101
|
Jepsen MR, Kløverpris S, Bøtkjær JA, Wissing ML, Andersen CY, Oxvig C. The proteolytic activity of pregnancy-associated plasma protein-A is potentially regulated by stanniocalcin-1 and -2 during human ovarian follicle development. Hum Reprod 2016; 31:866-74. [PMID: 26874357 DOI: 10.1093/humrep/dew013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION Is the proteolytic activity of pregnancy-associated plasma protein-A (PAPP-A) regulated by the stanniocalcins (STC1 and STC2) during human follicle maturation? SUMMARY ANSWER The STCs and PAPP-A show similar expression by immunohistochemistry in developing follicles, and regulation of PAPP-A proteolytic activity is suggested by the identification of inhibited protein complexes between PAPP-A and STC1 or STC2 in human follicular fluid (FF). WHAT IS KNOWN ALREADY The insulin-like growth factor (IGF)-regulating proteinase PAPP-A is secreted by the granulosa cells of estrogen-dominant follicles and is involved in follicle growth. STC1 and STC2 have recently been identified as novel PAPP-A inhibitors, and their expression in non-human mammalian ovaries has previously been observed. STUDY DESIGN, SIZE, DURATION The proteolytic activity of PAPP-A in human follicular fluid was assessed, and the interaction between PAPP-A and the STCs in human ovarian tissues and follicular fluid was analyzed using immunoassays. From 21 women, matched pairs of follicular fluid were obtained from one follicle just prior to final maturation of follicles with human chorionic gonadotrophin (hCG), and from another follicle in connection with oocyte aspiration after hCG treatment. Ovarian tissues were obtained from women having one ovary removed for fertility preservation by cryopreservation prior to gonadotoxic treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS The concentration and activity of PAPP-A were determined in all samples of follicular fluid. Furthermore, to investigate PAPP-A regulation during follicle development, immunohistochemical staining of PAPP-A, STC1, and STC2 was performed on pre-antral and antral human follicles. To attempt the demonstration of native complexes between PAPP-A and the STCs, immunoprecipitation from a pool of human follicular fluid was performed. MAIN RESULTS AND THE ROLE OF CHANCE The concentration of PAPP-A antigen in follicular fluid increased upon stimulation of ovulation with hCG (P < 0.02), but at the same time, PAPP-A activity was decreased. PAPP-A, STC1, and STC2 were localized together in primordial, late primary, and antral follicles, indicating that complex formation is possible in ovarian tissue. Covalent PAPP-A:STC2 and non-covalent PAPP-A:STC1 complexes were immunoprecipitated from follicular fluid, documenting for the first time native inhibited complexes between PAPP-A and the STCs. LIMITATIONS, REASONS FOR CAUTION We have demonstrated the presence of native complexes between PAPP-A and the STCs in the human ovary, indicating STC-mediated PAPP-A proteolytic inhibition. Further investigation is required to extend this principle to other tissues. WIDER IMPLICATIONS OF THE FINDINGS Our data suggest that the STCs contribute to PAPP-A regulation during folliculogenesis and support a general model in which STC1 and STC2 are regulators of mammalian IGF activity through inhibition of PAPP-A. We suggest that future functional studies take both PAPP-A and the STCs into consideration. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants from the Novo Nordisk Foundation, and the Danish Council for Independent Research. No competing interests declared.
Collapse
Affiliation(s)
- Malene R Jepsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Søren Kløverpris
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jane A Bøtkjær
- Laboratory of reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen University, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | - Claus Y Andersen
- Laboratory of reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen University, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
102
|
Trau HA, Brännström M, Curry TE, Duffy DM. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum Reprod 2016; 31:436-44. [PMID: 26740577 DOI: 10.1093/humrep/dev320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/26/2015] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION Which receptors for prostaglandin E2 (PGE2) and vascular endothelial growth factor A (VEGFA) mediate angiogenesis in the human follicle around the time of ovulation? SUMMARY ANSWER PGE2 and VEGFA act via multiple PGE2 receptors (PTGERs) and VEGF receptors (VEGFRs) to play complementary roles in follicular angiogenesis. WHAT IS KNOWN ALREADY Production of PGE2 and VEGFA by the follicle are prerequisites for ovulation. PGE2 is an emerging regulator of angiogenesis and has not been examined in the context of the human ovulatory follicle. VEGFA is an established regulator of follicular angiogenesis. STUDY DESIGN, SIZE, DURATION Ovarian biopsies containing the ovulatory follicle were obtained from 11 women of reproductive age (30-45 years) undergoing surgery for laparoscopic sterilization. In some cases, women received hCG to substitute for the ovulatory LH surge before ovarian biopsy. In addition, aspirates from four women of reproductive age (18-31 years) undergoing gonadotrophin stimulation for oocyte donation were obtained for isolation of human ovarian microvascular endothelial cells (hOMECs). PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian biopsies were utilized for immunocytochemical detection of von Willebrand factor to identify endothelial cells. hOMECs were cultured with PGE2, PTGER receptor selective agonists, VEGFA, or VEGFR selective agonists. hOMECs were assessed for proliferation by Ki67 immunocytochemistry. hOMEC migration was determined by counting cells which migrated through a porous membrane in vitro. Sprout formation was quantified by determining sprout number and length from photographs take after culture of hOMECs in a 3-dimensional matrix. MAIN RESULTS AND THE ROLE OF CHANCE Endothelial cells were not observed within the granulosa cell layer of human ovulatory follicles prior to an ovulatory dose of hCG and were first seen amongst granulosa cells 18-34 h after hCG. In vitro, PGE2 enhanced migration and sprout formation but did not alter hOMEC proliferation. Agonists selective for each PTGER increased migration with no change in proliferation. PTGER1 and PTGER2 agonists increased the number of sprouts, while only PTGER1 affected sprout length. VEGFA increased hOMEC proliferation, migration, and formation of structures resembling capillary sprouts. Signaling through VEGFR1 promoted hOMEC migration, proliferation, and the formation of few, long endothelial cell sprouts, while VEGFR2 stimulation promoted hOMEC migration and the formation of many, short sprouts. All effects of treatments in vitro were considered significant at P < 0.05. LIMITATIONS, REASONS FOR CAUTION While primary cultures of hOMECs respond to PGE2 and VEGFA differently than other cultured endothelial cells, hOMECs may not respond to PGE2 and VEGFA in vivo as they do in vitro. WIDER IMPLICATIONS OF THE FINDINGS Agonists and antagonists selective for PTGER1, PTGER2, VEGFR1, or VEGFR2 may have therapeutic value to promote or prevent ovulation in women. STUDY FUNDING/COMPETING INTERESTS This research was supported by grant funding from the Eunice Kennedy Shriver National Institutes of Child Health and Human Development (HD071875 to D.M.D., T.E.C., M.B.). The authors have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- Heidi A Trau
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
103
|
Bøtkjær JA, Jeppesen JV, Wissing ML, Kløverpris S, Oxvig C, Mason JI, Borgbo T, Andersen CY. Pregnancy-associated plasma protein A in human ovarian follicles and its association with intrafollicular hormone levels. Fertil Steril 2015; 104:1294-301.e1. [DOI: 10.1016/j.fertnstert.2015.07.1152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
104
|
Rosenbaum JT, Choi D, Wilson DJ, Grossniklaus HE, Harrington CA, Sibley CH, Dailey RA, Ng JD, Steele EA, Czyz CN, Foster JA, Tse D, Alabiad C, Dubovy S, Parekh P, Harris GJ, Kazim M, Patel P, White V, Dolman P, Korn BS, Kikkawa D, Edward DP, Alkatan H, Al-Hussain H, Yeatts RP, Selva D, Stauffer P, Planck SR. Parallel Gene Expression Changes in Sarcoidosis Involving the Lacrimal Gland, Orbital Tissue, or Blood. JAMA Ophthalmol 2015; 133:770-7. [PMID: 25880323 DOI: 10.1001/jamaophthalmol.2015.0726] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE Sarcoidosis is a major cause of ocular or periocular inflammation. The pathogenesis of sarcoidosis is incompletely understood and diagnosis often requires a biopsy. OBJECTIVE To determine how gene expression in either orbital adipose tissue or the lacrimal gland affected by sarcoidosis compares with gene expression in other causes of orbital disease and how gene expression in tissue affected by sarcoidosis compares with gene expression in peripheral blood samples obtained from patients with sarcoidosis. DESIGN, SETTING, AND PARTICIPANTS In a multicenter, international, observational study, gene expression profiling of formalin-fixed biopsy specimens, using GeneChipp U133 Plus 2 microarrays (Affymetrix), was conducted between October 2012 and January 2014 on tissues biopsied from January 2000 through June 2013. Participants included 12 patients with orbital sarcoidosis (7 in adipose tissue; 5 affecting the lacrimal gland) as well as comparable tissue from 6 healthy individuals serving as controls or patients with thyroid eye disease, nonspecific orbital inflammation, or granulomatosis with polyangiitis. In addition, results were compared with gene expression in peripheral blood samples obtained from 12 historical individuals with sarcoidosis. MAIN OUTCOMES AND MEASURES Significantly differentially expressed transcripts defined as a minimum of a 1.5-fold increase or a comparable decrease and a false discovery rate of P < .05. RESULTS Signals from 2449 probe sets (transcripts from approximately 1522 genes) were significantly increased in the orbital adipose tissue from patients with sarcoidosis. Signals from 4050 probe sets (approximately 2619 genes) were significantly decreased. Signals from 3069 probe sets (approximately 2001 genes) were significantly higher and 3320 (approximately 2283 genes) were significantly lower in the lacrimal gland for patients with sarcoidosis. Ninety-two probe sets (approximately 69 genes) had significantly elevated signals and 67 probe sets (approximately 56 genes) had significantly lower signals in both orbital tissues and in peripheral blood from patients with sarcoidosis. The transcription factors, interferon-response factor 1, interferon-response factor 2, and nuclear factor κB, were strongly implicated in the expression of messenger RNA upregulated in common in the 3 tissues. CONCLUSIONS AND RELEVANCE Gene expression in sarcoidosis involving the orbit or lacrimal gland can be distinguished from gene expression patterns in control tissue and overlaps with many transcripts upregulated or downregulated in the peripheral blood of patients with sarcoidosis. These observations suggest that common pathogenic mechanisms contribute to sarcoidosis in different sites. The observations support the hypothesis that a pattern of gene expression profiles could provide diagnostic information in patients with sarcoidosis.
Collapse
Affiliation(s)
- James T Rosenbaum
- Casey Eye Institute, Oregon Health & Science University, Portland2Department of Medicine, School of Medicine, Oregon Health & Science University, Portland3Devers Eye Institute, Legacy Health Systems, Portland, Oregon
| | - Dongseok Choi
- Casey Eye Institute, Oregon Health & Science University, Portland4Department of Public Health and Preventive Medicine, School of Medicine, Oregon Health & Science University, Portland
| | - David J Wilson
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Hans E Grossniklaus
- Department of Ophthalmology, Emory School of Medicine, Emory University, Atlanta, Georgia
| | | | - Cailin H Sibley
- Department of Medicine, School of Medicine, Oregon Health & Science University, Portland
| | - Roger A Dailey
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - John D Ng
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Eric A Steele
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Craig N Czyz
- Division of Ophthalmology, Ohio University, Athens
| | - Jill A Foster
- Department of Ophthalmology, College of Medicine and Public Health, The Ohio State University, Columbus
| | - David Tse
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Chris Alabiad
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Sander Dubovy
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Prashant Parekh
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Gerald J Harris
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee
| | - Michael Kazim
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Payal Patel
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Valerie White
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Dolman
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bobby S Korn
- Department of Ophthalmology, School of Medicine, University of California, San Diego
| | - Don Kikkawa
- Department of Ophthalmology, School of Medicine, University of California, San Diego
| | - Deepak P Edward
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Hind Alkatan
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Hailah Al-Hussain
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - R Patrick Yeatts
- Department of Ophthalmology, School of Medicine, Wake Forrest University, Winston-Salem, North Carolina
| | - Dinesh Selva
- Ophthalmology Network, Royal Adelaide Hospital, Adelaide, Australia
| | - Patrick Stauffer
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Stephen R Planck
- Casey Eye Institute, Oregon Health & Science University, Portland2Department of Medicine, School of Medicine, Oregon Health & Science University, Portland3Devers Eye Institute, Legacy Health Systems, Portland, Oregon
| |
Collapse
|
105
|
Gagnon A, Khan DR, Sirard MA, Girard CL, Laforest JP, Richard FJ. Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows. J Dairy Sci 2015; 98:7797-809. [PMID: 26298749 DOI: 10.3168/jds.2015-9623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
Abstract
The fertility of dairy cows is challenged during early lactation, and better nutritional strategies need to be developed to address this issue. Combined supplementation of folic acid and vitamin B12 improve energy metabolism in the dairy cow during early lactation. Therefore, the present study was undertaken to explore the effects of this supplement on gene expression in granulosa cells from the dominant follicle during the postpartum period. Multiparous Holstein cows received weekly intramuscular injection of 320 mg of folic acid and 10 mg of vitamin B12 (treated group) beginning 24 (standard deviation=4) d before calving until 56 d after calving, whereas the control group received saline. The urea plasma concentration was significantly decreased during the precalving period, and the concentration of both folate and vitamin B12 were increased in treated animals. Milk production and dry matter intake were not significantly different between the 2 groups. Plasma concentrations of folates and vitamin B12 were increased in treated animals. Daily dry matter intake was not significantly different between the 2 groups before [13.5 kg; standard error (SE)=0.5] and after (23.6 kg; SE=0.9) calving. Average energy-corrected milk tended to be greater in vitamin-treated cows, 39.7 (SE=1.4) and 38.1 (SE=1.3) kg/d for treated and control cows, respectively. After calving, average plasma concentration of β-hydroxybutyrate tended to be lower in cows injected with the vitamin supplement, 0.47 (SE=0.04) versus 0.55 (SE=0.03) for treated and control cows, respectively. The ovarian follicle ≥12 mm in diameter was collected by ovum pick-up after estrus synchronization. Recovered follicular fluid volumes were greater in the vitamin-treated group. A microarray platform was used to investigate the effect of treatment on gene expression of granulosa cells. Lower expression of genes involved in the cell cycle and higher expression of genes associated with granulosa cell differentiation before ovulation were observed. Selected candidate genes were analyzed by reverse transcription quantitative PCR. Although the effects of intramuscular injections of folic acid and vitamin B12 on lactational performance and metabolic status of animals were limited, ingenuity pathway analysis of gene expression in granulosa cells suggests a stimulation of cell differentiation in vitamin-treated cows, which may be the result of an increase in LH secretion.
Collapse
Affiliation(s)
- A Gagnon
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - D R Khan
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - M-A Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - C L Girard
- Agriculture et Agroalimentaire Canada, Centre de Recherche sur le Bovin Laitier et le Porc, Sherbrooke, QC, Canada J1M 0C8
| | - J-P Laforest
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - F J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6.
| |
Collapse
|
106
|
Duffy DM. Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway. Hum Reprod Update 2015; 21:652-70. [PMID: 26025453 DOI: 10.1093/humupd/dmv026] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prostaglandin E2 (PGE2) is an essential intrafollicular regulator of ovulation. In contrast with the one-gene, one-protein concept for synthesis of peptide signaling molecules, production and metabolism of bioactive PGE2 requires controlled expression of many proteins, correct subcellular localization of enzymes, coordinated PGE2 synthesis and metabolism, and prostaglandin transport in and out of cells to facilitate PGE2 action and degradation. Elevated intrafollicular PGE2 is required for successful ovulation, so disruption of PGE2 synthesis, metabolism or transport may yield effective contraceptive strategies. METHODS This review summarizes case reports and studies on ovulation inhibition in women and macaques treated with cyclooxygenase inhibitors published from 1987 to 2014. These findings are discussed in the context of studies describing levels of mRNA, protein, and activity of prostaglandin synthesis and metabolic enzymes as well as prostaglandin transporters in ovarian cells. RESULTS The ovulatory surge of LH regulates the expression of each component of the PGE2 synthesis-metabolism-transport pathway within the ovulatory follicle. Data from primary ovarian cells and cancer cell lines suggest that enzymes and transporters can cooperate to optimize bioactive PGE2 levels. Elevated intrafollicular PGE2 mediates key ovulatory events including cumulus expansion, follicle rupture and oocyte release. Inhibitors of the prostaglandin-endoperoxide synthase 2 (PTGS2) enzyme (also known as cyclooxygenase-2 or COX2) reduce ovulation rates in women. Studies in macaques show that PTGS2 inhibitors can reduce the rates of cumulus expansion, oocyte release, follicle rupture, oocyte nuclear maturation and fertilization. A PTGS2 inhibitor reduced pregnancy rates in breeding macaques when administered to simulate emergency contraception. However, PTGS2 inhibition did not prevent pregnancy in monkeys when administered to simulate monthly contraceptive use. CONCLUSION PTGS2 inhibitors alone may be suitable for use as emergency contraceptives. However, drugs of this class are unlikely to be effective as monthly contraceptives. Inhibitors of additional PGE2 synthesis enzymes or modulation of PGE2 metabolism or transport also hold potential for reducing follicular PGE2 and preventing ovulation. Approaches which target multiple components of the PGE2 synthesis-metabolism-transport pathway may be required to effectively block ovulation and lead to the development of novel contraceptive options for women. Therapies which target PGE2 may also impact disorders of the uterus and could also have benefits for women's health in addition to contraception.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 Olney Road, Lewis Hall, Norfolk, VA 23507, USA
| |
Collapse
|
107
|
Jiang L, Huang J, Li L, Chen Y, Chen X, Zhao X, Yang D. MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J Clin Endocrinol Metab 2015; 100:E729-38. [PMID: 25695884 PMCID: PMC4422895 DOI: 10.1210/jc.2014-3827] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT MicroRNAs (miRNAs) are small, noncoding RNAs that negatively regulate gene expression post-transcriptionally. Whether differently expressed miRNAs contribute to promoting granulosa cell proliferation in polycystic ovarian syndrome disease (PCOS) remains unknown. OBJECTIVE We explored whether certain miRNAs are involved in the ovarian dysfunction of PCOS and the mechanism of increased granulosa cells proliferation. Patients and Cells: miRNA expression was analyzed in excised ovarian cortexes from 16 women with PCOS and 8 non-PCOS. An immortalized human granulosa (KGN) cell was used for the mechanism study. MAIN OUTCOME MEASURES Expressions of miRNAs in ovarian cortexes were measured using qRT-PCR and KGN granulosa cells were cultured for proliferation assays after overexpression or inhibition of miR-93 or after insulin treatment. Bioinformatics were used to identify the potential miRNA targets. Protein expression analysis, luciferase assays, and rescue assays were used to confirm the substrate of miR-93. RESULTS MiR-93 expression was higher in PCOS ovarian cortex and its identified target, CDKN1A, was downregulated. MiR-93 overexpression promoted cell proliferation and G1 to S transition. Knocking down CDKN1A promoted cell growth and cell cycle progression in granulosa cells, and CDKN1A re-introduction reversed the promotional role of miR-93. High concentrations of insulin induced upregulation of miR-93, stimulated KGN cells proliferation and reduced CDKN1A expression. CONCLUSIONS miR-93 was increased in PCOS granulosa cells and targeted CDKN1A to promote proliferation and cell cycle progression. Insulin could upregulate the expression of miR-93 and stimulate cell proliferation. This might provide a new insight into the dysfunction of granulosa cells in PCOS.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Obstetrics and Gynecology (L.J., J.H., L.L., Y.C., X.C., X.Z., D.Y.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | | | | | | | | | | | | |
Collapse
|
108
|
Petersen TS, Kristensen SG, Jeppesen JV, Grøndahl ML, Wissing ML, Macklon KT, Andersen CY. Distribution and function of 3',5'-Cyclic-AMP phosphodiesterases in the human ovary. Mol Cell Endocrinol 2015; 403:10-20. [PMID: 25578602 DOI: 10.1016/j.mce.2015.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 12/29/2022]
Abstract
The concentration of the important second messenger cAMP is regulated by phosphodiesterases (PDEs) and hence an attractive drug target. However, limited human data are available about the PDEs in the ovary. The aim of the present study was to describe and characterise the PDEs in the human ovary. Results were obtained by analysis of mRNA microarray data from follicles and granulosa cells (GCs), combined RT-PCR and enzymatic activity analysis in GCs, immunohistochemical analysis of ovarian sections and by studying the effect of PDE inhibitors on progesterone production from cultured GCs. We found that PDE3, PDE4, PDE7 and PDE8 are the major families present while PDE11A was not detected. PDE8B was differentially expressed during folliculogenesis. In cultured GCs, inhibition of PDE7 and PDE8 increased basal progesterone secretion while PDE4 inhibition increased forskolin-stimulated progesterone secretion. In conclusion, we identified PDE3, PDE4, PDE7 and PDE8 as the major PDEs in the human ovary.
Collapse
Affiliation(s)
- T S Petersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark; Medical Department, LEO Pharma, Ballerup 2750, Denmark.
| | - S G Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark
| | - J V Jeppesen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark
| | - M L Grøndahl
- The Fertility Clinic, Herlev Hospital, Copenhagen University Hospital, Copenhagen University, Herlev 2730, Denmark
| | - M L Wissing
- The Fertility Clinic, Holbæk Sygehus, Holbæk 4300, Denmark
| | - K T Macklon
- The Fertility Clinic, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark
| | - C Y Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark
| |
Collapse
|
109
|
Wissing ML, Sonne SB, Westergaard D, Nguyen KD, Belling K, Høst T, Mikkelsen AL. The transcriptome of corona radiata cells from individual MІІ oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women. J Ovarian Res 2014; 7:110. [PMID: 25432544 PMCID: PMC4302704 DOI: 10.1186/s13048-014-0110-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/11/2014] [Indexed: 01/09/2023] Open
Abstract
Background Corona radiata cells (CRCs) refer to the fraction of cumulus cells just adjacent to the oocyte. The CRCs are closely connected to the oocyte throughout maturation and their gene expression profiles might reflect oocyte quality. Polycystic ovary syndrome (PCOS) is a common cause of infertility. It is controversial whether PCOS associate with diminished oocyte quality. The purpose of this study was to compare individual human CRC samples between PCOS patients and controls. Methods All patients were stimulated by the long gonadotropin-releasing hormone (GnRH) agonist protocol. The CRC samples originated from individual oocytes developing into embryos selected for transfer. CRCs were isolated in a two-step denudation procedure, separating outer cumulus cells from the inner CRCs. Extracted RNA was amplified and transcriptome profiling was performed with Human Agilent® arrays. Results The transcriptomes of CRCs showed no individual genes with significant differential expression between PCOS and controls, but gene set enrichment analysis identified several cell cycle- and DNA replication pathways overexpressed in PCOS CRCs (FDR < 0.05). Five of the genes contributing to the up-regulated cell cycle pathways in the PCOS CRCs were selected for qRT-PCR validation in ten PCOS and ten control CRC samples. qRT-PCR confirmed significant up-regulation in PCOS CRCs of cell cycle progression genes HIST1H4C (FC = 2.7), UBE2C (FC = 2.6) and cell cycle related transcription factor E2F4 (FC = 2.5). Conclusion The overexpression of cell cycle-related genes and cell cycle pathways in PCOS CRCs could indicate a disturbed or delayed final maturation and differentiation of the CRCs in response to the human chorionic gonadotropin (hCG) surge. However, this had no effect on the in vitro development of the corresponding embryos. Future studies are needed to clarify whether the up-regulated cell cycle pathways in PCOS CRCs have any clinical implications. Electronic supplementary material The online version of this article (doi:10.1186/s13048-014-0110-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Louise Wissing
- Department of Gynecology-Obstetrics, Holbaek Fertility Clinic, Holbaek Hospital, Smedelundsgade 60, 4300, Holbaek, Denmark.
| | - Si Brask Sonne
- Institute of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - David Westergaard
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet building 208, 2800, Lyngby, Denmark.
| | - Kho do Nguyen
- DTU Multi Assay Core, Technical University of Denmark DTU, 2800, Lyngby, Denmark.
| | - Kirstine Belling
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet building 208, 2800, Lyngby, Denmark.
| | - Thomas Høst
- Department of Gynecology-Obstetrics, Holbaek Fertility Clinic, Holbaek Hospital, Smedelundsgade 60, 4300, Holbaek, Denmark.
| | - Anne Lis Mikkelsen
- Department of Gynecology-Obstetrics, Holbaek Fertility Clinic, Holbaek Hospital, Smedelundsgade 60, 4300, Holbaek, Denmark.
| |
Collapse
|
110
|
Sørensen AE, Wissing ML, Salö S, Englund ALM, Dalgaard LT. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS). Genes (Basel) 2014; 5:684-708. [PMID: 25158044 PMCID: PMC4198925 DOI: 10.3390/genes5030684] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common, though heterogeneous, endocrine aberration in women of reproductive age, with high prevalence and socioeconomic costs. The syndrome is characterized by polycystic ovaries, chronic anovulation and hyperandrogenism, as well as being associated with infertility, insulin resistance, chronic low-grade inflammation and an increased life time risk of type 2 diabetes. MicroRNAs (miRNAs) are small, non-coding RNAs that are able to regulate gene expression at the post-transcriptional level. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that they might serve as potential biomarkers and a new approach for the diagnosis of PCOS. In this review, recent work on miRNAs with respect to PCOS will be summarized. Our understanding of miRNAs, particularly in relation to PCOS, is currently at a very early stage, and additional studies will yield important insight into the molecular mechanisms behind this complex and heterogenic syndrome.
Collapse
Affiliation(s)
- Anja Elaine Sørensen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark.
| | | | - Sofia Salö
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark.
| | | | - Louise Torp Dalgaard
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark.
| |
Collapse
|