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n. 48940 Leioa, Bizkaia, Spain.
| | | |
Collapse
|
137
|
|
138
|
Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 2003; 4:981-94. [PMID: 14631358 DOI: 10.1038/nrg1226] [Citation(s) in RCA: 750] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Population genomics has the potential to improve studies of evolutionary genetics, molecular ecology and conservation biology, by facilitating the identification of adaptive molecular variation and by improving the estimation of important parameters such as population size, migration rates and phylogenetic relationships. There has been much excitement in the recent literature about the identification of adaptive molecular variation using the population-genomic approach. However, the most useful contribution of the genomics model to population genetics will be improving inferences about population demography and evolutionary history.
Collapse
Affiliation(s)
- Gordon Luikart
- Laboratoire d'Ecologie Alpine, Génomique des Populations et Biodiversit, CNRS UMR 5553, Université Joseph Fourier, B.P. 53, F-38041 Grenoble, Cedex 9, France.
| | | | | | | | | |
Collapse
|
139
|
Charlesworth B, Charlesworth D, Barton NH. The Effects of Genetic and Geographic Structure on Neutral Variation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2003. [DOI: 10.1146/annurev.ecolsys.34.011802.132359] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brian Charlesworth
- Institute for Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom;
| | - Deborah Charlesworth
- Institute for Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom;
| | - Nicholas H. Barton
- Institute for Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom;
| |
Collapse
|
140
|
Rannala B, Yang Z. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 2003; 164:1645-56. [PMID: 12930768 PMCID: PMC1462670 DOI: 10.1093/genetics/164.4.1645] [Citation(s) in RCA: 689] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effective population sizes of ancestral as well as modern species are important parameters in models of population genetics and human evolution. The commonly used method for estimating ancestral population sizes, based on counting mismatches between the species tree and the inferred gene trees, is highly biased as it ignores uncertainties in gene tree reconstruction. In this article, we develop a Bayes method for simultaneous estimation of the species divergence times and current and ancestral population sizes. The method uses DNA sequence data from multiple loci and extracts information about conflicts among gene tree topologies and coalescent times to estimate ancestral population sizes. The topology of the species tree is assumed known. A Markov chain Monte Carlo algorithm is implemented to integrate over uncertain gene trees and branch lengths (or coalescence times) at each locus as well as species divergence times. The method can handle any species tree and allows different numbers of sequences at different loci. We apply the method to published noncoding DNA sequences from the human and the great apes. There are strong correlations between posterior estimates of speciation times and ancestral population sizes. With the use of an informative prior for the human-chimpanzee divergence date, the population size of the common ancestor of the two species is estimated to be approximately 20,000, with a 95% credibility interval (8000, 40,000). Our estimates, however, are affected by model assumptions as well as data quality. We suggest that reliable estimates have yet to await more data and more realistic models.
Collapse
Affiliation(s)
- Bruce Rannala
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
141
|
Zhivotovsky LA, Rosenberg NA, Feldman MW. Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. Am J Hum Genet 2003; 72:1171-86. [PMID: 12690579 PMCID: PMC1180270 DOI: 10.1086/375120] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 02/20/2003] [Indexed: 11/03/2022] Open
Abstract
We study data on variation in 52 worldwide populations at 377 autosomal short tandem repeat loci, to infer a demographic history of human populations. Variation at di-, tri-, and tetranucleotide repeat loci is distributed differently, although each class of markers exhibits a decrease of within-population genetic variation in the following order: sub-Saharan Africa, Eurasia, East Asia, Oceania, and America. There is a similar decrease in the frequency of private alleles. With multidimensional scaling, populations belonging to the same major geographic region cluster together, and some regions permit a finer resolution of populations. When a stepwise mutation model is used, a population tree based on TD estimates of divergence time suggests that the branches leading to the present sub-Saharan African populations of hunter-gatherers were the first to diverge from a common ancestral population (approximately 71-142 thousand years ago). The branches corresponding to sub-Saharan African farming populations and those that left Africa diverge next, with subsequent splits of branches for Eurasia, Oceania, East Asia, and America. African hunter-gatherer populations and populations of Oceania and America exhibit no statistically significant signature of growth. The features of population subdivision and growth are discussed in the context of the ancient expansion of modern humans.
Collapse
Affiliation(s)
- Lev A. Zhivotovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow; Program in Molecular and Computational Biology, University of Southern California, Los Angeles; and Department of Biological Sciences, Stanford University, Stanford, CA
| | - Noah A. Rosenberg
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow; Program in Molecular and Computational Biology, University of Southern California, Los Angeles; and Department of Biological Sciences, Stanford University, Stanford, CA
| | - Marcus W. Feldman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow; Program in Molecular and Computational Biology, University of Southern California, Los Angeles; and Department of Biological Sciences, Stanford University, Stanford, CA
| |
Collapse
|
142
|
Abstract
This article presents a new method for jointly estimating species divergence times and ancestral population sizes. The method improves on previous ones by explicitly incorporating intragenic recombination, by utilizing orthologous sequence data from closely related species, and by using a maximum-likelihood framework. The latter allows for efficient use of the available information and provides a way of assessing how much confidence we should place in the estimates. I apply the method to recently collected intergenic sequence data from humans and the great apes. The results suggest that the human-chimpanzee ancestral population size was four to seven times larger than the current human effective population size and that the current human effective population size is slightly >10,000. These estimates are similar to previous ones, and they appear relatively insensitive to assumptions about the recombination rates or mutation rates across loci.
Collapse
Affiliation(s)
- Jeffrey D Wall
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|