101
|
Ratnakumar K, Bernstein E. ATRX: the case of a peculiar chromatin remodeler. Epigenetics 2012; 8:3-9. [PMID: 23249563 DOI: 10.4161/epi.23271] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The SWI/SNF-like chromatin remodeler ATRX has recently garnered renewed attention. ATRX mutations were first identified in patients bearing the syndrome after which it is named, alpha thalassemia/mental retardation, X-linked. While ATRX has long been implicated in transcriptional regulation through multiple mechanisms, recent studies have identified a role for ATRX in the regulation of histone variant deposition. In addition, current reports describe ATRX to be mutated at high percentages in multiple tumor types, suggestive of a potential 'driver' role in cancer. Here we discuss the numerous and seemingly diverse roles for ATRX in transcriptional regulation and histone deposition and suggest that ATRX's effects are mediated by its regulation of histones within the chromatin template.
Collapse
Affiliation(s)
- Kajan Ratnakumar
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
102
|
Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways. PLoS One 2012; 7:e52167. [PMID: 23284920 PMCID: PMC3524112 DOI: 10.1371/journal.pone.0052167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/14/2012] [Indexed: 12/12/2022] Open
Abstract
Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrxf/f mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS) activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU). Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres) were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors.
Collapse
|
103
|
Huh MS, Price O'Dea T, Ouazia D, McKay BC, Parise G, Parks RJ, Rudnicki MA, Picketts DJ. Compromised genomic integrity impedes muscle growth after Atrx inactivation. J Clin Invest 2012; 122:4412-23. [PMID: 23114596 DOI: 10.1172/jci63765] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 09/06/2012] [Indexed: 01/23/2023] Open
Abstract
ATR-X syndrome is a severe intellectual disability disorder caused by mutations in the ATRX gene. Many ancillary clinical features are attributed to CNS deficiencies, yet most patients have muscle hypotonia, delayed ambulation, or kyphosis, pointing to an underlying skeletal muscle defect. Here, we identified a cell-intrinsic requirement for Atrx in postnatal muscle growth and regeneration in mice. Mice with skeletal muscle-specific Atrx conditional knockout (Atrx cKO mice) were viable, but by 3 weeks of age presented hallmarks of underdeveloped musculature, including kyphosis, 20% reduction in body mass, and 34% reduction in muscle fiber caliber. Atrx cKO mice also demonstrated a marked regeneration deficit that was not due to fewer resident satellite cells or their inability to terminally differentiate. However, activation of Atrx-null satellite cells from isolated muscle fibers resulted in a 9-fold reduction in myoblast expansion, caused by delayed progression through mid to late S phase. While in S phase, Atrx colocalized specifically to late-replicating chromatin, and its loss resulted in rampant signs of genomic instability. These observations support a model in which Atrx maintains chromatin integrity during the rapid developmental growth of a tissue.
Collapse
Affiliation(s)
- Michael S Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Gibbons RJ. α-Thalassemia, mental retardation, and myelodysplastic syndrome. Cold Spring Harb Perspect Med 2012; 2:2/10/a011759. [PMID: 23028133 DOI: 10.1101/cshperspect.a011759] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This article describes three rare syndromes in which the presence of α-thalassemia provided an important clue to the molecular basis of the underlying condition. It exemplifies how rare diseases allied with careful clinical observation can lead to important biological principles. Two of the syndromes, ATR-16 and ATR-X, are characterized by α-thalassemia in association with multiple developmental abnormalities including mental retardation. The third condition, ATMDS, is an acquired disorder in which α-thalassemia arises in the context of myelodysplasia. Intriguingly, mutations in the chromatin remodeling factor, ATRX, are common to both ATR-X syndrome and ATMDS.
Collapse
Affiliation(s)
- Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
105
|
Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, Bartels U, Albrecht S, Schwartzentruber J, Letourneau L, Bourgey M, Bourque G, Montpetit A, Bourret G, Lepage P, Fleming A, Lichter P, Kool M, von Deimling A, Sturm D, Korshunov A, Faury D, Jones DT, Majewski J, Pfister SM, Jabado N, Hawkins C. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012; 124:439-47. [PMID: 22661320 PMCID: PMC3422615 DOI: 10.1007/s00401-012-0998-0] [Citation(s) in RCA: 724] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/18/2012] [Accepted: 05/19/2012] [Indexed: 11/28/2022]
Abstract
Pediatric glioblastomas (GBM) including diffuse intrinsic pontine gliomas (DIPG) are devastating brain tumors with no effective therapy. Here, we investigated clinical and biological impacts of histone H3.3 mutations. Forty-two DIPGs were tested for H3.3 mutations. Wild-type versus mutated (K27M-H3.3) subgroups were compared for HIST1H3B, IDH, ATRX and TP53 mutations, copy number alterations and clinical outcome. K27M-H3.3 occurred in 71 %, TP53 mutations in 77 % and ATRX mutations in 9 % of DIPGs. ATRX mutations were more frequent in older children (p < 0.0001). No G34V/R-H3.3, IDH1/2 or H3.1 mutations were identified. K27M-H3.3 DIPGs showed specific copy number changes, including all gains/amplifications of PDGFRA and MYC/PVT1 loci. Notably, all long-term survivors were H3.3 wild type and this group of patients had better overall survival. K27M-H3.3 mutation defines clinically and biologically distinct subgroups and is prevalent in DIPG, which will impact future therapeutic trial design. K27M- and G34V-H3.3 have location-based incidence (brainstem/cortex) and potentially play distinct roles in pediatric GBM pathogenesis. K27M-H3.3 is universally associated with short survival in DIPG, while patients wild-type for H3.3 show improved survival. Based on prognostic and therapeutic implications, our findings argue for H3.3-mutation testing at diagnosis, which should be rapidly integrated into the clinical decision-making algorithm, particularly in atypical DIPG.
Collapse
Affiliation(s)
| | - Pawel Buczkowicz
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada
| | - Patricia Rakopoulos
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Xiao-Yang Liu
- Department of Human Genetics, McGill University, Montreal, QC Canada
| | | | - Eric Bouffet
- Division of Haematology–Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Ute Bartels
- Division of Haematology–Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children’s Hospital, McGill University Health Center, Montreal, QC H1P 2P3 Canada
| | | | - Louis Letourneau
- McGill University and Genome Quebec Innovation Center, Montreal, Canada
| | - Mathieu Bourgey
- McGill University and Genome Quebec Innovation Center, Montreal, Canada
| | - Guillaume Bourque
- McGill University and Genome Quebec Innovation Center, Montreal, Canada
| | | | - Genevieve Bourret
- McGill University and Genome Quebec Innovation Center, Montreal, Canada
| | - Pierre Lepage
- McGill University and Genome Quebec Innovation Center, Montreal, Canada
| | - Adam Fleming
- Department of Paediatrics, Montreal Children’s Hospital, McGill University Health Center, Montreal, QC H1P 2P3 Canada
| | - Peter Lichter
- Division of Molecular Genetics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neuro-oncology, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Sturm
- Division of Pediatric Neuro-oncology, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damien Faury
- Department of Paediatrics, Montreal Children’s Hospital, McGill University Health Center, Montreal, QC H1P 2P3 Canada
| | - David T. Jones
- Division of Pediatric Neuro-oncology, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC Canada
- McGill University and Genome Quebec Innovation Center, Montreal, Canada
| | - Stefan M. Pfister
- Division of Pediatric Neuro-oncology, The German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Department of Paediatrics, Montreal Children’s Hospital, McGill University Health Center, Montreal, QC H1P 2P3 Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
106
|
Abstract
Organisms require an appropriate balance of stability and reversibility in gene expression programmes to maintain cell identity or to enable responses to stimuli; epigenetic regulation is integral to this dynamic control. Post-translational modification of histones by methylation is an important and widespread type of chromatin modification that is known to influence biological processes in the context of development and cellular responses. To evaluate how histone methylation contributes to stable or reversible control, we provide a broad overview of how histone methylation is regulated and leads to biological outcomes. The importance of appropriately maintaining or reprogramming histone methylation is illustrated by its links to disease and ageing and possibly to transmission of traits across generations.
Collapse
Affiliation(s)
- Eric L Greer
- Cell Biology Department, Harvard Medical School and Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
107
|
Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP. Biochem J 2012; 442:65-75. [PMID: 22081970 DOI: 10.1042/bj20111230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional regulation requires co-ordinated action of transcription factors, co-activator complexes and general transcription factors to access specific loci in the dense chromatin structure. In the present study we demonstrate that the transcriptional co-regulator SPBP [stromelysin-1 PDGF (platelet-derived growth factor)-responsive element binding protein] contains two independent chromatin-binding domains, the SPBP-(1551-1666) region and the C-terminal extended PHD [ePHD/ADD (extended plant homeodomain/ATRX-DNMT3-DNMT3L)] domain. The region 1551-1666 is a novel core nucleosome-interaction domain located adjacent to the AT-hook motif in the DNA-binding domain. This novel nucleosome-binding region is critically important for proper localization of SPBP in the cell nucleus. The ePHD/ADD domain associates with nucleosomes in a histone tail-dependent manner, and has significant impact on the dynamic interaction between SPBP and chromatin. Furthermore, SPBP and its homologue RAI1 (retinoic-acid-inducible protein 1), are strongly enriched on chromatin in interphase HeLa cells, and both proteins display low nuclear mobility. RAI1 contains a region with homology to the novel nucleosome-binding region SPBP-(1551-1666) and an ePHD/ADD domain with ability to bind nucleosomes. These results indicate that the transcriptional co-regulator SPBP and its homologue RAI1 implicated in Smith-Magenis syndrome and Potocki-Lupski syndrome both belong to the expanding family of chromatin-binding proteins containing several domains involved in specific chromatin interactions.
Collapse
|
108
|
Functions of chromatin remodeling factors in heterochromatin formation and maintenance. SCIENCE CHINA-LIFE SCIENCES 2012; 55:89-96. [DOI: 10.1007/s11427-012-4267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
109
|
Schwartzentruber J, Korshunov A, Liu XY, Jones DTW, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DAK, Tönjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jäger N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Frühwald MC, Roggendorf W, Kramm C, Dürken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012. [PMID: 22286061 DOI: 10.1038/nature11026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.
Collapse
|
110
|
Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482:226-31. [PMID: 22286061 DOI: 10.1038/nature10833] [Citation(s) in RCA: 1859] [Impact Index Per Article: 154.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 01/05/2012] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.
Collapse
|
111
|
ATRX induction by mutant huntingtin via Cdx2 modulates heterochromatin condensation and pathology in Huntington's disease. Cell Death Differ 2012; 19:1109-16. [PMID: 22240898 DOI: 10.1038/cdd.2011.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aberrant chromatin remodeling is involved in the pathogenesis of Huntington's disease (HD) but the mechanism is not known. Herein, we report that mutant huntingtin (mtHtt) induces the transcription of alpha thalassemia/mental retardation X linked (ATRX), an ATPase/helicase and SWI/SNF-like chromatin remodeling protein via Cdx-2 activation. ATRX expression was elevated in both a cell line model and transgenic model of HD, and Cdx-2 occupancy of the ATRX promoter was increased in HD. Induction of ATRX expanded the size of promyelocytic leukemia nuclear body (PML-NB) and increased trimethylation of H3K9 (H3K9me3) and condensation of pericentromeric heterochromatin, while knockdown of ATRX decreased PML-NB and H3K9me3 levels. Knockdown of ATRX/dXNP improved the hatch rate of fly embryos expressing mtHtt (Q127). ATRX/dXNP overexpression exacerbated eye degeneration of eye-specific mtHtt (Q127) expressing flies. Our findings suggest that transcriptional alteration of ATRX by mtHtt is involved in pericentromeric heterochromatin condensation and contributes to the pathogenesis of HD.
Collapse
|
112
|
De La Fuente R, Baumann C, Viveiros MM. Chromatin structure and ATRX function in mouse oocytes. Results Probl Cell Differ 2012; 55:45-68. [PMID: 22918800 DOI: 10.1007/978-3-642-30406-4_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.
Collapse
|
113
|
Li Y, Li H. Many keys to push: diversifying the 'readership' of plant homeodomain fingers. Acta Biochim Biophys Sin (Shanghai) 2012; 44:28-39. [PMID: 22194011 DOI: 10.1093/abbs/gmr117] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Covalent histone modifications-referred to as the 'histone code', are recognized by a wealth of effector or 'reader' modules, representing one of the most fundamental epigenetic regulatory mechanisms that govern the structure and function of our genome. Recent progresses on combinatorial readout of such 'histone code' promote us to reconsider epigenetic regulation as a more complicated theme than we originally anticipated. In particular, plant homeodomain (PHD) fingers, which are evolved with fine-tuned residue composition and integrated or paired with other reader modules, display remarkably diverse 'readership' other than its founding-member target, histone H3 trimethylation on lysine 4 (H3K4me3). In this review, we detail the latest progresses of PHD finger research, especially from the perspective of structural biology, and highlight the versatile binding features and biological significance of PHD fingers.
Collapse
Affiliation(s)
- Yuanyuan Li
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | | |
Collapse
|
114
|
Khorasanizadeh S. Recognition of methylated histones: new twists and variations. Curr Opin Struct Biol 2011; 21:744-9. [PMID: 22056613 DOI: 10.1016/j.sbi.2011.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
Abstract
Histone tails undergo methylation at their lysines and arginines. These chemical marks act as traffic signals that direct activity of chromatin remodeling complexes to appropriate regions of the genome. A surprisingly diverse group of effector protein modules in chromatin remodeling complexes and their associated factors are involved in the recognition of histone methyllysines. Previous studies generally painted a picture of individual lysines recognized by these protein modules in a 1:1 fashion. However, recent structural studies show more complex interactions where the critical lysines are recognized in pairs, or in the context of nucleosomal DNA, or within the central pore of repeat motifs. These interactions extend our understanding of how histone tail recognition can be enhanced through coupled interactions within a single module or through the cooperation of two different molecules.
Collapse
Affiliation(s)
- Sepideh Khorasanizadeh
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA.
| |
Collapse
|
115
|
Valadez-Graham V, Yoshioka Y, Velazquez O, Kawamori A, Vázquez M, Neumann A, Yamaguchi M, Zurita M. XNP/dATRX interacts with DREF in the chromatin to regulate gene expression. Nucleic Acids Res 2011; 40:1460-74. [PMID: 22021382 PMCID: PMC3287189 DOI: 10.1093/nar/gkr865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ATRX gene encodes a chromatin remodeling protein that has two important domains, a helicase/ATPase domain and a domain composed of two zinc fingers called the ADD domain. The ADD domain binds to histone tails and has been proposed to mediate their binding to chromatin. The putative ATRX homolog in Drosophila (XNP/dATRX) has a conserved helicase/ATPase domain but lacks the ADD domain. In this study, we propose that XNP/dATRX interacts with other proteins with chromatin-binding domains to recognize specific regions of chromatin to regulate gene expression. We report a novel functional interaction between XNP/dATRX and the cell proliferation factor DREF in the expression of pannier (pnr). DREF binds to DNA-replication elements (DRE) at the pnr promoter to modulate pnr expression. XNP/dATRX interacts with DREF, and the contact between the two factors occurs at the DRE sites, resulting in transcriptional repression of pnr. The occupancy of XNP/dATRX at the DRE, depends on DNA binding of DREF at this site. Interestingly, XNP/dATRX regulates some, but not all of the genes modulated by DREF, suggesting a promoter-specific role of XNP/dATRX in gene regulation. This work establishes that XNP/dATRX directly contacts the transcriptional activator DREF in the chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México Av Universidad 2001, Col Chamilpa 62250, Cuernavaca Mor, México
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Bérubé NG. ATRX in chromatin assembly and genome architecture during development and disease. Biochem Cell Biol 2011; 89:435-44. [DOI: 10.1139/o11-038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulation of genome architecture is essential for a variety of fundamental cellular phenomena that underlie the complex orchestration of mammalian development. The ATP-dependent chromatin remodeling protein ATRX is emerging as a key regulatory component of nucleosomal dynamics and higher order chromatin conformation. Here we provide an overview of the role of ATRX at chromatin and during development, and discuss recent studies exposing a repertoire of ATRX functions at heterochromatin, in gene regulation, and during mitosis and meiosis. Exciting new progress on several fronts suggest that ATRX operates in histone variant deposition and in the modulation of higher order chromatin structure. Not surprisingly, dysfunction or absence of ATRX protein has devastating consequences on embryonic development and leads to human disease.
Collapse
Affiliation(s)
- Nathalie G. Bérubé
- Victoria Research Laboratories 800 Commissioners Road East London, ON, Canada N6C 2V5
| |
Collapse
|
117
|
Bock I, Kudithipudi S, Tamas R, Kungulovski G, Dhayalan A, Jeltsch A. Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. BMC BIOCHEMISTRY 2011; 12:48. [PMID: 21884582 PMCID: PMC3176149 DOI: 10.1186/1471-2091-12-48] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/31/2011] [Indexed: 12/20/2022]
Abstract
Background Epigenetic reading domains are involved in the regulation of gene expression and chromatin state by interacting with histones in a post-translational modification specific manner. A detailed knowledge of the target modifications of reading domains, including enhancing and inhibiting secondary modifications, will lead to a better understanding of the biological signaling processes mediated by reading domains. Results We describe the application of Celluspots peptide arrays which contain 384 histone peptides carrying 59 post translational modifications in different combinations as an inexpensive, reliable and fast method for initial screening for specific interactions of reading domains with modified histone peptides. To validate the method, we tested the binding specificities of seven known epigenetic reading domains on Celluspots peptide arrays, viz. the HP1ß and MPP8 Chromo domains, JMJD2A and 53BP1 Tudor domains, Dnmt3a PWWP domain, Rag2 PHD domain and BRD2 Bromo domain. In general, the binding results agreed with literature data with respect to the primary specificity of the reading domains, but in almost all cases we obtained additional new information concerning the influence of secondary modifications surrounding the target modification. Conclusions We conclude that Celluspots peptide arrays are powerful screening tools for studying the specificity of putative reading domains binding to modified histone peptides.
Collapse
Affiliation(s)
- Ina Bock
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
118
|
De La Fuente R, Baumann C, Viveiros MM. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction 2011; 142:221-34. [PMID: 21653732 PMCID: PMC3253860 DOI: 10.1530/rep-10-0380] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.
Collapse
Affiliation(s)
- Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
119
|
Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M, Xue S, Duan S, Allali-Hassani A, Zuo X, Wang YX, Bronner C, Chédin F, Arrowsmith CH, Dhe-Paganon S. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem 2011; 286:24300-11. [PMID: 21489993 PMCID: PMC3129210 DOI: 10.1074/jbc.m111.234104] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/27/2011] [Indexed: 11/06/2022] Open
Abstract
Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16(INK4A), when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.
Collapse
Affiliation(s)
- Nataliya Nady
- From the Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alexander Lemak
- From the Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John R. Walker
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - George V. Avvakumov
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Michael S. Kareta
- the Department of Molecular & Cellular Biology, University of California, Davis, California 95616
| | - Mayada Achour
- CNRS UMR7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, 74 route du rhin, 67401 Illkirch cedex, France
| | - Sheng Xue
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Shili Duan
- From the Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Xiaobing Zuo
- the Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Yun-Xing Wang
- the Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Christian Bronner
- CNRS UMR7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, 74 route du rhin, 67401 Illkirch cedex, France
| | - Frédéric Chédin
- the Department of Molecular & Cellular Biology, University of California, Davis, California 95616
| | - Cheryl H. Arrowsmith
- From the Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sirano Dhe-Paganon
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| |
Collapse
|