101
|
Li JK, Chen C, Liu JY, Shi JZ, Liu SP, Liu B, Wu DS, Fang ZY, Bao Y, Jiang MM, Yuan JH, Qu L, Wang LH. Long noncoding RNA MRCCAT1 promotes metastasis of clear cell renal cell carcinoma via inhibiting NPR3 and activating p38-MAPK signaling. Mol Cancer 2017; 16:111. [PMID: 28659173 PMCID: PMC5490088 DOI: 10.1186/s12943-017-0681-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Background Recent evidences showed that long noncoding RNAs (lncRNAs) are frequently dysregulated and play important roles in various cancers. Clear cell renal cell carcinoma (ccRCC) is one of the leading cause of cancer-related death, largely due to the metastasis of ccRCC. However, the clinical significances and roles of lncRNAs in metastatic ccRCC are still unknown. Methods lncRNA expression microarray analysis was performed to search the dysregulated lncRNA in metastatic ccRCC. quantitative real-time PCR was performed to measure the expression of lncRNAs in human ccRCC samples. Gain-of-function and loss-of-function experiments were performed to investigate the biological roles of lncRNAs on ccRCC cell proliferation, migration, invasion and in vivo metastasis. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and western blot were performed to explore the molecular mechanisms underlying the functions of lncRNAs. Results The microarray analysis identified a novel lncRNA termed metastatic renal cell carcinoma-associated transcript 1 (MRCCAT1), which is highly expressed in metastatic ccRCC tissues and associated with the metastatic properties of ccRCC. Multivariate Cox regression analysis revealed that MRCCAT1 is an independent prognostic factor for ccRCC patients. Overexpression of MRCCAT1 promotes ccRCC cells proliferation, migration, and invasion. Depletion of MRCCAT1 inhibites ccRCC cells proliferation, migration, and invasion in vitro, and ccRCC metastasis in vivo. Mechanistically, MRCCAT1 represses NPR3 transcription by recruiting PRC2 to NPR3 promoter, and subsequently activates p38-MAPK signaling pathway. Conclusions MRCCAT1 is a critical lncRNA that promotes ccRCC metastasis via inhibiting NPR3 and activating p38-MAPK signaling. Our results imply that MRCCAT1 could serve as a prognostic biomarker and therapeutic target for ccRCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0681-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Kuan Li
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Department of Urology, The 517th Hospital of People's Liberation Army, Shanxi, 036301, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing University Clinical School of Medicine, Nanjing, 210002, China
| | - Jia-Yi Liu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jia-Zi Shi
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shu-Peng Liu
- Central laboratory, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Bing Liu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Deng-Shuang Wu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zi-Yu Fang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Ming-Ming Jiang
- Clinical laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Ji-Hang Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China.
| | - Le Qu
- Department of Urology, Jinling Hospital, Nanjing University Clinical School of Medicine, Nanjing, 210002, China.
| | - Lin-Hui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
102
|
Long noncoding RNA CRNDE stabilized by hnRNPUL2 accelerates cell proliferation and migration in colorectal carcinoma via activating Ras/MAPK signaling pathways. Cell Death Dis 2017; 8:e2862. [PMID: 28594403 PMCID: PMC5520914 DOI: 10.1038/cddis.2017.258] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 01/16/2023]
Abstract
Recent studies have furthered our understanding of the function of long noncoding RNAs (lncRNAs) in numerous biological processes, including cancer. This study investigated the expression of a novel lncRNA, colorectal neoplasia differentially expressed (CRNDE), in colorectal carcinoma (CRC) tissues and cells by real-time RT-PCR and in situ hybridization, and its biological function using a series of in vitro and in vivo experiments to determine its potential as a prognostic marker and therapeutic target. CRNDE was found to be upregulated in primary CRC tissues and cells (P<0.05), and the upregulation of CRNDE expression is a powerful predictor of advanced TNM stage (P<0.05) and poor prognosis for CRC patients (P=0.002). The promoting effects of CRNDE on the cell proliferation, cell cycling and metastasis of CRC cells were confirmed both in vitro and in vivo by gain-of-function and loss-of-function experiments. Mechanistically, it was demonstrated that CRNDE could form a functional complex with heterogeneous nuclear ribonucleoprotein U-like 2 protein (hnRNPUL2) and direct the transport of hnRNPUL2 between the nucleus and cytoplasm. hnRNPUL2 that was accumulated in the cytoplasm could interact with CRNDE both physically and functionally, increasing the stability of CRNDE RNA. Moreover, gene expression profile data showed that CRNDE depletion in cells downregulated a series of genes involved in the Ras/mitogen-activated protein kinase signaling pathways. Collectively, these findings provide novel insights into the function and mechanism of lncRNA CRNDE in the pathogenesis of CRC and highlight its potential as a therapeutic target for CRC intervention.
Collapse
|
103
|
Gou Q, Wu K, Zhou JK, Xie Y, Liu L, Peng Y. Profiling and bioinformatic analysis of circular RNA expression regulated by c-Myc. Oncotarget 2017; 8:71587-71596. [PMID: 29069731 PMCID: PMC5641074 DOI: 10.18632/oncotarget.17788] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/26/2017] [Indexed: 02/05/2023] Open
Abstract
The c-Myc transcription factor is involved in cell proliferation, cell cycle and apoptosis by activating or repressing transcription of multiple genes. Circular RNAs (circRNAs) are widely expressed non-coding RNAs participating in the regulation of gene expression. Using a high-throughput microarray assay, we showed that Myc regulates the expression of certain circRNAs. A total of 309 up- and 252 down-regulated circRNAs were identified. Among them, randomly selected 8 circRNAs were confirmed by real-time PCR. Subsequently, Myc-binding sites were found to generally exist in the promoter regions of differentially expressed circRNAs. Based on miRNA sponge mechanism, we constructed circRNAs/miRNAs network regulated by Myc, suggesting that circRNAs may widely regulate protein expression through miRNA sponge mechanism. Lastly, we took advantage of Gene Ontology and KEGG analyses to point out that Myc-regulated circRNAs could impact cell proliferation through affecting Ras signaling pathway and pathways in cancer. Our study for the first time demonstrated that Myc transcription factor regulates the expression of circRNAs, adding a novel component of the Myc tumorigenic program and opening a window to investigate the function of certain circRNAs in tumorigenesis.
Collapse
Affiliation(s)
- Qiheng Gou
- Department of Thoracic Surgery and Lab of Non-Coding RNAs in Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Ke Wu
- Department of Thoracic Surgery and Lab of Non-Coding RNAs in Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jian-Kang Zhou
- Department of Thoracic Surgery and Lab of Non-Coding RNAs in Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yuxin Xie
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Lab of Non-Coding RNAs in Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yong Peng
- Department of Thoracic Surgery and Lab of Non-Coding RNAs in Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
104
|
Chen Q, Zhou H, Yang Y, Chi M, Xie N, Zhang H, Deng X, Leavesley D, Shi H, Xie Y. Investigating the potential of Oxymatrine as a psoriasis therapy. Chem Biol Interact 2017; 271:59-66. [PMID: 28450041 DOI: 10.1016/j.cbi.2017.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 12/29/2022]
Abstract
Psoriasis vulgaris is a chronic inflammatory skin disease, stubbornly intractable, with substantial consequences for patient physical and mental welfare. Approaches currently available to treat psoriasis are not satisfactory due to undesirable side-effects or expense. Psoriasis is characterized by hyperproliferation and inflammation. Oxymatrine, an active component extracted from Sophora flavescens, has been demonstrated to possess anti-proliferation, anti-inflammatory, anti-tumorigenic, immune regulation and pro-apoptotic properties. This investigation presents a detailed retrospective review examining the effect of Oxymatrine on psoriasis and investigates the mechanisms underlying patient responses to Oxymatrine. We confirm that Oxymatrine administration significantly reduced the Psoriasis Area Severity Index score, with high efficacy compared to the control group. In addition, we have found that Oxymatrine significantly inhibits the viability, proliferation and differentiation of human keratinocyte in vitro. Immunohistochemical analysis indicates Oxymatrine significantly suppresses the expression of Pan-Cytokeratin, p63 and keratin 10. The results indicate that the suppression of p63 expression may lead to the anti-proliferation effect of Oxymatrine on human skin keratinocytes. Oxymatrine does not affect the formation of basement membrane, which is very important to maintain the normal function of human skin keratinocytes. In summary, Oxymatrine offers an effective, economical, and safe treatment for patients presenting with intractable psoriasis vulgaris.
Collapse
Affiliation(s)
- Qian Chen
- Ningxia Medical University, Ningxia, China
| | - Hui Zhou
- Department of Dermatology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yinxue Yang
- President of General Hospital of Ningxia Medical University, Ningxia, China
| | - Mingwei Chi
- Medical Affairs Office, General Hospital of Ningxia Medical University, Ningxia, China
| | - Nan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Hong Zhang
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | | | - David Leavesley
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; Tissue Technologies, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Lee Kong Chain School of Medicine, Nanyang Technological University, Singapore
| | - Huijuan Shi
- Department of Dermatology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Yan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
105
|
Gao X, Wen J, Gao P, Zhang G, Zhang G. Overexpression of the long non-coding RNA, linc-UBC1, is associated with poor prognosis and facilitates cell proliferation, migration, and invasion in colorectal cancer. Onco Targets Ther 2017; 10:1017-1026. [PMID: 28260919 PMCID: PMC5328601 DOI: 10.2147/ott.s129343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve comprehensive roles in various diseases, including cancer. lncRNA upregulated in bladder cancer 1 (linc-UBC1) is a notable biomarker of prognosis in certain cancer types; however, its involvement in the progression of colorectal cancer (CRC) remains unknown. The present study aimed to investigate the expression of linc-UBC1 in patients with CRC and to investigate its effect on CRC cells. The expression levels of linc-UBC1 were estimated by reverse transcription-quantitative polymerase chain reaction in clinical CRC specimens and matched adjacent non-tumor mucosa from 96 cases of CRC, as well as in a number of CRC cell lines. In addition, the biological roles of linc-UBC1 were examined using a cell counting kit-8 assay, flow cytometry, and migration and invasion assays following the downregulation of linc-UBC1 by small interfering RNA. The results revealed that linc-UBC1 was significantly overexpressed in CRC tissues and the majority of CRC cell lines compared with the matched non-tumor mucosa and normal intestinal epithelial cells. Furthermore, high expression levels of linc-UBC1 were significantly associated with large tumor size, greater tumor depth, lymph node metastasis, and advanced tumor-node-metastasis stages. Patients with abnormal expression of linc-UBC1 had poorer overall survival times according to Kaplan-Meier analyses. Furthermore, multivariate Cox regression analysis indicated that linc-UBC1 was a significant independent prognostic factor. The results also revealed that reducing the expression of linc-UBC1 led to the inhibition of migration, invasion, and proliferation of CRC cells in vitro. Taken together, the results of the present study suggest that overexpression of linc-UBC1 promotes proliferation and metastasis in CRC, and may be considered as a novel diagnostic marker of CRC.
Collapse
Affiliation(s)
- Xunfeng Gao
- Department of General Surgery, The Second People’s Hospital of Guangdong Province, The Third Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jianfan Wen
- Department of General Surgery, The Second People’s Hospital of Guangdong Province, The Third Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Peng Gao
- Department of General Surgery, The Second People’s Hospital of Guangdong Province, The Third Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Guowei Zhang
- Department of General Surgery, The Second People’s Hospital of Guangdong Province, The Third Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Gangqing Zhang
- Department of General Surgery, The Second People’s Hospital of Guangdong Province, The Third Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
106
|
Cao W, Liu JN, Liu Z, Wang X, Han ZG, Ji T, Chen WT, Zou X. A three-lncRNA signature derived from the Atlas of ncRNA in cancer (TANRIC) database predicts the survival of patients with head and neck squamous cell carcinoma. Oral Oncol 2017; 65:94-101. [PMID: 28109476 DOI: 10.1016/j.oraloncology.2016.12.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/12/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) have important biological functions and can be used as prognostic biomarkers in cancer. To identify a lncRNA prognostic signature for head and neck squamous cell carcinoma (HNSCC). METHOD We analysed RNA-seq data derived from the TANRIC database to identify a lncRNA prognostic signature model using the orthogonal partial least squares discrimination analysis (OPLS-DA) and 1.5-fold expression change criterion methods. The prognosis prediction model based on the lncRNA signatures and clinical parameters were evaluated using the 5-fold cross validation method. RESULTS A total of 84 out of 3199 lncRNAs were significantly associated with the survival of patients with HNSCC (log-rank test P<0.01). Using the OPLS-DA and 1.5-fold change selection criterion, 5 lncRNAs (KTN1-AS1, LINC00460, GUSBP11, LINC00923 and RP5-894A10.6) were further selected. The prediction power of each combination of the 5 lncRNAs was evaluated through the receiver operating characteristic (ROC) curve and a three-lncRNA panel (KTN1-AS1, LINC00460 and RP5-894A10.6) achieved the highest prognostic prediction power (AUC 0.68, 95% CI 0.60-0.76, P<0.0001) in the cohort. The patients were categorized into high- and low-risk groups based on their three-lncRNA profiles. Patients with high-risk scores had worse overall survival than those with low risk scores in the cohort (log-rank test P=0.0003). Multivariable Cox regression analyses showed that the lncRNA signature and tumour grade were independent prognostic factors for patients with HNSCC. CONCLUSIONS Our findings showed that the three-lncRNA signature might be a novel biomarker for the accurate prognosis prediction of patients with HNSCC.
Collapse
Affiliation(s)
- Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jian-Nan Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zeqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xu Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tong Ji
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| | - Wan-Tao Chen
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| | - Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
107
|
Stefan E, Bister K. MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. Curr Top Microbiol Immunol 2017; 407:117-151. [PMID: 28466200 DOI: 10.1007/82_2017_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prototypes of the human MYC and RAF gene families are orthologs of animal proto-oncogenes that were originally identified as transduced alleles in the genomes of highly oncogenic retroviruses. MYC and RAF genes are now established as key regulatory elements in normal cellular physiology, but also as major cancer driver genes. Although the predominantly nuclear MYC proteins and the cytoplasmic RAF proteins have different biochemical functions, they are functionally linked in pivotal signaling cascades and circuits. The MYC protein is a transcription factor and together with its dimerization partner MAX holds a central position in a regulatory network of bHLH-LZ proteins. MYC regulates transcription conducted by all RNA polymerases and controls virtually the entire transcriptome. Fundamental cellular processes including distinct catabolic and anabolic branches of metabolism, cell cycle regulation, cell growth and proliferation, differentiation, stem cell regulation, and apoptosis are under MYC control. Deregulation of MYC expression by rearrangement or amplification of the MYC locus or by defects in kinase-mediated upstream signaling, accompanied by loss of apoptotic checkpoints, leads to tumorigenesis and is a hallmark of most human cancers. The critically controlled serine/threonine RAF kinases are central nodes of the cytoplasmic MAPK signaling cascade transducing converted extracellular signals to the nucleus for reshaping transcription factor controlled gene expression profiles. Specific mutations of RAF kinases, such as the prevalent BRAF(V600E) mutation in melanoma, or defects in upstream signaling or feedback loops cause decoupled kinase activities which lead to tumorigenesis. Different strategies for pharmacological interference with MYC- or RAF-induced tumorigenesis are being developed and several RAF kinase inhibitors are already in clinical use.
Collapse
Affiliation(s)
- Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
108
|
LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun 2016; 7:13608. [PMID: 27905400 PMCID: PMC5146280 DOI: 10.1038/ncomms13608] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence and heterogeneity of hepatocellular carcinoma (HCC). However, the biology of hepatic CSCs remains largely undefined. Through analysis of transcriptome microarray data, we identify a long noncoding RNA (lncRNA) called lncBRM, which is highly expressed in liver CSCs and HCC tumours. LncBRM is required for the self-renewal maintenance of liver CSCs and tumour initiation. In liver CSCs, lncBRM associates with BRM to initiate the BRG1/BRM switch and the BRG1-embedded BAF complex triggers activation of YAP1 signalling. Moreover, expression levels of lncBRM together with YAP1 signalling targets are positively correlated with tumour severity of HCC patients. Therefore, lncBRM and YAP1 signalling may serve as biomarkers for diagnosis and potential drug targets for HCC. Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence of hepatocellular carcinoma. Here, the authors show that the long coding RNA, LcnBRM, regulates the self-renewal of liver CSCs and tumour initiation through binding to BAF complex thereby activating YAP1.
Collapse
|
109
|
Kang CM, Hu YW, Nie Y, Zhao JY, Li SF, Chu S, Li HX, Huang QS, Qiu YR. Long non-coding RNA RP5-833A20.1 inhibits proliferation, metastasis and cell cycle progression by suppressing the expression of NFIA in U251 cells. Mol Med Rep 2016; 14:5288-5296. [PMID: 27779670 DOI: 10.3892/mmr.2016.5854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
Abstract
Early reports suggest that nuclear factor IA (NFIA) is important in the pathogenesis of glioma. Our previous study demonstrated that the long non‑coding RNA (lncRNA), RP5‑833A20.1, suppressed the expression of NFIA in THP‑1 macrophage-derived foam cells. However, the effect and possible mechanism of RP5‑833A20.1 on glioma remains to be fully elucidated, and whether the NFIA-dependent pathway is involved in its progression has not been investigated. In the present study, the mechanisms by which RP5‑833A20.1 regulates the expression of NFIA in glioma were investigated. The expression levels of RP5‑833A20.1 and NFIA were determined in U251 cells and clinical samples using reverse transcription‑quantitative polymerase chain reaction (PCR) analysis. The effects of RP5‑833A20.1 on cell proliferation, invasion, cell cycle and apoptosis were evaluated using in vitro assays. The potential changes in protein expression were investigated using western blot analysis. The methylation status of the CpG island in the NFIA promoter was determined using bisulfite PCR (BSP) sequencing. It was found that the expression of RP5‑833A20.1 was downregulated, whereas the expression of NFIA was upregulated in glioma tissues, compared with corresponding adjacent nontumor tissues from 20 patients with glioma. The overexpression of RP5‑833A20.1 inhibited proliferation and cell cycle progression, and induced apoptosis in the U251 cells. The mRNA and protein levels of NFIA were markedly inhibited by overexpression of RP5‑833A20.1 in the U251 cells. The overexpression of RP5‑833A20.1 increased the expression of microRNA‑382‑5p in the U251 cells. The BSP assay revealed that the overexpression of RP5‑833A20.1 enhanced the methylation level of the NFIA promoter. These results demonstrated that RP5‑833A20.1 inhibited tumor cell proliferation, induced apoptosis and inhibited cell‑cycle progression by suppressing the expression of NFIA in U251 cells. Collectively, these results indicated RP5‑833A20.1 as a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Nie
- Department of Anesthesiology, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510510, P.R. China
| | - Jia-Yi Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Xia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing-Shui Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
110
|
Ho TT, Huang J, Zhou N, Zhang Z, Koirala P, Zhou X, Wu F, Ding X, Mo YY. Regulation of PCGEM1 by p54/nrb in prostate cancer. Sci Rep 2016; 6:34529. [PMID: 27682980 PMCID: PMC5041109 DOI: 10.1038/srep34529] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023] Open
Abstract
PCGEM1 is a long non-coding RNA (lncRNA) that is often upregulated in prostate cancer. However, little is known how PCGEM1 is regulated. In the present study, we show transcriptional regulation of PCGEM1 in response to androgen deprivation by p54/nrb. While ectopic expression of p54/nrb increases, suppression of p54/nrb by RNAi or knockout (KO) reduces PCGEM1. Moreover, rescue experiments indicate that re-expression of p54/nrb in KO cells restores the ability to induce PCGEM1, leading to upregulation of the androgen receptor splice variant AR3 which has been shown to play a role in castration resistance. Finally, 3,3′-Diindolylmethane (DIM), a known chemoprevention agent, is capable of suppressing PCGEM1 expression by preventing the interaction of p54/nrb with the PCGEM1 promoter. In particular, DIM reduces tumor growth by suppression of PCGEM1 and promoting apoptosis in the castrated xenograft mouse model. Together, these results demonstrate a novel mechanism of p54/nrb-mediated expression of PCGEM1 and AR3, contributing to castration resistance in prostate cancer.
Collapse
Affiliation(s)
- Tsui-Ting Ho
- Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jianguo Huang
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Nanjiang Zhou
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,System Biosciences, Mountain View, CA, USA
| | - Ziqiang Zhang
- Department of Pulmonary Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Pratirodh Koirala
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Xianfeng Ding
- Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yin-Yuan Mo
- Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
111
|
Ma Y, Yang Y, Wang F, Moyer MP, Wei Q, Zhang P, Yang Z, Liu W, Zhang H, Chen N, Wang H, Wang H, Qin H. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut 2016; 65:1494-504. [PMID: 25994219 DOI: 10.1136/gutjnl-2014-308392] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) are emerging as key molecules in cancers, yet their potential molecular mechanisms are not well understood. The objective of this study is to examine the expression and functions of lncRNAs in the development of colorectal cancer (CRC). METHODS LncRNA expression profiling of CRC, adenoma and normal colorectal tissues was performed to identify tumour-related lncRNAs involved in colorectal malignant transformation. Then, we used quantitative reverse transcription PCR assays to measure the tumour-related lncRNA and to assess its association with survival and response to adjuvant chemotherapy in 252 patients with CRC. The mechanisms of CCAL function and regulation in CRC were examined using molecular biological methods. RESULTS We identified colorectal cancer-associated lncRNA (CCAL) as a key regulator of CRC progression. Patients whose tumours had high CCAL expression had a shorter overall survival and a worse response to adjuvant chemotherapy than patients whose tumours had low CCAL expression. CCAL promoted CRC progression by targeting activator protein 2α (AP-2α), which in turn activated Wnt/β-catenin pathway. CCAL induced multidrug resistance (MDR) through activating Wnt/β-catenin signalling by suppressing AP-2α and further upregulating MDR1/P-gp expression. In addition, we found that histone H3 methylation and deacetylases contributed to the upregulation of CCAL in CRC. CONCLUSIONS Our results suggest that CCAL is a crucial oncogenic regulator involved in CRC tumorigenesis and progression.
Collapse
Affiliation(s)
- Yanlei Ma
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, P. R. China Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Yongzhi Yang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, P. R. China
| | - Feng Wang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, P. R. China Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Qing Wei
- Departments of Pathology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, P. R. China
| | - Peng Zhang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, P. R. China
| | - Zhe Yang
- Department of Surgery, The Sixth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Weijie Liu
- Department of Surgery, The Sixth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Huizhen Zhang
- Department of Pathology, The Sixth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Niwei Chen
- Department of Digestive Endoscopy, The Sixth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hua Wang
- Departments of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Huanlong Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, P. R. China
| |
Collapse
|
112
|
Knight JM, Kim E, Ivanov I, Davidson LA, Goldsby JS, Hullar MAJ, Randolph TW, Kaz AM, Levy L, Lampe JW, Chapkin RS. Comprehensive site-specific whole genome profiling of stromal and epithelial colonic gene signatures in human sigmoid colon and rectal tissue. Physiol Genomics 2016; 48:651-9. [PMID: 27401218 PMCID: PMC5111881 DOI: 10.1152/physiolgenomics.00023.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/04/2016] [Indexed: 01/28/2023] Open
Abstract
The strength of associations between various exposures (e.g., diet, tobacco, chemopreventive agents) and colorectal cancer risk may partially depend on the complex interaction between epithelium and stroma across anatomic subsites. Currently, baseline data describing genome-wide coding and long noncoding gene expression profiles in the healthy colon specific to tissue type and location are lacking. Therefore, colonic mucosal biopsies from 10 healthy participants who were enrolled in a clinical study to evaluate effects of lignan supplementation on gut resiliency were used to characterize the site-specific global gene expression signatures associated with stromal vs. epithelial cells in the sigmoid colon and rectum. Using RNA-seq, we demonstrate that tissue type and location patterns of gene expression and upstream regulatory pathways are distinct. For example, consistent with a key role of stroma in the crypt niche, mRNAs associated with immunoregulatory and inflammatory processes (i.e., CXCL14, ANTXR1), smooth muscle contraction (CALD1), proliferation and apoptosis (GLP2R, IGFBP3), and modulation of extracellular matrix (MMP2, COL3A1, MFAP4) were all highly expressed in the stroma. In comparison, HOX genes (HOXA3, HOXD9, HOXD10, HOXD11, and HOXD-AS2, a HOXD cluster antisense RNA 2), and WNT5B expression were also significantly higher in sigmoid colon compared with the rectum. These findings provide strong impetus for considering colorectal tissue subtypes and location in future observational studies and clinical trials designed to evaluate the effects of exposures on colonic health.
Collapse
Affiliation(s)
- Jason M Knight
- Department of Electrical Engineering, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Eunji Kim
- Department of Electrical Engineering, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Laurie A Davidson
- Department of Nutrition & Food Science, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Jennifer S Goldsby
- Department of Nutrition & Food Science, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Meredith A J Hullar
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and
| | - Timothy W Randolph
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and
| | - Andrew M Kaz
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and Gastroenterology Section, VA Puget Sound Medical Center, Seattle, Washington
| | - Lisa Levy
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and
| | - Johanna W Lampe
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and
| | - Robert S Chapkin
- Department of Nutrition & Food Science, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas;
| |
Collapse
|
113
|
Kawasaki Y, Komiya M, Matsumura K, Negishi L, Suda S, Okuno M, Yokota N, Osada T, Nagashima T, Hiyoshi M, Okada-Hatakeyama M, Kitayama J, Shirahige K, Akiyama T. MYU, a Target lncRNA for Wnt/c-Myc Signaling, Mediates Induction of CDK6 to Promote Cell Cycle Progression. Cell Rep 2016; 16:2554-2564. [PMID: 27568568 DOI: 10.1016/j.celrep.2016.08.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of Wnt/β-catenin signaling is a major driving force in colon cancer. Wnt/β-catenin signaling induces the expression of the transcription factor c-Myc, leading to cell proliferation and tumorigenesis. c-Myc regulates multiple biological processes through its ability to directly modulate gene expression. Here, we identify a direct target of c-Myc, termed MYU, and show that MYU is upregulated in most colon cancers and required for the tumorigenicity of colon cancer cells. Furthermore, we demonstrate that MYU associates with the RNA binding protein hnRNP-K to stabilize CDK6 expression and thereby promotes the G1-S transition of the cell cycle. These results suggest that the MYU/hnRNP-K/CDK6 pathway functions downstream of Wnt/c-Myc signaling and plays a critical role in the proliferation and tumorigenicity of colon cancer cells.
Collapse
Affiliation(s)
- Yoshihiro Kawasaki
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Mimon Komiya
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kosuke Matsumura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Lumi Negishi
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Sakiko Suda
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masumi Okuno
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoko Yokota
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Osada
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takeshi Nagashima
- Laboratory for Cellular Systems Modeling, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masaya Hiyoshi
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mariko Okada-Hatakeyama
- Laboratory for Cellular Systems Modeling, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Joji Kitayama
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
114
|
LncSox4 promotes the self-renewal of liver tumour-initiating cells through Stat3-mediated Sox4 expression. Nat Commun 2016; 7:12598. [PMID: 27553854 PMCID: PMC4999516 DOI: 10.1038/ncomms12598] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Liver cancer has a tendency to develop asymptomatically in patients, so most patients are diagnosed at a later stage. Accumulating evidence implicates that liver tumour-initiating cells (TICs) as being responsible for liver cancer initiation and recurrence. However, the molecular mechanism of liver TIC self-renewal is poorly understood. Here we discover that a long noncoding RNA (lncRNA) termed LncSox4 is highly expressed in hepatocellular carcinoma (HCC) tissues and in liver TICs. We find that LncSox4 is required for liver TIC self-renewal and tumour initiation. LncSox4 interacts with and recruits Stat3 to the Sox4 promoter to initiate the expression of Sox4, which is highly expressed in liver TICs and required for liver TIC self-renewal. The expression level of Sox4 correlates with HCC development, clinical severity and prognosis of patients. Altogether, we find that LncSox4 is highly expressed in liver TICs and is required for their self-renewal. Liver tumour-initiating cells (TICs) may be responsible for liver cancer initiation and recurrence. In this article, the authors show that a previously unidentified lncRNA, LncSox4, is highly expressed in liver cancer TICs and regulates TIC self-renewal through the Stat3/SOX4 axis.
Collapse
|
115
|
Abstract
Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism.
Collapse
Affiliation(s)
- Zhen-Dong Xiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
116
|
Li Y, Huang S, Li Y, Zhang W, He K, Zhao M, Lin H, Li D, Zhang H, Zheng Z, Huang C. Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biol 2016; 37:14205-14215. [PMID: 27553025 DOI: 10.1007/s13277-016-5254-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/15/2016] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) are aberrantly expressed in colorectal cancer (CRC); however, only few CRC-related lncRNAs have been characterized. In this study, we aimed to dig out potential dysregulated lncRNAs that are highly involved in CRC development. Using a lncRNA-mining approach, we performed lncRNA expression profiling in a large CRC cohort from Gene Expression Ominus (GEO), GSE39582 test series (N = 585). We identified 31 downregulated lncRNAs and 16 upregulated lncRNAs from the GSE39582 test series patients (566 tumor patients and 19 normal controls). The reliability of lncRNA expression profiles was further confirmed by RT-qPCR in carcinoma tissues and paired adjacent normal tissues from 30 CRC patients, also in the serum from 109 CRC patients, and 99 normal individuals. We demonstrated that the expression of SLC25A25-AS1, which has not been reported previously, was significantly decreased in both the tumor tissues (27 out of 30) and serum of CRC patients. SLC25A25-AS1 overexpression significantly inhibited proliferation and colony formation in colorectal cancer cell lines, and downregulation of SLC25A25-AS1 obviously enhanced chemoresistance and promoted EMT process in vitro associated with Erk and p38 signaling pathway activation. Therefore, SLC25A25-AS1 was determined to play a tumor suppressive role in CRC. Our results might provide a lncRNA-based target for CRC treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shengkai Huang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yan Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weilong Zhang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kun He
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mei Zhao
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Hong Lin
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongdong Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Honggang Zhang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhaoxu Zheng
- Department of Abdomen Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|
117
|
Bida O, Gidoni M, Ideses D, Efroni S, Ginsberg D. A novel mitosis-associated lncRNA, MA-linc1, is required for cell cycle progression and sensitizes cancer cells to Paclitaxel. Oncotarget 2016; 6:27880-90. [PMID: 26337085 PMCID: PMC4695032 DOI: 10.18632/oncotarget.4944] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are major regulators of many cellular processes including cell cycle progression and tumorigenesis. In this study, we identify a novel lncRNA, MA-linc1, and reveal its effects on cell cycle progression and cancer growth. Inhibition of MA-linc1 expression alters cell cycle distribution, leading to a decrease in the number of G1 cells and a concomitant increase in all other stages of the cell cycle, and in particular G2/M, suggesting its involvement in the regulation of M phase. Accordingly, knock down of MA-linc1 inhibits M phase exit upon release from a mitotic block. We further demonstrate that MA-linc1 predominantly functions in cis to repress expression of its neighboring gene, Purα, which is often deleted in human cancers and whose ectopic expression inhibits cell cycle progression. Knock down of Purα partially rescues the MA-linc1 dependent inhibition of M phase exit. In agreement with its suggested role in M phase, inhibition of MA-linc1 enhances apoptotic cell death induced by the antimitotic drug, Paclitaxel and this enhancement of apoptosis is rescued by Purα knockdown. Furthermore, high levels of MA-linc1 are associated with reduced survival in human breast and lung cancer patients. Taken together, our data identify MA-linc1 as a novel lncRNA regulator of cell cycle and demonstrate its potential role in cancer progression and treatment.
Collapse
Affiliation(s)
- Or Bida
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Moriah Gidoni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Doron Ginsberg
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
118
|
Zhang P, Cao L, Fan P, Mei Y, Wu M. LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation. EMBO Rep 2016; 17:1204-20. [PMID: 27317567 PMCID: PMC4967955 DOI: 10.15252/embr.201642067] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 01/26/2023] Open
Abstract
The c-Myc proto-oncogene is activated in more than half of all human cancers. However, the precise regulation of c-Myc protein stability is unknown. Here, we show that the lncRNA-MIF (c-Myc inhibitory factor), a c-Myc-induced long non-coding RNA, is a competing endogenous RNA for miR-586 and attenuates the inhibitory effect of miR-586 on Fbxw7, an E3 ligase for c-Myc, leading to increased Fbxw7 expression and subsequent c-Myc degradation. Our data reveal the existence of a feedback loop between c-Myc and lncRNA-MIF, through which c-Myc protein stability is finely controlled. Additionally, we show that the lncRNA-MIF inhibits aerobic glycolysis and tumorigenesis by suppressing c-Myc and miR-586.
Collapse
Affiliation(s)
- Pengfei Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Limian Cao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Pingsheng Fan
- Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yide Mei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| |
Collapse
|
119
|
Marchese FP, Grossi E, Marín-Béjar O, Bharti SK, Raimondi I, González J, Martínez-Herrera DJ, Athie A, Amadoz A, Brosh RM, Huarte M. A Long Noncoding RNA Regulates Sister Chromatid Cohesion. Mol Cell 2016; 63:397-407. [PMID: 27477908 DOI: 10.1016/j.molcel.2016.06.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/18/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in diverse cellular processes through multiple mechanisms. Here, we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), that is transcriptionally activated by MYC and is upregulated in multiple cancer types. The expression of CONCR is cell cycle regulated, and it is required for cell-cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication and sister chromatid cohesion. These findings unveil a direct role for an lncRNA in the establishment of sister chromatid cohesion by modulating DDX11 enzymatic activity.
Collapse
Affiliation(s)
- Francesco P Marchese
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Elena Grossi
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Oskar Marín-Béjar
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Ivan Raimondi
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Dannys Jorge Martínez-Herrera
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Alejandro Athie
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Alicia Amadoz
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Maite Huarte
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 55 Pio XII Avenue, 31008 Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), 31008 Pamplona, Spain.
| |
Collapse
|
120
|
Kim T, Cui R, Jeon YJ, Fadda P, Alder H, Croce CM. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget 2016; 6:18780-9. [PMID: 26003165 PMCID: PMC4662455 DOI: 10.18632/oncotarget.3909] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
The transcription factor MYC is a proto-oncogene regulating cell proliferation, cell cycle, apoptosis and metabolism. The recent identification of MYC-regulated long noncoding RNAs (lncRNAs) expands our knowledge of the role of lncRNAs in MYC functions. Here, we identify MYC-repressed lncRNAs named MYCLo-4, -5 and -6 by comparing 3 categories of lncRNAs (downregulated in highly MYC-expressing colorectal cancer, up-regulated by MYC knockdown in HCT116, upregulated by MYC knockdown in RKO). The MYC-repressed MYCLos are implicated in MYC-modulated cell proliferation through cell cycle regulation. By screening cell cycle-related genes regulated by MYC and the MYC-repressed MYCLos, we identified the MYC-repressed gene GADD45A as a target gene of the MYC-repressed MYCLos such as MYCLo-4 and MYCLo-6.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ri Cui
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Young-Jun Jeon
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Paolo Fadda
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
121
|
Role of HCP5-miR-139-RUNX1 Feedback Loop in Regulating Malignant Behavior of Glioma Cells. Mol Ther 2016; 24:1806-1822. [PMID: 27434586 DOI: 10.1038/mt.2016.103] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 05/01/2016] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of long noncoding RNAs has recently been reported in tumorigenesis and plays a pivotal role in regulating malignant behavior of cancers. In this study, we confirmed that the long noncoding RNAs human histocompatibility leukocyte antigen (HLA) complex P5 (HCP5) was up-regulated in glioma tissues as well as in U87 and U251 cells. Knockdown of HCP5 inhibited the malignant biological behavior of glioma cells by reducing proliferation, migration and invasion, and inducing apoptosis. HCP5 regulated the malignant behavior of glioma cells by binding to microRNA-139, which functions as a tumor suppressor. Moreover, knockdown of HCP5 down-regulated Runt-related transcription factor 1, a direct and functional downstream target of microRNA-139 that is involved in microRNA-139-mediated tumor-suppressive effects in glioma cells. Runt-related transcription factor 1 increased promoter activities and upregulated expression of the oncogenic gene astrocyte elevated gene-1 (AEG-1). Runt-related transcription factor 1 also increased the promoter activities and expression of HCP5, which showed a positive feedback loop in regulating the malignant behavior of glioma cells. In conclusion, this study demonstrated that the HCP5-microRNA-139- Runt-related transcription factor 1 feedback loop plays a pivotal role in regulating the malignant behavior of glioma cells, which may provide a potential therapeutic strategy for treating glioma.
Collapse
|
122
|
TU ZHENBO, HE DU, DENG XINZHOU, XIONG MENG, HUANG XIAOXING, LI XINRAN, HAO LING, DING QIANSHAN, ZHANG QIUPING. An eight-long non-coding RNA signature as a candidate prognostic biomarker for lung cancer. Oncol Rep 2016; 36:215-22. [DOI: 10.3892/or.2016.4817] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 11/05/2022] Open
|
123
|
Guo H, Liu J, Ben Q, Qu Y, Li M, Wang Y, Chen W, Zhang J. The aspirin-induced long non-coding RNA OLA1P2 blocks phosphorylated STAT3 homodimer formation. Genome Biol 2016; 17:24. [PMID: 26898989 PMCID: PMC4762163 DOI: 10.1186/s13059-016-0892-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/01/2016] [Indexed: 02/06/2023] Open
Abstract
Background Although the chemopreventive effects of aspirin have been extensively investigated, the roles of many cell components, such as long non-coding RNAs, in these effects are still not completely understood. Results We identify an aspirin-induced upregulated lncRNA, OLA1P2, in human colorectal cancer. Aspirin induces demethylation of the FOXD3 promoter and promotes expression of the FOXD3 gene. Subsequently, upregulated FOXD3 protein transcriptionally activates lncRNA OLA1P2 expression. OLA1P2 upregulation markedly affects STAT3 signaling pathway activity by inhibiting the nuclear import of phosphorylated STAT3. The phosphorylation of tyrosine-705 of STAT3 is the first step in OLA1P2 binding, and the formation of phosphorylated STAT3 homodimers is subsequently blocked. OLA1P2 interacts directly with STAT3 due to OLA1P2 sharing the same conservative STAT3 transcription response element as STAT3 targets. Regular use of aspirin dramatically decreases the number of metastatic nodules of cancer cells in immunodeficient mouse lungs, and OLA1P2 silencing markedly weakens the anti-metastatic activity of aspirin in the lungs. Additionally, low OLA1P2 levels are associated with malignant transformation and lower overall survival in cancers. Conclusions The present study finds that the aspirin-FOXD3-OLA1P2-STAT3 axis exhibits exciting anticancer effects and provides new insights into the chemopreventive mechanisms underlying aspirin use. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0892-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, PR China.
| | - Jun Liu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Qiwen Ben
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Yuehong Qu
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, PR China.
| | - Man Li
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, PR China.
| | - Ying Wang
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, PR China.
| | - Wantao Chen
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Jianjun Zhang
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China.
| |
Collapse
|
124
|
Abstract
It is increasingly evident that many of the genomic mutations in cancer reside inside regions that do not encode proteins. However, these regions are often transcribed into long noncoding RNAs (lncRNAs). The recent application of next-generation sequencing to a growing number of cancer transcriptomes has indeed revealed thousands of lncRNAs whose aberrant expression is associated with different cancer types. Among the few that have been functionally characterized, several have been linked to malignant transformation. Notably, these lncRNAs have key roles in gene regulation and thus affect various aspects of cellular homeostasis, including proliferation, survival, migration or genomic stability. This review aims to summarize current knowledge of lncRNAs from the cancer perspective. It discusses the strategies that led to the identification of cancer-related lncRNAs and the methodologies and challenges involving the study of these molecules, as well as the imminent applications of these findings to the clinic.
Collapse
|
125
|
Reply to Hart et al.: MINCR and MYC: More than expression correlation. Proc Natl Acad Sci U S A 2016; 113:E498. [PMID: 26811501 DOI: 10.1073/pnas.1520413113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
126
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
127
|
Liu A, Liu S. Noncoding RNAs in Growth and Death of Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:137-72. [DOI: 10.1007/978-981-10-1498-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
128
|
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are changing how researchers view eukaryotic gene regulation. Once considered to be non-functional products of low-level aberrant transcription from non-coding regions of the genome, lncRNAs are now viewed as important epigenetic regulators and several lncRNAs have now been demonstrated to be critical players in the development and/or maintenance of cancer. Similarly, the emerging variety of interactions between lncRNAs and MYC, a well-known oncogenic transcription factor linked to most types of cancer, have caught the attention of many biomedical researchers. Investigations exploring the dynamic interactions between lncRNAs and MYC, referred to as the lncRNA-MYC network, have proven to be especially complex. Genome-wide studies have shown that MYC transcriptionally regulates many lncRNA genes. Conversely, recent reports identified lncRNAs that regulate MYC expression both at the transcriptional and post-transcriptional levels. These findings are of particular interest because they suggest roles of lncRNAs as regulators of MYC oncogenic functions and the possibility that targeting lncRNAs could represent a novel avenue to cancer treatment. Here, we briefly review the current understanding of how lncRNAs regulate chromatin structure and gene transcription, and then focus on the new developments in the emerging field exploring the lncRNA-MYC network in cancer.
Collapse
Affiliation(s)
- Michael J. Hamilton
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Matthew D. Young
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Silvia Sauer
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
129
|
Hu Z, Lin D, Qi J, Qiu M, Lv Q, Li Q, Lin Z, Liao Z, Pan Y, Jin O, Wu Y, Gu J. Serum from patients with ankylosing spondylitis can increase PPARD, fra-1, MMP7, OPG and RANKL expression in MG63 cells. Clinics (Sao Paulo) 2015; 70:738-42. [PMID: 26602520 PMCID: PMC4642487 DOI: 10.6061/clinics/2015(11)04] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To explore the effects of serum from patients with ankylosing spondylitis on the canonical Wnt/β-catenin pathway and to assess whether the serum has an osteogenic effect in MG63 cells. METHODS MG63 cells were cultured with serum from 45 ankylosing spondylitis patients, 30 healthy controls, or 45 rheumatoid arthritis patients. The relative PPARD, fra-1, MMP7, OPG and RANKL mRNA levels were measured using quantitative real-time polymerase chain reaction. Associations between gene expression and patient demographics and clinical assessments were then analyzed. RESULTS MG63 cells treated with serum from ankylosing spondylitis patients had higher PPARD, fra-1, MMP7 and OPG gene expression than did cells treated with serum from controls or rheumatoid arthritis patients (all p<0.05). RANKL expression was higher in MG63 cells treated with serum from patients with ankylosing spondylitis or rheumatoid arthritis than in those treated with serum from controls (both p<0.05). The OPG/RANKL ratio was also higher in MG63 cells treated with serum from ankylosing spondylitis patients than in those treated with serum from controls (p<0.05). No associations were found between the expression of the five genes and the patient demographics and clinical assessments (all p>0.05). CONCLUSIONS Serum from ankylosing spondylitis patients increases PPARD, fra-1, MMP7, OPG and RANKL expression and the OPG/RANKL ratio in MG63 cells; these effects may be due to the stimulatory effect of the serum on the Wnt pathway.
Collapse
Affiliation(s)
- Zaiying Hu
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Dongfang Lin
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Jun Qi
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Minli Qiu
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Qing Lv
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Qiuxia Li
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Zhiming Lin
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Zetao Liao
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Yunfeng Pan
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Ou Jin
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Yuqiong Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
| | - Jieruo Gu
- The Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China
- Corresponding author: E-mail:
| |
Collapse
|
130
|
MINCR is a MYC-induced lncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 2015; 112:E5261-70. [PMID: 26351698 DOI: 10.1073/pnas.1505753112] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the established role of the transcription factor MYC in cancer, little is known about the impact of a new class of transcriptional regulators, the long noncoding RNAs (lncRNAs), on MYC ability to influence the cellular transcriptome. Here, we have intersected RNA-sequencing data from two MYC-inducible cell lines and a cohort of 91 B-cell lymphomas with or without genetic variants resulting in MYC overexpression. We identified 13 lncRNAs differentially expressed in IG-MYC-positive Burkitt lymphoma and regulated in the same direction by MYC in the model cell lines. Among them, we focused on a lncRNA that we named MYC-induced long noncoding RNA (MINCR), showing a strong correlation with MYC expression in MYC-positive lymphomas. To understand its cellular role, we performed RNAi and found that MINCR knockdown is associated with an impairment in cell cycle progression. Differential gene expression analysis after RNAi showed a significant enrichment of cell cycle genes among the genes down-regulated after MINCR knockdown. Interestingly, these genes are enriched in MYC binding sites in their promoters, suggesting that MINCR acts as a modulator of the MYC transcriptional program. Accordingly, MINCR knockdown was associated with a reduction in MYC binding to the promoters of selected cell cycle genes. Finally, we show that down-regulation of Aurora kinases A and B and chromatin licensing and DNA replication factor 1 may explain the reduction in cellular proliferation observed on MINCR knockdown. We, therefore, suggest that MINCR is a newly identified player in the MYC transcriptional network able to control the expression of cell cycle genes.
Collapse
|
131
|
Qiu M, Xu Y, Wang J, Zhang E, Sun M, Zheng Y, Li M, Xia W, Feng D, Yin R, Xu L. A novel lncRNA, LUADT1, promotes lung adenocarcinoma proliferation via the epigenetic suppression of p27. Cell Death Dis 2015; 6:e1858. [PMID: 26291312 PMCID: PMC4558496 DOI: 10.1038/cddis.2015.203] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to regulate the development and progression of various cancers. However, few lncRNAs have been well characterized in lung adenocarcinoma (LUAD). Here, we identified the expression profile of lncRNAs and protein-coding genes via microarrays analysis of paired LUAD tissues and adjacent non-tumor tissues from five female non-smokes with LUAD. A total of 498 lncRNAs and 1691 protein-coding genes were differentially expressed between LUAD tissues and paired adjacent normal tissues. A novel lncRNA, LUAD transcript 1 (LUADT1), which is highly expressed in LUAD and correlates with T stage, was characterized. Both in vitro and in vivo data showed that LUADT1 knockdown significantly inhibited proliferation of LUAD cells and induced cell cycle arrest at the G0–G1 phase. Further analysis indicated that LUADT1 may regulate cell cycle progression by epigenetically inhibiting the expression of p27. RNA immunoprecipitation and chromatin immunoprecipitation assays confirmed that LUADT1 binds to SUZ12, a core component of polycomb repressive complex 2, and mediates the trimethylation of H3K27 at the promoter region of p27. The negative correlation between LUADT1 and p27 expression was confirmed in LUAD tissue samples. These data suggested that a set of lncRNAs and protein-coding genes were differentially expressed in LUAD. LUADT1 is an oncogenic lncRNA that regulates LUAD progression, suggesting that dysregulated lncRNAs may serve as key regulatory factors in LUAD progression.
Collapse
Affiliation(s)
- M Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Y Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,The First Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - J Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - E Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210000, China
| | - M Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210000, China
| | - Y Zheng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,Department of Nursing, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - M Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - W Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - D Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - R Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - L Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| |
Collapse
|