101
|
Abstract
The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge and occur primarily in antigenic epitopes, the antibody-binding domains of the viral surface protein haemagglutinin. Here we develop a fitness model for haemagglutinin that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a strain: adaptive epitope changes and deleterious mutations outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens that integrates antigenic phenotypes with other viral functions coupled by genetic linkage.
Collapse
|
102
|
Neher RA. Genetic Draft, Selective Interference, and Population Genetics of Rapid Adaptation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135920] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard A. Neher
- Max Planck Institute for Developmental Biology, Tübingen 72070, Germany;
| |
Collapse
|
103
|
Chan CHS, Hamblin S, Tanaka MM. The effects of linkage on comparative estimators of selection. BMC Evol Biol 2013; 13:244. [PMID: 24199711 PMCID: PMC3828407 DOI: 10.1186/1471-2148-13-244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/29/2013] [Indexed: 11/10/2022] Open
Abstract
Background A major goal of molecular evolution is to determine how natural selection has shaped the evolution of a gene. One approach taken by methods such as KA/KS and the McDonald-Kreitman (MK) test is to compare the frequency of non-synonymous and synonymous changes. These methods, however, rely on the assumption that a change in frequency of one mutation will not affect changes in frequency of other mutations. Results We demonstrate that linkage between sites can bias measures of selection based on synonymous and non-synonymous changes. Using forward simulation of a Wright-Fisher process, we show that hitch-hiking of deleterious mutations with advantageous mutations can lead to overestimation of the number of adaptive substitutions, while background selection and clonal interference can distort the site frequency spectrum to obscure the signal for positive selection. We present three diagnostics for detecting these effects of linked selection and apply them to the human influenza (H3N2) hemagglutinin gene. Conclusion Various forms of linked selection have characteristic effects on MK-type statistics. The extent of background selection, hitch-hiking and clonal interference can be evaluated using the diagnostic statistics presented here. The diagnostics can also be used to determine how well we expect the MK statistics to perform and whether one form of the statistic may be preferable to another.
Collapse
Affiliation(s)
- Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
104
|
Abstract
Influenza viruses cause recurring epidemic outbreaks every year associated with high morbidity and mortality. Despite extensive research and surveillance efforts to control influenza outbreaks, the primary mitigation treatment for influenza is the development of yearly vaccine mixes targeted for the most prevalent virus strains. Consequently, the focus of many detection technologies has evolved toward accurate identification of subtype and understanding the evolution and molecular determinants of novel and pathogenic forms of influenza. The recent availability of potential antiviral treatments are only effective if rapid and accurate diagnostic tests for influenza epidemic management are available; thus, early detection of influenza infection is still important for prevention, containment, patient management, and infection control. This review discusses the current and emerging technologies for detection and strain identification of influenza virus and their specific gene targets, as well as their implications in patient management.
Collapse
Affiliation(s)
- Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, U. S. Naval Research Laboratory, 4555 Overlook Avenue, S. W., Code 6900, Washington, DC, 20375, USA
| | | |
Collapse
|
105
|
Abstract
Intrapatient evolution of human immunodeficiency virus type 1 (HIV-1) is driven by the adaptive immune system resulting in rapid change of HIV-1 proteins. When cytotoxic CD8(+) T cells or neutralizing antibodies target a new epitope, the virus often escapes via nonsynonymous mutations that impair recognition. Synonymous mutations do not affect this interplay and are often assumed to be neutral. We test this assumption by tracking synonymous mutations in longitudinal intrapatient data from the C2-V5 part of the env gene. We find that most synonymous variants are lost even though they often reach high frequencies in the viral population, suggesting a cost to the virus. Using published data from SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) assays, we find that synonymous mutations that disrupt base pairs in RNA stems flanking the variable loops of gp120 are more likely to be lost than other synonymous changes: these RNA hairpins might be important for HIV-1. Computational modeling indicates that, to be consistent with the data, a large fraction of synonymous mutations in this genomic region need to be deleterious with a cost on the order of 0.002 per day. This weak selection against synonymous substitutions does not result in a strong pattern of conservation in cross-sectional data but slows down the rate of evolution considerably. Our findings are consistent with the notion that large-scale patterns of RNA structure are functionally relevant, whereas the precise base pairing pattern is not.
Collapse
|
106
|
Murray GGR, Kosakovsky Pond SL, Obbard DJ. Suppressors of RNAi from plant viruses are subject to episodic positive selection. Proc Biol Sci 2013; 280:20130965. [PMID: 23804618 PMCID: PMC3712444 DOI: 10.1098/rspb.2013.0965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viral suppressors of RNAi (VSRs) are proteins that actively inhibit the antiviral RNA interference (RNAi) immune response, providing an immune evasion route for viruses. It has been hypothesized that VSRs are engaged in a molecular ‘arms race’ with RNAi pathway genes. Two lines of evidence support this. First, VSRs from plant viruses display high sequence diversity, and are frequently gained and lost over evolutionary time scales. Second, Drosophila antiviral RNAi genes show high rates of adaptive evolution. Here, we investigate whether VSRs diversify faster than other genes and, if so, whether this is a result of positive selection, as might be expected in an arms race. By analysis of 12 plant RNA viruses, we show that the relative rate of protein evolution is higher for VSRs than for other genes, but that this is not attributable to pervasive positive selection. We argue that, because evolutionary time scales are extremely different for viruses and eukaryotes, it is improbable that viral adaptation (as measured by the ratio of non-synonymous to synonymous change) will be dominated by one-to-one coevolution with eukaryotes. Instead, for plant virus VSRs, we find strong evidence of episodic selection—diversifying selection that acts on a subset of lineages—which might be attributable to frequent shifts between different host genotypes or species.
Collapse
Affiliation(s)
- Gemma G R Murray
- Centre for Infection Immunity and Evolution, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
107
|
Gong LI, Suchard MA, Bloom JD. Stability-mediated epistasis constrains the evolution of an influenza protein. eLife 2013; 2:e00631. [PMID: 23682315 PMCID: PMC3654441 DOI: 10.7554/elife.00631] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022] Open
Abstract
John Maynard Smith compared protein evolution to the game where one word is converted into another a single letter at a time, with the constraint that all intermediates are words: WORD→WORE→GORE→GONE→GENE. In this analogy, epistasis constrains evolution, with some mutations tolerated only after the occurrence of others. To test whether epistasis similarly constrains actual protein evolution, we created all intermediates along a 39-mutation evolutionary trajectory of influenza nucleoprotein, and also introduced each mutation individually into the parent. Several mutations were deleterious to the parent despite becoming fixed during evolution without negative impact. These mutations were destabilizing, and were preceded or accompanied by stabilizing mutations that alleviated their adverse effects. The constrained mutations occurred at sites enriched in T-cell epitopes, suggesting they promote viral immune escape. Our results paint a coherent portrait of epistasis during nucleoprotein evolution, with stabilizing mutations permitting otherwise inaccessible destabilizing mutations which are sometimes of adaptive value. DOI:http://dx.doi.org/10.7554/eLife.00631.001 During evolution, the effect of one mutation on a protein can depend on whether another mutation is also present. This phenomenon is similar to the game in which one word is converted to another word, one letter at a time, subject to the rule that all the intermediate steps are also valid words: for example, the word WORD can be converted to the word GENE as follows: WORD→WORE→GORE→GONE→GENE. In this example, the D must be changed to an E before the W is changed to a G, because GORD is not a valid word. Similarly, during the evolution of a virus, a mutation that helps the virus evade the human immune system might only be tolerated if the virus has acquired another mutation beforehand. This type of mutational interaction would constrain the evolution of the virus, since its capacity to take advantage of the second mutation depends on the first mutation having already occurred. Gong et al. examined whether such interactions have indeed constrained evolution of the influenza virus. Between 1968 and 2007, the nucleoprotein—which acts as a scaffold for the replication of genetic material—in the human H3N2 influenza virus underwent a series of 39 mutations. To test whether all of these mutations could have been tolerated by the 1968 virus, Gong et al. introduced each one individually into the 1968 nucleoprotein. They found that several mutations greatly reduced the fitness of the 1968 virus when introduced on their own, which strongly suggests that these ‘constrained mutations’ became part of the virus’s genetic makeup as a result of interactions with ‘enabling’ mutations. The constrained mutations decreased the stability of the nucleoprotein at high temperatures, while the enabling mutations counteracted this effect. It may, therefore, be possible to identify enabling mutations based on their effects on thermal stability. Intriguingly, the constrained mutations helped the virus overcome one form of human immunity to influenza, suggesting that interactions between mutations might limit the rate at which viruses evolve to evade the immune system. Overall, these results show that interactions among mutations constrain the evolution of the influenza nucleoprotein in a fashion that can be largely understood in terms of protein stability. If the same is true for other proteins and viruses, this work could lead to a deeper understanding of the constraints that govern evolution at the molecular level. DOI:http://dx.doi.org/10.7554/eLife.00631.002
Collapse
Affiliation(s)
- Lizhi Ian Gong
- Division of Basic Sciences , Fred Hutchinson Cancer Research Center , Seattle , United States
| | | | | |
Collapse
|
108
|
Harper SJ. Citrus tristeza virus: Evolution of Complex and Varied Genotypic Groups. Front Microbiol 2013; 4:93. [PMID: 23630519 PMCID: PMC3632782 DOI: 10.3389/fmicb.2013.00093] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
Amongst the Closteroviridae, Citrus tristeza virus (CTV) is almost unique in possessing a number of distinct and characterized strains, isolates of which produce a wide range of phenotype combinations among its different hosts. There is little understanding to connect genotypes to phenotypes, and to complicate matters more, these genotypes are found throughout the world as members of mixed populations within a single host plant. There is essentially no understanding of how combinations of genotypes affect symptom expression and disease severity. We know little about the evolution of the genotypes that have been characterized to date, little about the biological role of their diversity and particularly, about the effects of recombination. Additionally, genotype grouping has not been standardized. In this study we utilized an extensive array of CTV genomic information to classify the major genotypes, and to determine the major evolutionary processes that led to their formation and subsequent retention. Our analyses suggest that three major processes act on these genotypes: (1) ancestral diversification of the major CTV lineages, followed by (2) conservation and co-evolution of the major functional domains within, though not between CTV genotypes, and (3) extensive recombination between lineages that have given rise to new genotypes that have subsequently been retained within the global population. The effects of genotype diversity and host-interaction are discussed, as is a proposal for standardizing the classification of existing and novel CTV genotypes.
Collapse
Affiliation(s)
- S J Harper
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida Lake Alfred, FL, USA
| |
Collapse
|
109
|
Sanjuán R, Nebot MR, Peris JB, Alcamí J. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1. PLoS Biol 2013; 11:e1001523. [PMID: 23565057 PMCID: PMC3614509 DOI: 10.1371/journal.pbio.1001523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023] Open
Abstract
HIV, unlike other viruses, may benefit from immune recognition by preserving the sequence of its T cell epitopes, thereby enhancing transmission between cells. The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However, HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-lymphocytes (CTLs), but on the other hand, activation of CD4+ helper T lymphocytes (TH cells) promotes HIV replication. Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be counterproductive. A key component of the immune response against viruses and other pathogens is the recognition of short foreign protein sequences called epitopes. However, viruses can escape the immune system by mutating, so epitopes should accumulate high levels of genetic variability. This has been documented in several human viruses, but in HIV, unexpectedly, epitopes tend to be relatively conserved. Here, we propose that this is a consequence of the peculiar interactions that occur between HIV and the immune system. As with other viruses, recognition of HIV epitopes promotes the activation of cytotoxic and helper T lymphocytes, which then orchestrate a cellular immune response. However, HIV infects helper T lymphocytes as their target cell in the body and does so more efficiently when these cells have been activated to participate in an immune response. Mathematical modeling showed that, in some cases, HIV may take advantage of immune activation, thus favoring epitope conservation. This should be more likely to occur with epitopes that trigger more vigorous T-cell responses, and during the process known as “trans-infection,” in which helper T lymphocytes are infected while being activated. Our results highlight the potential advantages of an HIV vaccination strategy based on epitopes that stimulate cytotoxic T lymphocytes without specifically stimulating helper T lymphocytes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain.
| | | | | | | |
Collapse
|
110
|
Abstract
Viral phylodynamics is defined as the study of how epidemiological, immunological, and evolutionary processes act and potentially interact to shape viralphylogenies. Since the coining of the term in 2004, research on viral phylodynamics has focused on transmission dynamics in an effort to shed light on how these dynamics impact viral genetic variation. Transmission dynamics can be considered at the level of cells within an infected host, individual hosts within a population, or entire populations of hosts. Many viruses, especially RNA viruses, rapidly accumulate genetic variation because of short generation times and high mutation rates. Patterns of viral genetic variation are therefore heavily influenced by how quickly transmission occurs and by which entities transmit to one another. Patterns of viral genetic variation will also be affected by selection acting on viral phenotypes. Although viruses can differ with respect to many phenotypes, phylodynamic studies have to date tended to focus on a limited number of viral phenotypes. These include virulence phenotypes, phenotypes associated with viral transmissibility, cell or tissue tropism phenotypes, and antigenic phenotypes that can facilitate escape from host immunity. Due to the impact that transmission dynamics and selection can have on viral genetic variation, viral phylogenies can therefore be used to investigate important epidemiological, immunological, and evolutionary processes, such as epidemic spread[2], spatio-temporal dynamics including metapopulation dynamics[3], zoonotic transmission, tissue tropism[4], and antigenic drift[5]. The quantitative investigation of these processes through the consideration of viral phylogenies is the central aim of viral phylodynamics.
Collapse
Affiliation(s)
- Erik M Volz
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | |
Collapse
|
111
|
Bhatt S, Lam TT, Lycett SJ, Leigh Brown AJ, Bowden TA, Holmes EC, Guan Y, Wood JLN, Brown IH, Kellam P, Pybus OG. The evolutionary dynamics of influenza A virus adaptation to mammalian hosts. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120382. [PMID: 23382435 DOI: 10.1098/rstb.2012.0382] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Few questions on infectious disease are more important than understanding how and why avian influenza A viruses successfully emerge in mammalian populations, yet little is known about the rate and nature of the virus' genetic adaptation in new hosts. Here, we measure, for the first time, the genomic rate of adaptive evolution of swine influenza viruses (SwIV) that originated in birds. By using a curated dataset of more than 24 000 human and swine influenza gene sequences, including 41 newly characterized genomes, we reconstructed the adaptive dynamics of three major SwIV lineages (Eurasian, EA; classical swine, CS; triple reassortant, TR). We found that, following the transfer of the EA lineage from birds to swine in the late 1970s, EA virus genes have undergone substantially faster adaptive evolution than those of the CS lineage, which had circulated among swine for decades. Further, the adaptation rates of the EA lineage antigenic haemagglutinin and neuraminidase genes were unexpectedly high and similar to those observed in human influenza A. We show that the successful establishment of avian influenza viruses in swine is associated with raised adaptive evolution across the entire genome for many years after zoonosis, reflecting the contribution of multiple mutations to the coordinated optimization of viral fitness in a new environment. This dynamics is replicated independently in the polymerase genes of the TR lineage, which established in swine following separate transmission from non-swine hosts.
Collapse
Affiliation(s)
- S Bhatt
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Meyer AG, Dawson ET, Wilke CO. Cross-species comparison of site-specific evolutionary-rate variation in influenza haemagglutinin. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120334. [PMID: 23382434 DOI: 10.1098/rstb.2012.0334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We investigate the causes of site-specific evolutionary-rate variation in influenza haemagglutinin (HA) between human and avian influenza, for subtypes H1, H3, and H5. By calculating the evolutionary-rate ratio, ω = dN/dS as a function of a residue's solvent accessibility in the three-dimensional protein structure, we show that solvent accessibility has a significant but relatively modest effect on site-specific rate variation. By comparing rates within HA subtypes among host species, we derive an upper limit to the amount of variation that can be explained by structural constraints of any kind. Protein structure explains only 20-40% of the variation in ω. Finally, by comparing ω at sites near the sialic-acid-binding region to ω at other sites, we show that ω near the sialic-acid-binding region is significantly elevated in both human and avian influenza, with the exception of avian H5. We conclude that protein structure, HA subtype, and host biology all impose distinct selection pressures on sites in influenza HA.
Collapse
Affiliation(s)
- Austin G Meyer
- Section of Integrative Biology, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas, Austin, Austin, TX 78731, USA
| | | | | |
Collapse
|
113
|
Abstract
The pace of pathogen discovery is rapidly accelerating. This reflects not only factors that enable the appearance and globalization of new microbial infections, but also improvements in methods for ascertaining the cause of a new disease. Innovative molecular diagnostic platforms, investments in pathogen surveillance (in wildlife, domestic animals and humans) and the advent of social media tools that mine the World Wide Web for clues indicating the occurrence of infectious-disease outbreaks are all proving to be invaluable for the early recognition of threats to public health. In addition, models of microbial pathogenesis are becoming more complex, providing insights into the mechanisms by which microorganisms can contribute to chronic illnesses like cancer, peptic ulcer disease and mental illness. Here, I review the factors that contribute to infectious-disease emergence, as well as strategies for addressing the challenges of pathogen surveillance and discovery.
Collapse
|
114
|
Anna S, Burtseva E, Eropkin M, Karpova L, Zarubaev V, Smorodintseva E, Konovalova N, Danilenko D, Prokopetz A, Grudinin M, Pisareva M, Anfimov P, Stolyarov K, Kiselev O, Shevchenko E, Ivanova V, Trushakova S, Breslav N, Lvov D, Klimov A, Moen A, Cox N. INFLUENZA SURVEILLANCE IN RUSSIA BASED ON EPIDEMIOLOGICAL AND LABORATORY DATA FOR THE PERIOD FROM 2005 TO 2012. AMERICAN JOURNAL OF INFECTIOUS DISEASES 2013; 9:77-93. [PMID: 26561480 PMCID: PMC4639464 DOI: 10.3844/ajidsp.2013.77.93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exchange of information on and sharing of influenza viruses through the GISRS network has great significance for understanding influenza virus evolution, recognition of a new pandemic virus emergence and for preparing annual WHO recommendations on influenza vaccine strain composition. Influenza surveillance in Russia is based on collaboration of two NICs with 59 Regional Bases. Most epidemiological and laboratory data are entered through the internet into the electronic database at the Research Institute of Influenza (RII), where they are analyzed and then reported to the Ministry of Public Health of Russia. Simultaneously, data are introduced into WHO's Flu Net and Euro Flu, both electronic databases. Annual influenza epidemics of moderate intensity were registered during four pre-pandemic seasons. Children aged 0-2 and 3-6 years were the most affected groups of the population. Influenza registered clinically among hospitalized patients with respiratory infections for the whole epidemic period varied between 1.3 and 5.4% and up but to 18.5-23.0% during the peak of the two pandemic waves caused by influenza A(H1N1) pdm 09 virus and to lesser extent (2.9 to 8.5%) during usual seasonal epidemics. Most epidemics were associated with influenza A(H1N1), A(H3N2) and B co-circulation. During the two pandemic waves (in 2009-2010 and 2010-2011) influenza A(H1N1) pdm 09 predominated. It was accompanied by a rapid growth of influenza morbidity with a significant increase of both hospitalization and mortality. The new pandemic virus displaced the previous seasonal A(H1N1) virus completely. As a rule, most of the influenza viruses circulating in Russia were antigenic ally related to the strains recommended by WHO for vaccine composition for the Northern hemisphere with the exception of two seasons when an unexpected replacement of the influenza B Victoria lineage by Yamagata lineage (2007-2008) and the following return of Victoria lineage viruses (2008-2009) was registered. Influenza surveillance in Russia was improved as a result of enhancing capacity to international standards and the introduction of new methods in NICs such as rRT-PCR diagnosis, regular testing of influenza viruses for susceptibility to antivirals, phylogenetic analysis as well as organization of sentinel surveillance in a number of Regional Base Laboratories. Improvements promoted rapid recognition of the appearance a new pandemic virus in the country and enhancement of confirmation tests in investigation of influenza related death cases.
Collapse
Affiliation(s)
- Sominina Anna
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Elena Burtseva
- WHO National Influenza Centre, D.I Ivanovsky Institute of Virology, Moscow, Russia
| | - Mikhail Eropkin
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Ludmila Karpova
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Vladimir Zarubaev
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | | | - Nadezhda Konovalova
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Daria Danilenko
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Alexandra Prokopetz
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Mikhail Grudinin
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Maria Pisareva
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Pavel Anfimov
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Kirill Stolyarov
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Oleg Kiselev
- WHO National Influenza Centre, Research Institute of Influenza, St.-Petersburg, Russia
| | - Elena Shevchenko
- WHO National Influenza Centre, D.I Ivanovsky Institute of Virology, Moscow, Russia
| | - Valeriya Ivanova
- WHO National Influenza Centre, D.I Ivanovsky Institute of Virology, Moscow, Russia
| | - Svetlana Trushakova
- WHO National Influenza Centre, D.I Ivanovsky Institute of Virology, Moscow, Russia
| | - Nataliya Breslav
- WHO National Influenza Centre, D.I Ivanovsky Institute of Virology, Moscow, Russia
| | - Dmitriy Lvov
- WHO National Influenza Centre, D.I Ivanovsky Institute of Virology, Moscow, Russia
| | - Alexander Klimov
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, USA
| | - Ann Moen
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, USA
| | - Nancy Cox
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
115
|
Illingworth CJR, Mustonen V. Components of selection in the evolution of the influenza virus: linkage effects beat inherent selection. PLoS Pathog 2012; 8:e1003091. [PMID: 23300444 PMCID: PMC3531508 DOI: 10.1371/journal.ppat.1003091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/05/2012] [Indexed: 11/22/2022] Open
Abstract
The influenza virus is an important human pathogen, with a rapid rate of evolution in the human population. The rate of homologous recombination within genes of influenza is essentially zero. As such, where two alleles within the same gene are in linkage disequilibrium, interference between alleles will occur, whereby selection acting upon one allele has an influence upon the frequency of the other. We here measured the relative importance of selection and interference effects upon the evolution of influenza. We considered time-resolved allele frequency data from the global evolutionary history of the haemagglutinin gene of human influenza A/H3N2, conducting an in-depth analysis of sequences collected since 1996. Using a model that accounts for selection-caused interference between alleles in linkage disequilibrium, we estimated the inherent selective benefit of individual polymorphisms in the viral population. These inherent selection coefficients were in turn used to calculate the total selective effect of interference acting upon each polymorphism, considering the effect of the initial background upon which a mutation arose, and the subsequent effect of interference from other alleles that were under selection. Viewing events in retrospect, we estimated the influence of each of these components in determining whether a mutant allele eventually fixed or died in the global viral population. Our inherent selection coefficients, when combined across different regions of the protein, were consistent with previous measurements of dN/dS for the same system. Alleles going on to fix in the global population tended to be under more positive selection, to arise on more beneficial backgrounds, and to avoid strong negative interference from other alleles under selection. However, on average, the fate of a polymorphism was determined more by the combined influence of interference effects than by its inherent selection coefficient. Success in life is the product of many factors. Inherent ability often underlies great achievement. But other factors may play their part. The circumstances a child is born into may help or hinder his or her progress. Later events also have their effect; a life may be influenced by a lucky break, or an unforeseen disaster. In this work, we examine the factors underlying success for mutations in the HA gene of human influenza virus A/H3N2, defining success as the attainment of a high frequency in the global population. We examined the history of the gene from 1968 until 2010. For each observed mutation, a mathematical model was used to estimate the inherent benefit or disadvantage it conferred to the virus. We calculated the advantageousness or otherwise of the background upon which it arose, and the subsequent effect of interference from other mutations under selection. We found that successful mutations tended to have an advantageous background, and were subsequently fortunate in avoiding negative events throughout their lifetime. Beneficial mutations were more likely to be successful. But a mutation's chances of success were influenced more by circumstances of birth and subsequent events, than by its inherent effect on the virus.
Collapse
Affiliation(s)
| | - Ville Mustonen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (CJRI); (VM)
| |
Collapse
|
116
|
Carter RW, Sanford JC. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918. Theor Biol Med Model 2012; 9:42. [PMID: 23062055 PMCID: PMC3507676 DOI: 10.1186/1742-4682-9-42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/04/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917-1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. METHODS We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. RESULTS We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome), including approximately 330 non-synonymous changes (7.4% of all codons). The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively), and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck]) codon preference patterns. CONCLUSIONS While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently contributed to the exponential decline in mortality rates over time, as seen in all major human influenza strains. These findings may be relevant to the development of strategies for managing influenza pandemics and strain evolution.
Collapse
|
117
|
Goñi N, Moratorio G, Coppola L, Ramas V, Comas V, Soñora M, Chiparelli H, Cristina J. Bayesian coalescent analysis of pandemic H1N1 influenza A virus circulating in the South American region. Virus Res 2012; 170:91-101. [PMID: 22983300 DOI: 10.1016/j.virusres.2012.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/27/2022]
Abstract
The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 influenza A virus strain (H1N1pdm). Understanding the evolution of H1N1pdm populations within the South American region is essential for studying global diversification, emergence, resistance and vaccine efficacy. In order to gain insight into these matters, we have performed a Bayesian coalescent Markov Chain Monte Carlo analysis of hemagglutinin (HA) and neuraminidase (NA) gene sequences of all available and comparable HA and NA sequences obtained from H1N1pdm IAV circulating in the South American region. High evolutionary rates and fast population growths characterize the population dynamics of H1N1pdm strains in this region of the world. A significant contribution of first codon position to the mean evolutionary rate was found for both genes studied, revealing a high contribution of non-synonymous substitutions to the mean substitution rate. In the 178days period covered by these studies, substitutions in all HA epitope regions can be observed. HA substitutions D239G/N and Q310H have been observed only in Brazilian patients. While substitution D239G/N is not particularly associated to a specific genetic lineage, all strains bearing substitution Q310H were assigned to clade 6, suggesting a founder effect. None of the substitutions found in the NA proteins of H1N1pdm strains isolated in South America appears sufficiently close to affect the drug binding pocket for the three NA inhibitor antivirals tested. A more detailed analysis of NA proteins revealed epitope differences among 2010 vaccine and H1N1pdm IAV strains circulating in the South American region.
Collapse
Affiliation(s)
- Natalia Goñi
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Meyer AG, Wilke CO. Integrating sequence variation and protein structure to identify sites under selection. Mol Biol Evol 2012; 30:36-44. [PMID: 22977116 DOI: 10.1093/molbev/mss217] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We present a novel method to identify sites under selection in protein-coding genes. Our method combines the traditional Goldman-Yang model of coding-sequence evolution with the information obtained from the 3D structure of the evolving protein, specifically the relative solvent accessibility (RSA) of individual residues. We develop a random-effects likelihood sites model in which rate classes are RSA dependent. The RSA dependence is modeled with linear functions. We demonstrate that our RSA-dependent model provides a significantly better fit to molecular sequence data than does a traditional, RSA-independent model. We further show that our model provides a natural, RSA-dependent neutral baseline for the evolutionary rate ratio ω = dN/dS Sites that deviate from this neutral baseline likely experience selection pressure for function. We apply our method to the influenza proteins hemagglutinin and neuraminidase. For hemagglutinin, our method recovers positively selected sites near the sialic acid-binding site and negatively selected sites that may be important for trimerization. For neuraminidase, our method recovers the oseltamivir resistance site and otherwise suggests that few sites deviate from the neutral baseline. Our method is broadly applicable to any protein sequences for which structural data are available or can be obtained via homology modeling or threading.
Collapse
Affiliation(s)
- Austin G Meyer
- Section of Integrative Biology, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
119
|
Abstract
The seasonal influenza A virus undergoes rapid evolution to escape human immune response. Adaptive changes occur primarily in antigenic epitopes, the antibody-binding domains of the viral hemagglutinin. This process involves recurrent selective sweeps, in which clusters of simultaneous nucleotide fixations in the hemagglutinin coding sequence are observed about every 4 years. Here, we show that influenza A (H3N2) evolves by strong clonal interference. This mode of evolution is a red queen race between viral strains with different beneficial mutations. Clonal interference explains and quantifies the observed sweep pattern: we find an average of at least one strongly beneficial amino acid substitution per year, and a given selective sweep has three to four driving mutations on average. The inference of selection and clonal interference is based on frequency time series of single-nucleotide polymorphisms, which are obtained from a sample of influenza genome sequences over 39 years. Our results imply that mode and speed of influenza evolution are governed not only by positive selection within, but also by background selection outside antigenic epitopes: immune adaptation and conservation of other viral functions interfere with each other. Hence, adapting viral proteins are predicted to be particularly brittle. We conclude that a quantitative understanding of influenza's evolutionary and epidemiological dynamics must be based on all genomic domains and functions coupled by clonal interference.
Collapse
|
120
|
Suzuki Y. Positive selection for gains of N-linked glycosylation sites in hemagglutinin during evolution of H3N2 human influenza A virus. Genes Genet Syst 2012; 86:287-94. [PMID: 22362027 DOI: 10.1266/ggs.86.287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The number of N-linked glycosylation sites in the globular head of hemagglutinin (HA) has increased during evolution of H3N2 human influenza A virus. Here natural selection operating on the gains of N-linked glycosylation sites was examined by using the single-site analysis and the single-substitution analysis. In the single-site analysis, positive selection was not inferred at the amino acid sites where the substitutions generating N-linked glycosylation sites were observed, but was detected at antigenic sites. In contrast, in the single-substitution analysis, positive selection was detected for the amino acid substitutions generating N-linked glycosylation sites. The single-site analysis and the single-substitution analysis appeared to be suitable for detecting recurrent and episodic natural selection, respectively. The gains of N-linked glycosylation sites were likely to be positively selected for the function of shielding antigenic sites from immune responses. At the antigenic sites, positive selection appeared to have operated not only on the radical substitution but also on the conservative substitution in terms of the charge of amino acids, suggesting that the antigenic drift is not a by-product of the evolution of receptor binding avidity in HA of human H3N2 virus.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Aichi-ken, Japan.
| |
Collapse
|
121
|
Westgeest KB, de Graaf M, Fourment M, Bestebroer TM, van Beek R, Spronken MIJ, de Jong JC, Rimmelzwaan GF, Russell CA, Osterhaus ADME, Smith GJD, Smith DJ, Fouchier RAM. Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. J Gen Virol 2012; 93:1996-2007. [PMID: 22718569 DOI: 10.1099/vir.0.043059-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Each year, influenza viruses cause epidemics by evading pre-existing humoral immunity through mutations in the major glycoproteins: the haemagglutinin (HA) and the neuraminidase (NA). In 2004, the antigenic evolution of HA of human influenza A (H3N2) viruses was mapped (Smith et al., Science 305, 371-376, 2004) from its introduction in humans in 1968 until 2003. The current study focused on the genetic evolution of NA and compared it with HA using the dataset of Smith and colleagues, updated to the epidemic of the 2009/2010 season. Phylogenetic trees and genetic maps were constructed to visualize the genetic evolution of NA and HA. The results revealed multiple reassortment events over the years. Overall rates of evolutionary change were lower for NA than for HA1 at the nucleotide level. Selection pressures were estimated, revealing an abundance of negatively selected sites and sparse positively selected sites. The differences found between the evolution of NA and HA1 warrant further analysis of the evolution of NA at the phenotypic level, as has been done previously for HA.
Collapse
Affiliation(s)
- Kim B Westgeest
- Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Miranda de Graaf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.,Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Mathieu Fourment
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Theo M Bestebroer
- Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Ruud van Beek
- Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Monique I J Spronken
- Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jan C de Jong
- Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Colin A Russell
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Gavin J D Smith
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Derek J Smith
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.,Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
122
|
Abdelwhab EM, Arafa AS, Stech J, Grund C, Stech O, Graeber-Gerberding M, Beer M, Hassan MK, Aly MM, Harder TC, Hafez HM. Diversifying evolution of highly pathogenic H5N1 avian influenza virus in Egypt from 2006 to 2011. Virus Genes 2012; 45:14-23. [DOI: 10.1007/s11262-012-0758-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022]
|
123
|
Bedford T, Rambaut A, Pascual M. Canalization of the evolutionary trajectory of the human influenza virus. BMC Biol 2012; 10:38. [PMID: 22546494 PMCID: PMC3373370 DOI: 10.1186/1741-7007-10-38] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since its emergence in 1968, influenza A (H3N2) has evolved extensively in genotype and antigenic phenotype. However, despite strong pressure to evolve away from human immunity and to diversify in antigenic phenotype, H3N2 influenza shows paradoxically limited genetic and antigenic diversity present at any one time. Here, we propose a simple model of antigenic evolution in the influenza virus that accounts for this apparent discrepancy. RESULTS In this model, antigenic phenotype is represented by a N-dimensional vector, and virus mutations perturb phenotype within this continuous Euclidean space. We implement this model in a large-scale individual-based simulation, and in doing so, we find a remarkable correspondence between model behavior and observed influenza dynamics. This model displays rapid evolution but low standing diversity and simultaneously accounts for the epidemiological, genetic, antigenic, and geographical patterns displayed by the virus. We find that evolution away from existing human immunity results in rapid population turnover in the influenza virus and that this population turnover occurs primarily along a single antigenic axis. CONCLUSIONS Selective dynamics induce a canalized evolutionary trajectory, in which the evolutionary fate of the influenza population is surprisingly repeatable. In the model, the influenza population shows a 1- to 2-year timescale of repeatability, suggesting a window in which evolutionary dynamics could be, in theory, predictable.
Collapse
Affiliation(s)
- Trevor Bedford
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
124
|
Castro-Nallar E, Pérez-Losada M, Burton GF, Crandall KA. The evolution of HIV: inferences using phylogenetics. Mol Phylogenet Evol 2012; 62:777-92. [PMID: 22138161 PMCID: PMC3258026 DOI: 10.1016/j.ympev.2011.11.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/02/2022]
Abstract
Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics).
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA.
| | | | | | | |
Collapse
|
125
|
Castro-Nallar E, Cortez-San Martín M, Mascayano C, Molina C, Crandall KA. Molecular phylodynamics and protein modeling of infectious salmon anemia virus (ISAV). BMC Evol Biol 2011; 11:349. [PMID: 22132866 PMCID: PMC3267707 DOI: 10.1186/1471-2148-11-349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/02/2011] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND ISAV is a member of the Orthomyxoviridae family that affects salmonids with disastrous results. It was first detected in 1984 in Norway and from then on it has been reported in Canada, United States, Scotland and the Faroe Islands. Recently, an outbreak was recorded in Chile with negative consequences for the local fishing industry. However, few studies have examined available data to test hypotheses associated with the phylogeographic partitioning of the infecting viral population, the population dynamics, or the evolutionary rates and demographic history of ISAV. To explore these issues, we collected relevant sequences of genes coding for both surface proteins from Chile, Canada, and Norway. We addressed questions regarding their phylogenetic relationships, evolutionary rates, and demographic history using modern phylogenetic methods. RESULTS A recombination breakpoint was consistently detected in the Hemagglutinin-Esterase (he) gene at either side of the Highly Polymorphic Region (HPR), whereas no recombination breakpoints were detected in Fusion protein (f) gene. Evolutionary relationships of ISAV revealed the 2007 Chilean outbreak group as a monophyletic clade for f that has a sister relationship to the Norwegian isolates. Their tMRCA is consistent with epidemiological data and demographic history was successfully recovered showing a profound bottleneck with further population expansion. Finally, selection analyses detected ongoing diversifying selection in f and he codons associated with protease processing and the HPR region, respectively. CONCLUSIONS Our results are consistent with the Norwegian origin hypothesis for the Chilean outbreak clade. In particular, ISAV HPR0 genotype is not the ancestor of all ISAV strains, although SK779/06 (HPR0) shares a common ancestor with the Chilean outbreak clade. Our analyses suggest that ISAV shows hallmarks typical of RNA viruses that can be exploited in epidemiological and surveillance settings. In addition, we hypothesized that genetic diversity of the HPR region is governed by recombination, probably due to template switching and that novel fusion gene proteolytic sites confer a selective advantage for the isolates that carry them. Additionally, protein modeling allowed us to relate the results of phylogenetic studies with the predicted structures. This study demonstrates that phylogenetic methods are important tools to predict future outbreaks of ISAV and other salmon pathogens.
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA.
| | | | | | | | | |
Collapse
|
126
|
Belshaw R, Sanjuán R, Pybus OG. Viral mutation and substitution: units and levels. Curr Opin Virol 2011; 1:430-5. [PMID: 22440847 DOI: 10.1016/j.coviro.2011.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 01/11/2023]
Abstract
Viruses evolve within a hierarchy of organisational levels, from cells to host species. We discuss how these nested population structures complicate the meaning and interpretation of two apparently simple evolutionary concepts: mutation rate and substitution rate. We discuss the units in which these fundamental processes should be measured, and explore why, even for the same virus, mutation and substitution can occur at very different tempos at different biological levels. In addition, we explore the ability of whole genome evolutionary analyses to distinguish between natural selection and other population genetic processes. A better understanding of the complexities underlying the molecular evolution of viruses in natural populations is needed before accurate predictions of viral evolution can be made.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
127
|
Genetic structure of human A/H1N1 and A/H3N2 influenza virus on Corsica Island: phylogenetic analysis and vaccine strain match, 2006-2010. PLoS One 2011; 6:e24471. [PMID: 21935413 PMCID: PMC3173375 DOI: 10.1371/journal.pone.0024471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/11/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The aim of this study was to analyse the genetic patterns of Hemagglutinin (HA) genes of influenza A strains circulating on Corsica Island during the 2006-2009 epidemic seasons and the 2009-2010 pandemic season. METHODS Nasopharyngeal samples from 371 patients with influenza-like illness (ILI) were collected by General Practitioners (GPs) of the Sentinelles Network through a randomised selection routine. RESULTS Phylogenetic analysis of HA revealed that A/H3N2 strains circulating on Corsica were closely related to the WHO recommended vaccine strains in each analyzed season (2006-2007 to 2008-2009). Seasonal Corsican influenza A/H1N1 isolated during the 2007-2008 season had drifted towards the A/Brisbane/59/2007 lineage, the A/H1N1 vaccine strain for the 2008-2009 season. The A/H1N1 2009 (A/H1N1pdm) strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E. The percentages of the perfect match vaccine efficacy, estimated by using the p(epitope) model, against influenza viruses circulating on Corsica Island varied substantially across the four seasons analyzed, and tend to be highest for A/H1N1 compared with A/H3N2 vaccines, suggesting that cross-immunity seems to be stronger for the H1 HA gene. CONCLUSION The molecular analysis of the HA gene of influenza viruses that circulated on Corsica Island between 2006-2010 showed for each season the presence of a dominant lineage characterized by at least one fixed mutation. The A/H3N2 and A/H1N1pdm isolates were characterized by multiples fixation at antigenic sites. The fixation of specific mutations at each outbreak could be explained by the combination of a neutral phenomenon and a founder effect, favoring the presence of a dominant lineage in a closed environment such as Corsica Island.
Collapse
|
128
|
Bedford T, Cobey S, Pascual M. Strength and tempo of selection revealed in viral gene genealogies. BMC Evol Biol 2011; 11:220. [PMID: 21787390 PMCID: PMC3199772 DOI: 10.1186/1471-2148-11-220] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/25/2011] [Indexed: 11/30/2022] Open
Abstract
Background RNA viruses evolve extremely quickly, allowing them to rapidly adapt to new environmental conditions. Viral pathogens, such as influenza virus, exploit this capacity for evolutionary change to persist within the human population despite substantial immune pressure. Understanding the process of adaptation in these viral systems is essential to our efforts to combat infectious disease. Results Through analysis of simulated populations and sequence data from influenza A (H3N2) and measles virus, we show how phylogenetic and population genetic techniques can be used to assess the strength and temporal pattern of adaptive evolution. The action of natural selection affects the shape of the genealogical tree connecting members of an evolving population, causing deviations from the neutral expectation. The magnitude and distribution of these deviations lends insight into the historical pattern of evolution and adaptation in the viral population. We quantify the degree of ongoing adaptation in influenza and measles virus through comparison of census population size and effective population size inferred from genealogical patterns, finding a 60-fold greater deviation in influenza than in measles. We also examine the tempo of adaptation in influenza, finding evidence for both continuous and episodic change. Conclusions Our results have important consequences for understanding the epidemiological and evolutionary dynamics of the influenza virus. Additionally, these general techniques may prove useful to assess the strength and pattern of adaptive evolution in a variety of evolving systems. They are especially powerful when assessing selection in fast-evolving populations, where temporal patterns become highly visible.
Collapse
Affiliation(s)
- Trevor Bedford
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|