101
|
English CJ, Tyml T, Botwright NA, Barnes AC, Wynne JW, Lima PC, Cook MT. A diversity of amoebae colonise the gills of farmed Atlantic salmon (Salmo salar) with amoebic gill disease (AGD). Eur J Protistol 2018; 67:27-45. [PMID: 30447480 DOI: 10.1016/j.ejop.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023]
Abstract
Neoparamoeba perurans is the aetiological agent of amoebic gill disease (AGD) in salmonids, however multiple other amoeba species colonise the gills and their role in AGD is unknown. Taxonomic assessments of these accompanying amoebae on AGD-affected salmon have previously been based on gross morphology alone. The aim of the present study was to document the diversity of amoebae colonising the gills of AGD-affected farmed Atlantic salmon using a combination of morphological and sequence-based taxonomic methods. Amoebae were characterised morphologically via light microscopy and transmission electron microscopy, and by phylogenetic analyses based on the 18S rRNA gene and cytochrome oxidase subunit I (COI) gene. In addition to N. perurans, 11 other amoebozoans were isolated from the gills, and were classified within the genera Neoparamoeba, Paramoeba, Vexillifera, Pseudoparamoeba, Vannella and Nolandella. In some cases, such as Paramoeba eilhardi, this is the first time this species has been isolated from the gills of teleost fish. Furthermore, sequencing of both the 18S rRNA and COI gene revealed significant genetic variation within genera. We highlight that there is a far greater diversity of amoebae colonising AGD-affected gills than previously established.
Collapse
Affiliation(s)
- Chloe J English
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland 4072, Australia; CSIRO Agriculture and Food, Integrated Sustainable Aquaculture Production, Bribie Island Research Centre, 144 North Street, Woorim, Queensland 4507, Australia.
| | - Tomáš Tyml
- Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Natasha A Botwright
- CSIRO Agriculture and Food, Integrated Sustainable Aquaculture Production, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, Queensland 4067, Australia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland 4072, Australia
| | - James W Wynne
- CSIRO Agriculture and Food, Integrated Sustainable Aquaculture Production, Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | - Paula C Lima
- CSIRO Agriculture and Food, Integrated Sustainable Aquaculture Production, Bribie Island Research Centre, 144 North Street, Woorim, Queensland 4507, Australia
| | - Mathew T Cook
- CSIRO Agriculture and Food, Integrated Sustainable Aquaculture Production, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, Queensland 4067, Australia
| |
Collapse
|
102
|
Melton JT, Wood FC, Branch J, Singla M, Tekle YI. Phylogenomics of Thecamoebida (Discosea, Amoebozoa) with the Description of Stratorugosa tubuloviscum gen. nov. sp. nov., a Freshwater Amoeba with a Perinuclear MTOC. Protist 2018; 170:8-20. [PMID: 30553127 DOI: 10.1016/j.protis.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 01/23/2023]
Abstract
Thecamoebida Smirnov and Cavalier-Smith, 2011 (Discosea, Amoebozoa) has been molecularly understudied. The group until recently consisted of three genera containing species that live in terrestrial or aquatic environments. Here, we describe a fourth genus, Stratorugosa tubuloviscum gen. nov. sp. nov., which was isolated from a freshwater Amoeba proteus Ward's Science culture. Although this species most closely morphologically resembles a large, rugose Thecamoeba, S. tubuloviscum gen. nov. sp. nov. can be differentiated from Thecamoeba spp. by the following: 1) the presence of definitive finger-like (lobate-like) subpseudopodia extending at both the anterior and lateral parts of the cell during locomotion; 2) a peculiar locomotive mechanism with two sections, frontal and back, of the cells moving in a pulling and piggyback movement, respectively; 3) the presence of fibrillar cytoplasmic microtubules (MTs) organized by a prominent, perinuclear microtubule-organizing center (MTOC). A phylogenomic analysis of 511 genes assembled from transcriptomic data showed that this new genus was highly supported as sister to Stenamoeba. Despite the variance in gross morphology, Stenamoeba and S. tubuloviscum gen nov. sp. nov. both have MTOCs unlike two Thecamoeba spp., which display dot-like cytoplasmic MTs and lack an MTOC.
Collapse
Affiliation(s)
- James T Melton
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA.
| | - Fiona C Wood
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Jordan Branch
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Mandakini Singla
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Yonas I Tekle
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| |
Collapse
|
103
|
Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson AGB, Roger AJ. Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group. Genome Biol Evol 2018; 10:427-433. [PMID: 29360967 PMCID: PMC5793813 DOI: 10.1093/gbe/evy014] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/13/2023] Open
Abstract
Recent phylogenetic analyses position certain “orphan” protist lineages deep in the tree of eukaryotic life, but their exact placements are poorly resolved. We conducted phylogenomic analyses that incorporate deeply sequenced transcriptomes from representatives of collodictyonids (diphylleids), rigifilids, Mantamonas, and ancyromonads (planomonads). Analyses of 351 genes, using site-heterogeneous mixture models, strongly support a novel super-group-level clade that includes collodictyonids, rigifilids, and Mantamonas, which we name “CRuMs”. Further, they robustly place CRuMs as the closest branch to Amorphea (including animals and fungi). Ancyromonads are strongly inferred to be more distantly related to Amorphea than are CRuMs. They emerge either as sister to malawimonads, or as a separate deeper branch. CRuMs and ancyromonads represent two distinct major groups that branch deeply on the lineage that includes animals, near the most commonly inferred root of the eukaryote tree. This makes both groups crucial in examinations of the deepest-level history of extant eukaryotes.
Collapse
Affiliation(s)
- Matthew W Brown
- Department of Biological Sciences, Mississippi State University, USA.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, USA
| | - Aaron A Heiss
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, USA.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, USA
| | - Takashi Shiratori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Alastair G B Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
104
|
En garde! Redefinition of Nebela militaris (Arcellinida, Hyalospheniidae) and erection of Alabasta gen. nov. Eur J Protistol 2018; 66:156-165. [DOI: 10.1016/j.ejop.2018.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023]
|
105
|
Myxomycete diversity and ecology in the Baotianman National Nature Reserve, a subtropical mountain forest in central China. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
106
|
Arroyo AS, López-Escardó D, Kim E, Ruiz-Trillo I, Najle SR. Novel Diversity of Deeply Branching Holomycota and Unicellular Holozoans Revealed by Metabarcoding in Middle Paraná River, Argentina. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
107
|
Dumack K, Kahlich C, Lahr DJG, Bonkowski M. Reinvestigation of Phryganella paradoxa
(Arcellinida, Amoebozoa) Penard 1902. J Eukaryot Microbiol 2018; 66:232-243. [DOI: 10.1111/jeu.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/27/2018] [Accepted: 06/19/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Kenneth Dumack
- Terrestrial Ecology; Institute of Zoology; University of Cologne; Zülpicher Str. 47b 50674 Köln Germany
- Department of Zoology; Institute of Biosciences; University of São Paulo; Rua do Matão, tv. 14, 101 05508-090 São Paulo Brazil
| | - Christopher Kahlich
- Terrestrial Ecology; Institute of Zoology; University of Cologne; Zülpicher Str. 47b 50674 Köln Germany
| | - Daniel J. G. Lahr
- Department of Zoology; Institute of Biosciences; University of São Paulo; Rua do Matão, tv. 14, 101 05508-090 São Paulo Brazil
| | - Michael Bonkowski
- Terrestrial Ecology; Institute of Zoology; University of Cologne; Zülpicher Str. 47b 50674 Köln Germany
| |
Collapse
|
108
|
Schuler GA, Brown MW. Description of Armaparvus languidus n. gen. n. sp. Confirms Ultrastructural Unity of Cutosea (Amoebozoa, Evosea). J Eukaryot Microbiol 2018; 66:158-166. [PMID: 29858563 DOI: 10.1111/jeu.12640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/27/2018] [Indexed: 12/01/2022]
Abstract
The American Type Culture Collection (ATCC) PRA-29 isolate has a publicly available transcriptome, which has led to its inclusion in recent phylogenomic analyses. The ATCC PRA-29 isolate was originally identified and deposited as "Pessonella sp." This taxon branches robustly within the recently discovered clade Cutosea, very distantly related to the clade in which the genus Pessonella is believed to branch based on morphological data. Using detailed light and electron microscopy, we studied the morphology and ultrastructure of ATCC PRA-29 as well as other cutosean amoebae to better elucidate the morphological affinity of ATCC PRA-29 to other amoebozoans. Here, we show that ATCC PRA-29 was misidentified by the original depositor as Pessonella and name it Armaparvus languidus n. gen. n. sp. We show that a cell coat of microscales separated from the cell membrane is a unique trait found in all known cutosean amoebae. As Cutosea represents a clade at the deepest bifurcation in the amoebozoan group Evosea and because this clade is currently taxon-poor, but likely represents a major understudied group it will be important to isolate and describe more cutosean amoebae in the future.
Collapse
Affiliation(s)
- Gabriel A Schuler
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
109
|
Ronikier A, Halamski AT. Is Myxomycetes (Amoebozoa) a Truly Ambiregnal Group? A Major Issue in Protist Nomenclature. Protist 2018; 169:484-493. [PMID: 29936290 DOI: 10.1016/j.protis.2018.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
Abstract
Myxomycetes is one of the largest groups of protists belonging to Amoebozoa, with ca 1,000 species recognised and more than 4,000 names in use. Historically, myxomycetes were considered fungi or protozoans which, however, fell under the provisions of the former International Code of Botanical Nomenclature (ICBN), currently the International Code of Nomenclature for algae, fungi, and plants (ICN). Attempts to apply the International Code of Zoological Nomenclature (ICZN) to myxomycetes were rare and inconsistent; thus, we argue that Myxomycetes is not a truly ambiregnal group (i.e. one falling under both Codes). Recently, nomenclatural novelties within Myxomycetes have been proposed using ICZN rules, and the application of zoological orthography to myxomycete higher-level taxa in the recent amoebozoan phylogenies is increasingly common. We summarise the consequences of application of either ICN or ICZN to Myxomycetes. In our opinion, nomenclatural stability within Myxomycetes is best served by strict application of ICN. Either treating myxomycetes as falling under ICZN or considering them an ambiregnal group would cause serious nomenclatural instability, mainly owing to the incompatibility of the two Codes as to the date of the starting point of nomenclature and to the appearance of numerous homonyms.
Collapse
Affiliation(s)
- Anna Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Cracow, Poland.
| | - Adam T Halamski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|
110
|
Schaap P, Schilde C. Encystation: the most prevalent and underinvestigated differentiation pathway of eukaryotes. MICROBIOLOGY-SGM 2018; 164:727-739. [PMID: 29620506 DOI: 10.1099/mic.0.000653] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Not long ago, protists were considered one of four eukaryote kingdoms, but recent gene-based phylogenies show that they contribute to all nine eukaryote subdomains. The former kingdoms of animals, plants and fungi are now relegated to lower ranks within subdomains. Most unicellular protists respond to adverse conditions by differentiating into dormant walled cysts. As cysts, they survive long periods of starvation, drought and other environmental threats, only to re-emerge when conditions improve. For protists pathogens, the resilience of their cysts can prevent successful treatment or eradication of the disease. In this context, effort has been directed towards understanding the molecular mechanisms that control encystation. We here firstly summarize the prevalence of encystation across protists and next focus on Amoebozoa, where most of the health-related issues occur. We review current data on processes and genes involved in encystation of the obligate parasite Entamoeba histolytica and the opportunistic pathogen Acanthamoeba. We show how the cAMP-mediated signalling pathway that controls spore and stalk cell encapsulation in Dictyostelium fruiting bodies could be retraced to a stress-induced pathway controlling encystation in solitary Amoebozoa. We highlight the conservation and prevalence of cAMP signalling genes in Amoebozoan genomes and the suprisingly large and varied repertoire of proteins for sensing and processing environmental signals in individual species.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | |
Collapse
|
111
|
Heiss AA, Kolisko M, Ekelund F, Brown MW, Roger AJ, Simpson AGB. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171707. [PMID: 29765641 PMCID: PMC5936906 DOI: 10.1098/rsos.171707] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Modern syntheses of eukaryote diversity assign almost all taxa to one of three groups: Amorphea, Diaphoretickes and Excavata (comprising Discoba and Metamonada). The most glaring exception is Malawimonadidae, a group of small heterotrophic flagellates that resemble Excavata by morphology, but branch with Amorphea in most phylogenomic analyses. However, just one malawimonad, Malawimonas jakobiformis, has been studied with both morphological and molecular-phylogenetic approaches, raising the spectre of interpretation errors and phylogenetic artefacts from low taxon sampling. We report a morphological and phylogenomic study of a new deep-branching malawimonad, Gefionella okellyi n. gen. n. sp. Electron microscopy revealed all canonical features of 'typical excavates', including flagellar vanes (as an opposed pair, unlike M. jakobiformis but like many metamonads) and a composite fibre. Initial phylogenomic analyses grouped malawimonads with the Amorphea-related orphan lineage Collodictyon, separate from a Metamonada+Discoba clade. However, support for this topology weakened when more sophisticated evolutionary models were used, and/or fast-evolving sites and long-branching taxa (FS/LB) were excluded. Analyses of '-FS/LB' datasets instead suggested a relationship between malawimonads and metamonads. The 'malawimonad+metamonad signal' in morphological and molecular data argues against a strict Metamonada+Discoba clade (i.e. the predominant concept of Excavata). A Metamonad+Discoba clade should therefore not be assumed when inferring deep-level evolutionary history in eukaryotes.
Collapse
Affiliation(s)
- Aaron A. Heiss
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Martin Kolisko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Fleming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alastair G. B. Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
112
|
Wrigley de Basanta D, Estrada-Torres A, García-Cunchillos I, Cano Echevarría A, Lado C. Didymium azorellae, a new myxomycete from cushion plants of cold arid areas of South America. Mycologia 2018. [DOI: 10.1080/00275514.2018.1426925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Arturo Estrada-Torres
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, km 1.5 carretera Tlaxcala-Puebla s/n, 90,062, AP 262 Tlaxcala, Mexico
| | | | - Asunción Cano Echevarría
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Avda. Arenales 1256, Lima 11, Perú
| | - Carlos Lado
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
113
|
Zahavi A, Harris KD, Nanjundiah V. An individual-level selection model for the apparent altruism exhibited by cellular slime moulds. J Biosci 2018; 43:49-58. [PMID: 29485114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In Dictyostelium discoideum, cells that become part of the stalk or basal disc display behaviour that can be interpreted as altruistic. Atzmony et al. (Curr Sci 72:142-145, 1997) had hypothesised that this behaviour could be the outcome of an adaptive strategy based on differing intrinsic quality as reflected by phenotypes that indicate differences in potential for survival and reproduction, followed by intercellular competition among amoebae of differing qualities. Low-quality amoebae would have a poor chance of succeeding in the competition to form spores; they could enhance their chances of survival by adopting a presumptive stalk strategy. Here we extend the hypothesis by making use of recent findings. Our approach is based on the view that an evolutionary explanation for the apparent altruism of stalk cells in D. discoideum must apply broadly to other cellular slime moulds (CSMs) that exhibit stalk cell death. Further, it must be capable of being modified to cover social behaviour in CSMs with an extracellular stalk, as well as in sorocarpic amoebae whose stalk cells are viable. With regard to D. discoideum, we suggest that (a) differentiation-inducing factor, thought of as a signal that inhibits amoebae from forming spores and induces them to differentiate into basal disc cells, is better viewed as a mediator of competition among post-aggregation amoebae and (b) the products of the 'recognition genes', tgrB and tgrC, allow an amoeba to assess its quality relative to that of its neighbours and move to a position within the aggregate that optimises its reproductive fitness. From this perspective, all cells behave in a manner that is 'selfish' rather than 'altruistic', albeit with different expectations of success.
Collapse
Affiliation(s)
- Amotz Zahavi
- Department of Zoology, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | |
Collapse
|
114
|
An individual-level selection model for the apparent altruism exhibited by cellular slime moulds. J Biosci 2018. [DOI: 10.1007/s12038-018-9734-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
115
|
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 2018; 42:293-323. [DOI: 10.1093/femsre/fuy006] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Jardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, Neuchâtel 2000, Switzerland
| | - Sina Adl
- Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Canada
| | - Michael Bonkowski
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Straße 47b, 50674 Köln, Germany
| | - Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger Straße, 67663 Kaiserslautern, Germany
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Leonardo D Fernández
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago, Chile
| | - Alexandre Jousset
- Department of Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Valentyna Krashevska
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, 37073 Göttingen, Germany
| | - David Singer
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, United States of America
| | - Julia Walochnik
- Molecular Parasitology, Institute of Tropical Medicine, Medical University, 1090 Vienna, Austria
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
116
|
Hassett BT, Gradinger R. New Species of Saprobic Labyrinthulea (=Labyrinthulomycota) and the Erection of a gen. nov. to Resolve Molecular Polyphyly within the Aplanochytrids. J Eukaryot Microbiol 2018; 65:475-483. [PMID: 29265676 DOI: 10.1111/jeu.12494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
A culture of a unicellular heterotrophic eukaryote was established from pollen-baited seawater acquired from the nearshore environment in Tromsø, Norway. Light microscopy revealed the production of ectoplasmic nets and reproduction by biflagellated zoospores, as well as binary division. After culturing and subsequent nucleotide extraction, database queries of the isolate's 18S small ribosomal subunit coding region identified closest molecular affinity to Aplanochytrium haliotidis, a pathogen of abalone. Testing of phylogenetic hypotheses consistently grouped our unknown isolate and A. haliotidis among the homoplasious thraustochytrids. Transmission electron microscopy revealed complex cell walls comprised of electron-dense lamella that formed protuberances, some associated with bothrosomes. Co-culturing experiments with the marine fungus Penicillium brevicompactum revealed prolonged interactions with hyphal strands. Based on the combined information acquired from electron microscopy, life history information, and phylogenetic testing, we describe our unknown isolate as a novel species. To resolve molecular polyphyly within the aplanochytrids, we erect a gen. nov. that circumscribes our novel isolate and the former A. haliotidis within the thraustochytrids.
Collapse
Affiliation(s)
- Brandon T Hassett
- UiT Norges Arktiske Universtiet, BFE, NFH Bygget, Framstredet 6, Tromsø, 9019, Norway
| | - Rolf Gradinger
- UiT Norges Arktiske Universtiet, BFE, NFH Bygget, Framstredet 6, Tromsø, 9019, Norway
| |
Collapse
|
117
|
McGrath C. Highlight: Origins of Multicellularity Revealed by Single-Celled Amoebae. Genome Biol Evol 2018; 10:705-706. [PMID: 31162574 PMCID: PMC5829670 DOI: 10.1093/gbe/evy038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 11/13/2022] Open
|
118
|
Hillmann F, Forbes G, Novohradská S, Ferling I, Riege K, Groth M, Westermann M, Marz M, Spaller T, Winckler T, Schaap P, Glöckner G. Multiple Roots of Fruiting Body Formation in Amoebozoa. Genome Biol Evol 2018; 10:591-606. [PMID: 29378020 PMCID: PMC5804921 DOI: 10.1093/gbe/evy011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 02/03/2023] Open
Abstract
Establishment of multicellularity represents a major transition in eukaryote evolution. A subgroup of Amoebozoa, the dictyosteliids, has evolved a relatively simple aggregative multicellular stage resulting in a fruiting body supported by a stalk. Protosteloid amoeba, which are scattered throughout the amoebozoan tree, differ by producing only one or few single stalked spores. Thus, one obvious difference in the developmental cycle of protosteliids and dictyosteliids seems to be the establishment of multicellularity. To separate spore development from multicellular interactions, we compared the genome and transcriptome of a Protostelium species (Protostelium aurantium var. fungivorum) with those of social and solitary members of the Amoebozoa. During fruiting body formation nearly 4,000 genes, corresponding to specific pathways required for differentiation processes, are upregulated. A comparison with genes involved in the development of dictyosteliids revealed conservation of >500 genes, but most of them are also present in Acanthamoeba castellanii for which fruiting bodies have not been documented. Moreover, expression regulation of those genes differs between P. aurantium and Dictyostelium discoideum. Within Amoebozoa differentiation to fruiting bodies is common, but our current genome analysis suggests that protosteliids and dictyosteliids used different routes to achieve this. Most remarkable is both the large repertoire and diversity between species in genes that mediate environmental sensing and signal processing. This likely reflects an immense adaptability of the single cell stage to varying environmental conditions. We surmise that this signaling repertoire provided sufficient building blocks to accommodate the relatively simple demands for cell-cell communication in the early multicellular forms.
Collapse
Affiliation(s)
- Falk Hillmann
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Gillian Forbes
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, United Kingdom
| | - Silvia Novohradská
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Iuliia Ferling
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Konstantin Riege
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Germany
| | - Marco Groth
- CF DNA-Sequencing, Leibniz Institute on Aging Research, Jena, Germany
| | | | - Manja Marz
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Germany
| | - Thomas Spaller
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Winckler
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Pauline Schaap
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, United Kingdom
| | - Gernot Glöckner
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
119
|
Táborský P, Pánek T, Čepička I. Anaeramoebidae fam. nov., a Novel Lineage of Anaerobic Amoebae and Amoeboflagellates of Uncertain Phylogenetic Position. Protist 2017; 168:495-526. [DOI: 10.1016/j.protis.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
|
120
|
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Sci Rep 2017; 7:11025. [PMID: 28887541 PMCID: PMC5591225 DOI: 10.1038/s41598-017-11466-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/17/2017] [Indexed: 11/08/2022] Open
Abstract
Single-cell genomics (SCG) appeared as a powerful technique to get genomic information from uncultured organisms. However, SCG techniques suffer from biases at the whole genome amplification step that can lead to extremely variable numbers of genome recovery (5-100%). Thus, it is unclear how useful can SCG be to address evolutionary questions on uncultured microbial eukaryotes. To provide some insights into this, we here analysed 3 single-cell amplified genomes (SAGs) of the choanoflagellate Monosiga brevicollis, whose genome is known. Our results show that each SAG has a different, independent bias, yielding different levels of genome recovery for each cell (6-36%). Genes often appear fragmented and are split into more genes during annotation. Thus, analyses of gene gain and losses, gene architectures, synteny and other genomic features can not be addressed with a single SAG. However, the recovery of phylogenetically-informative protein domains can be up to 55%. This means SAG data can be used to perform accurate phylogenomic analyses. Finally, we also confirm that the co-assembly of several SAGs improves the general genomic recovery. Overall, our data show that, besides important current limitations, SAGs can still provide interesting and novel insights from poorly-known, uncultured organisms.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain.
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
121
|
Tekle YI, Wood FC. Longamoebia is not monophyletic: Phylogenomic and cytoskeleton analyses provide novel and well-resolved relationships of amoebozoan subclades. Mol Phylogenet Evol 2017; 114:249-260. [PMID: 28669813 DOI: 10.1016/j.ympev.2017.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Longamoebia is one of the most morphologically diverse member of Amoebozoa. It includes the human pathogen Acanthamoeba, which causes minor skin and serious eye infections as well as fatal central nervous system complications. The taxonomy and phylogeny of Longamoebia is poorly understood partly due to the growing number of molecular studies that report unsuspected affiliations of lineages with extremely different morphotypes in the group. A recent molecular study questioned the monophyly of Longamoebia. In this study, we conducted a more comprehensive phylogenomic analysis including all of putative members of Longamoebia to assess its monophyly. We conducted extensive analyses to see effects of outgroup choice, missing data, and gene and taxon sampling on resulting phylogenies. We also collected morphological characters derived from the cytoskeleton using immunocytochemistry to assess homologies of pseudopodia at a finer scale. Our phylogenomic analysis yielded a well-resolved tree of Amoebozoa and highly supported novel relationships. Discosea is recovered as a monophyletic group with all of its known taxonomic orders. However, its within-group relationships dramatically differed from those originally proposed. Our study strongly demonstrates that Longamoebia sensu Smirnov et al. (2011) is not monophyletic and an invalid taxon. Thecamoebida forms a strongly supported sister group relationship with clade Flabellinea (Dactylopodida and Vannellida), while Dermamoebida (Mayorella+Dermamoeba) form an independent branch basal to other members of Discosea. The remaining groups including members of Centramoebida form a consistently well-supported clade that was shown to form a sister group relationship with Himatismenida. This robust clade shares the unique cytoskeletal features of coiled cytoplasmic microtubule network and F-actin characters. Our analyses demonstrated that placement of unstable taxa in large-scale analysis with varying levels of missing data might be compromised by some confounding factors such as outgroup choice and gene and taxon sampling.
Collapse
Affiliation(s)
- Yonas I Tekle
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA.
| | - Fiona C Wood
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| |
Collapse
|