101
|
Theron J, Eugene Cloete T, de Kwaadsteniet M. Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Crit Rev Microbiol 2010; 36:318-39. [DOI: 10.3109/1040841x.2010.489892] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
102
|
Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, DeSantis TZ, Brodie EL, Malamud D, Poles MA, Pei Z. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 2010; 16:4135-44. [PMID: 20806429 PMCID: PMC2932916 DOI: 10.3748/wjg.v16.i33.4135] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To design and validate broad-range 16S rRNA primers for use in high throughput sequencing to classify bacteria isolated from the human foregut microbiome.
METHODS: A foregut microbiome dataset was constructed using 16S rRNA gene sequences obtained from oral, esophageal, and gastric microbiomes produced by Sanger sequencing in previous studies represented by 219 bacterial species. Candidate primers evaluated were from the European rRNA database. To assess the effect of sequence length on accuracy of classification, 16S rRNA genes of various lengths were created by trimming the full length sequences. Sequences spanning various hypervariable regions were selected to simulate the amplicons that would be obtained using possible primer pairs. The sequences were compared with full length 16S rRNA genes for accuracy in taxonomic classification using online software at the Ribosomal Database Project (RDP). The universality of the primer set was evaluated using the RDP 16S rRNA database which is comprised of 433 306 16S rRNA genes, represented by 36 phyla.
RESULTS: Truncation to 100 nucleotides (nt) downstream from the position corresponding to base 28 in the Escherichia coli 16S rRNA gene caused misclassification of 87 (39.7%) of the 219 sequences, compared with misclassification of only 29 (13.2%) sequences with truncation to 350 nt. Among 350-nt sequence reads within various regions of the 16S rRNA gene, the reverse read of an amplicon generated using the 343F/798R primers had the least (8.2%) effect on classification. In comparison, truncation to 900 nt mimicking single pass Sanger reads misclassified 5.0% of the 219 sequences. The 343F/798R amplicon accurately assigned 91.8% of the 219 sequences at the species level. Weighted by abundance of the species in the esophageal dataset, the 343F/798R amplicon yielded similar classification accuracy without a significant loss in species coverage (92%). Modification of the 343F/798R primers to 347F/803R increased their universality among foregut species. Assuming that a typical polymerase chain reaction can tolerate 2 mismatches between a primer and a template, the modified 347F and 803R primers should be able to anneal 98% and 99.6% of all 16S rRNA genes in the RDP database.
CONCLUSION: 347F/803R is the most suitable pair of primers for classification of foregut 16S rRNA genes but also possess universality suitable for analyses of other complex microbiomes.
Collapse
|
103
|
Aptazyme-mediated regulation of 16S ribosomal RNA. ACTA ACUST UNITED AC 2010; 17:236-42. [PMID: 20338515 DOI: 10.1016/j.chembiol.2010.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/13/2010] [Accepted: 02/11/2010] [Indexed: 01/05/2023]
Abstract
Developing artificial genetic switches in order to control gene expression via an external stimulus is an important aim in chemical and synthetic biology. Here, we expand the application range of RNA switches to the regulation of 16S rRNA function in Escherichia coli. For this purpose, we incorporated hammerhead ribozymes at several positions into orthogonalized 16S rRNA. We observed that ribosomal function is remarkably tolerant toward the incorporation of large additional RNA fragments at certain sites of the 16S rRNA. However, ribozyme-mediated cleavage results in severe reduction of 16S rRNA stability. We carried out an in vivo screen for the identification of sequences acting as ligand-responsive RNA switches, enabling thiamine-dependent switching of 16S rRNA function. In addition to expanding the regulatory toolbox, the presented artificial riboswitches should prove valuable to study aspects of rRNA folding and stability in bacteria.
Collapse
|
104
|
Mori H, Maruyama F, Kurokawa K. VITCOMIC: visualization tool for taxonomic compositions of microbial communities based on 16S rRNA gene sequences. BMC Bioinformatics 2010; 11:332. [PMID: 20565810 PMCID: PMC2894824 DOI: 10.1186/1471-2105-11-332] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/18/2010] [Indexed: 12/29/2022] Open
Abstract
Background Understanding the community structure of microbes is typically accomplished by sequencing 16S ribosomal RNA (16S rRNA) genes. These community data can be represented by constructing a phylogenetic tree and comparing it with other samples using statistical methods. However, owing to high computational complexity, these methods are insufficient to effectively analyze the millions of sequences produced by new sequencing technologies such as pyrosequencing. Results We introduce a web tool named VITCOMIC (VIsualization tool for Taxonomic COmpositions of MIcrobial Community) that can analyze millions of bacterial 16S rRNA gene sequences and calculate the overall taxonomic composition for a microbial community. The 16S rRNA gene sequences of genome-sequenced strains are used as references to identify the nearest relative of each sample sequence. With this information, VITCOMIC plots all sequences in a single figure and indicates relative evolutionary distances. Conclusions VITCOMIC yields a clear representation of the overall taxonomic composition of each sample and facilitates an intuitive understanding of differences in community structure between samples. VITCOMIC is freely available at http://mg.bio.titech.ac.jp/vitcomic/.
Collapse
Affiliation(s)
- Hiroshi Mori
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
105
|
Zhang H, Chen L. Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 2010; 37:4013-22. [PMID: 20306230 DOI: 10.1007/s11033-010-0060-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/05/2010] [Indexed: 01/01/2023]
Abstract
The aim of this study was to describe the microbial communities in the distal gut of wild wolves (Canis lupus). Fecal samples were collected from three healthy unrelated adult wolves captured at the nearby of Dalai Lake Nature Reserve in Inner Mongolia of China. The diversity of fecal bacteria was investigated by constructing PCR-amplified 16S rRNA gene clone libraries using the universal bacterial primers 27 F and 1493 R. A total of 307 non-chimeric near-full-length 16S rRNA gene sequences were analyzed and 65 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified. Seventeen OTUs (26%) showed less than 98% sequence similarity to 16S rRNA gene sequences were reported previously. Five different bacterial phyla were identified, with the majority of OTUs being classified within the phylum Firmicutes (60%), followed by Bacteroidetes (16.9%), Proteobacteria (9.2%), Fusobacteria (9.2%) and Actinobacteria (4.6%). The majority of clones fell within the order Clostridiales (53.8% of OTUs). It was predominantly affiliated with five families: Lachnospiraceae was the most diverse bacterial family in this order, followed by Ruminococcaceae, Clostridiaceae, Peptococcaceae and Peptostreptococcaceae.
Collapse
Affiliation(s)
- Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, 273165, China.
| | | |
Collapse
|
106
|
Sahl JW, Fairfield N, Harris JK, Wettergreen D, Stone WC, Spear JR. Novel microbial diversity retrieved by autonomous robotic exploration of the world's deepest vertical phreatic sinkhole. ASTROBIOLOGY 2010; 10:201-213. [PMID: 20298146 DOI: 10.1089/ast.2009.0378] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The deep phreatic thermal explorer (DEPTHX) is an autonomous underwater vehicle designed to navigate an unexplored environment, generate high-resolution three-dimensional (3-D) maps, collect biological samples based on an autonomous sampling decision, and return to its origin. In the spring of 2007, DEPTHX was deployed in Zacatón, a deep (approximately 318 m), limestone, phreatic sinkhole (cenote) in northeastern Mexico. As DEPTHX descended, it generated a 3-D map based on the processing of range data from 54 onboard sonars. The vehicle collected water column samples and wall biomat samples throughout the depth profile of the cenote. Post-expedition sample analysis via comparative analysis of 16S rRNA gene sequences revealed a wealth of microbial diversity. Traditional Sanger gene sequencing combined with a barcoded-amplicon pyrosequencing approach revealed novel, phylum-level lineages from the domains Bacteria and Archaea; in addition, several novel subphylum lineages were also identified. Overall, DEPTHX successfully navigated and mapped Zacatón, and collected biological samples based on an autonomous decision, which revealed novel microbial diversity in a previously unexplored environment.
Collapse
Affiliation(s)
- Jason W Sahl
- Environmental Science and Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | | | | | | | | | | |
Collapse
|
107
|
Codling C, O'Mahony L, Shanahan F, Quigley EMM, Marchesi JR. A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig Dis Sci 2010; 55:392-7. [PMID: 19693670 DOI: 10.1007/s10620-009-0934-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/22/2009] [Indexed: 12/14/2022]
Abstract
PURPOSE The objectives of this study were, firstly, to determine the diversity of the host's gut microbiota in irritable bowel syndrome (IBS) using a culture-independent method (DGGE of the 16S rRNA gene) and, secondly, to examine mucosal biopsies of IBS patients and compare them to their own fecal microbiota. METHODS The diversity of the dominant microbiota in the fecal material of IBS patients was compared to a healthy control group. In addition, we compared the mucosal and fecal microbiota of IBS patients. RESULTS Statistical analysis of the mean similarity data for these groups indicated a significant difference (P < 0.001) between IBS (n = 47) and healthy controls (n = 33) with significantly more variation in the gut microbiota of healthy volunteers than that of IBS patients. The average intra-individual similarity between the mucosa and luminal microbiota was 84%, which indicates that different communities were present at the two sites. This difference, however, is similar to that previously described between these two niches in control subjects. The average inter-individual similarity of the bacterial communities on the mucosa and in the lumen of IBS was not significantly different (P > 0.05). CONCLUSIONS IBS impacts equally on both bacterial communities in the IBS host and a significant difference in the gut microbiota exists between fecal samples from IBS patients and healthy controls. The reason for this difference is unclear and various possible explanations are available, but much more work is required to determine the underlying reason for this observation.
Collapse
Affiliation(s)
- Caroline Codling
- Department of Medicine, Alimentary Pharmabiotic Centre, Cork University Hospital, Cork, Ireland
| | | | | | | | | |
Collapse
|
108
|
Corse E, Costedoat C, Chappaz R, Pech N, Martin JF, Gilles A. A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol Ecol Resour 2009; 10:96-108. [PMID: 21564994 DOI: 10.1111/j.1755-0998.2009.02795.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of DNA barcoding from faeces represents a promising method for animal diet analysis. However, current studies mainly rely on prior knowledge of prey diversity for a specific predator rather than on a range of its potential prey species. Considering that the feeding behaviour of teleosts may evolve with their environment, it could prove difficult to establish an exhaustive listing of their prey. In this article, we extend the DNA barcoding approach to diet analysis to allow the inclusion of a wide taxonomic range of potential prey items. Thirty-four ecological clade-specific primer sets were designed to cover a large proportion of prey species found in European river ecosystems. Selected primers sets were tested on isolated animal, algal or plant tissues and thereafter on fish faeces using nested PCR to increase DNA detection sensitivity. The PCR products were sequenced and analysed to confirm the identity of the taxa and to validate the method. The methodology developed here was applied to a diet analysis of three freshwater cyprinid species that are assumed to have similar feeding behaviour [Chondrostoma toxostoma toxostoma (Vallot 1837), Chondrostoma nasus nasus (Linnaeus, 1758) and Barbus barbus, (Linneaus 1758)]. These three species were sampled in four different hydrographic basins. Principal Component Analysis based on prey proportions identified distinct perilithon grazer and benthophagous behaviours. Furthermore, our results were consistent with the available literature on feeding behaviour in these fish. The simplicity of the PCR-based method and its potential generalization to other freshwater organisms may open new perspectives in food web ecology.
Collapse
Affiliation(s)
- Emmanuel Corse
- Aix-Marseille Université, CNRS, IRD, UMR 6116 - IMEP, Evolution Génome Environnement, Centre Saint-Charles, Case 36, 3 Place Victor Hugo, 13331 Marseille Cedex 3 Montpellier SupAgro, INRA, IRD, CIRAD, Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, CS30016, 34988 Montferrier-sur-Lez, France
| | | | | | | | | | | |
Collapse
|
109
|
Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 2009; 4:e7401. [PMID: 19816594 PMCID: PMC2754607 DOI: 10.1371/journal.pone.0007401] [Citation(s) in RCA: 713] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/13/2009] [Indexed: 11/19/2022] Open
Abstract
Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90%) were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519–539, E969–983, E1063–1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies.
Collapse
|
110
|
Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 2009; 12:2070-82. [PMID: 21966903 PMCID: PMC2936111 DOI: 10.1111/j.1462-2920.2009.02065.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250 000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described ‘sponge-specific’ clusters that were detected in this study, 48% were found exclusively in adults and larvae – implying vertical transmission of these groups. The remaining taxa, including ‘Poribacteria’, were also found at very low abundance among the 135 000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought.
Collapse
Affiliation(s)
- Nicole S Webster
- Australian Institute of Marine Science, PMB 3, Townsville Mail Centre, Qld 4810, Australia
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Trindade-Silva AE, Machado-Ferreira E, Senra MVX, Vizzoni VF, Yparraguirre LA, Leoncini O, Soares CAG. Physiological traits of the symbiotic bacterium Teredinibacter turnerae isolated from the mangrove shipworm Neoteredo reynei. Genet Mol Biol 2009; 32:572-81. [PMID: 21637522 PMCID: PMC3036054 DOI: 10.1590/s1415-47572009005000061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 03/23/2009] [Indexed: 11/22/2022] Open
Abstract
Nutrition in the Teredinidae family of wood-boring mollusks is sustained by cellulolytic/nitrogen fixing symbiotic bacteria of the Teredinibacter clade. The mangrove Teredinidae Neoteredo reynei is popularly used in the treatment of infectious diseases in the north of Brazil. In the present work, the symbionts of N. reynei, which are strictly confined to the host's gills, were conclusively identified as Teredinibacter turnerae. Symbiont variants obtained in vitro were able to grow using casein as the sole carbon/nitrogen source and under reduced concentrations of NaCl. Furthermore, cellulose consumption in T. turnerae was clearly reduced under low salt concentrations. As a point of interest, we hereby report first hand that T. turnerae in fact exerts antibiotic activity. Furthermore, this activity was also affected by NaCl concentration. Finally, T. turnerae was able to inhibit the growth of Gram-negative and Gram-positive bacteria, this including strains of Sphingomonas sp., Stenotrophomonas maltophilia, Bacillus cereus and Staphylococcus sciuri. Our findings introduce new points of view on the ecology of T. turnerae, and suggest new biotechnological applications for this marine bacterium.
Collapse
Affiliation(s)
- Amaro E Trindade-Silva
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | | | | | | | | | | |
Collapse
|
112
|
Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog 2009; 5:e1000542. [PMID: 19662170 PMCID: PMC2715215 DOI: 10.1371/journal.ppat.1000542] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 07/15/2009] [Indexed: 12/15/2022] Open
Abstract
Recognition of peptidoglycan (PGN) is paramount for insect antibacterial defenses. In the fruit fly Drosophila melanogaster, the transmembrane PGN Recognition Protein LC (PGRP-LC) is a receptor of the Imd signaling pathway that is activated after infection with bacteria, mainly Gram-negative (Gram−). Here we demonstrate that bacterial infections of the malaria mosquito Anopheles gambiae are sensed by the orthologous PGRPLC protein which then activates a signaling pathway that involves the Rel/NF-κB transcription factor REL2. PGRPLC signaling leads to transcriptional induction of antimicrobial peptides at early stages of hemolymph infections with the Gram-positive (Gram+) bacterium Staphylococcus aureus, but a different signaling pathway might be used in infections with the Gram− bacterium Escherichia coli. The size of mosquito symbiotic bacteria populations and their dramatic proliferation after a bloodmeal, as well as intestinal bacterial infections, are also controlled by PGRPLC signaling. We show that this defense response modulates mosquito infection intensities with malaria parasites, both the rodent model parasite, Plasmodium berghei, and field isolates of the human parasite, Plasmodium falciparum. We propose that the tripartite interaction between mosquito microbial communities, PGRPLC-mediated antibacterial defense and infections with Plasmodium can be exploited in future interventions aiming to control malaria transmission. Molecular analysis and structural modeling provided mechanistic insights for the function of PGRPLC. Alternative splicing of PGRPLC transcripts produces three main isoforms, of which PGRPLC3 appears to have a key role in the resistance to bacteria and modulation of Plasmodium infections. Structural modeling indicates that PGRPLC3 is capable of binding monomeric PGN muropeptides but unable to initiate dimerization with other isoforms. A dual role of this isoform is hypothesized: it sequesters monomeric PGN dampening weak signals and locks other PGRPLC isoforms in binary immunostimulatory complexes further enhancing strong signals. Recognition of peptidoglycan on the bacteria cell wall triggers insect immune responses. The fruit fly PGRPLC receptor protein senses the presence of peptidoglycan and activates a pathway that mediates resistance to bacterial infections, mainly Gram-negative. We show that the PGRPLC receptor of the malaria vector mosquito Anopheles gambiae can also sense infections of the hemolymph (the mosquito blood) or the gut with bacteria of both Gram types and thereby activate a pathway that confers resistance to these infections. PGRPLC and its downstream responses also control the numbers of symbiotic bacteria that are mostly found in the mosquito gut where they drastically proliferate after a female mosquito takes a bloodmeal. Importantly, when the bloodmeal is infected with malaria parasites, the defense reaction that the mosquito mounts against proliferating bacteria also eliminate a large number of parasites. These mechanisms are largely elucidated using a rodent malaria parasite, but we also show that they significantly affect the intensities of mosquito infections with Plasmodium falciparum parasites found in the blood of children in sub-Saharan Africa.
Collapse
|
113
|
Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 2009; 75:5227-36. [PMID: 19561178 DOI: 10.1128/aem.00592-09] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pyrosequencing-based 16S rRNA gene surveys are increasingly utilized to study highly diverse bacterial communities, with special emphasis on utilizing the large number of sequences obtained (tens to hundreds of thousands) for species richness estimation. However, it is not yet clear how the number of operational taxonomic units (OTUs) and, hence, species richness estimates determined using shorter fragments at different taxonomic cutoffs correlates with the number of OTUs assigned using longer, nearly complete 16S rRNA gene fragments. We constructed a 16S rRNA clone library from an undisturbed tallgrass prairie soil (1,132 clones) and used it to compare species richness estimates obtained using eight pyrosequencing candidate fragments (99 to 361 bp in length) and the nearly full-length fragment. Fragments encompassing the V1 and V2 (V1+V2) region and the V6 region (generated using primer pairs 8F-338R and 967F-1046R) overestimated species richness; fragments encompassing the V3, V7, and V7+V8 hypervariable regions (generated using primer pairs 338F-530R, 1046F-1220R, and 1046F-1392R) underestimated species richness; and fragments encompassing the V4, V5+V6, and V6+V7 regions (generated using primer pairs 530F-805R, 805F-1046R, and 967F-1220R) provided estimates comparable to those obtained with the nearly full-length fragment. These patterns were observed regardless of the alignment method utilized or the parameter used to gauge comparative levels of species richness (number of OTUs observed, slope of scatter plots of pairwise distance values for short and nearly complete fragments, and nonparametric and parametric species richness estimates). Similar results were obtained when analyzing three other datasets derived from soil, adult Zebrafish gut, and basaltic formations in the East Pacific Rise. Regression analysis indicated that these observed discrepancies in species richness estimates within various regions could readily be explained by the proportions of hypervariable, variable, and conserved base pairs within an examined fragment.
Collapse
|
114
|
Doud M, Zeng E, Schneper L, Narasimhan G, Mathee K. Approaches to analyse dynamic microbial communities such as those seen in cystic fibrosis lung. Hum Genomics 2009; 3:246-56. [PMID: 19403459 PMCID: PMC3500232 DOI: 10.1186/1479-7364-3-3-246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial communities play vital roles in many aspects of our lives, although our understanding of microbial biogeography and community profiles remains unclear. The number of microbes or the diversity of the microbes, even in small environmental niches, is staggering. Current microbiological methods used to analyse these communities are limited, in that many microorganisms cannot be cultured. Even for the isolates that can be cultured, the expense of identifying them definitively is much too high to be practical. Many recent molecular technologies, combined with bioinformatic tools, are raising the bar by improving the sensitivity and reliability of microbial community analysis. These tools and techniques range from those that attempt to understand a microbial community from their length heterogeneity profiles to those that help to identify the strains and species of a random sampling of the microbes in a given sample. These technologies are reviewed here, using the microbial communities present in the lungs of cystic fibrosis patients as a paradigm.
Collapse
Affiliation(s)
- Melissa Doud
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
115
|
Use of sloppy molecular beacon probes for identification of mycobacterial species. J Clin Microbiol 2009; 47:1190-8. [PMID: 19171684 DOI: 10.1128/jcm.02043-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the use of novel "sloppy" molecular beacon probes in homogeneous PCR screening assays in which thermal denaturation of the resulting probe-amplicon hybrids provides a characteristic set of amplicon melting temperature (T(m)) values that identify which species is present in a sample. Sloppy molecular beacons possess relatively long probe sequences, enabling them to form hybrids with amplicons from many different species despite the presence of mismatched base pairs. By using four sloppy molecular beacons, each possessing a different probe sequence and each labeled with a differently colored fluorophore, four different T(m) values can be determined simultaneously. We tested this technique with 27 different species of mycobacteria and found that each species generates a unique, highly reproducible signature that is unaffected by the initial bacterial DNA concentration. Utilizing this general paradigm, screening assays can be designed for the identification of a wide range of species.
Collapse
|
116
|
Ritchie LE, Steiner JM, Suchodolski JS. Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol 2008; 66:590-8. [PMID: 19049654 DOI: 10.1111/j.1574-6941.2008.00609.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to describe the microbial communities along the gastrointestinal tract in healthy cats based on analysis of the 16S rRNA gene. Gastrointestinal content (i.e. content from the stomach, duodenum, jejunum, ileum, and colon) was collected from four healthy conventionally raised colony cats and one healthy specific pathogen-free (SPF) cat. Bacterial 16S rRNA genes were amplified using universal bacterial primers and analyzed by comparative sequence analysis. A total of 1008 clones were analyzed and 109 nonredundant 16S rRNA gene sequences were identified. In the four conventionally raised cats, five different bacterial phyla were observed, with sequences predominantly classified in the phylum Firmicutes (68%), followed by Proteobacteria (14%), Bacteroidetes (10%), Fusobacteria (5%), and Actinobacteria (4%). The majority of clones fell within the order Clostridiales (54%), followed by Lactobacillales, Bacteroidales, Campylobacterales, and Fusobacteriales (14%, 11%, 10%, and 6%, respectively). Clostridiales were predominantly affiliated with Clostridium clusters I (58%) and XIVa (27%). The intestinal microbiota of the SPF cat displayed a reduced bacterial diversity, with 98% of all clones classified in the phylum Firmicutes. Further classification showed that the Firmicutes clones belonged exclusively to the class Clostridiales and were predominantly affiliated with Clostridium cluster I.
Collapse
Affiliation(s)
- Lauren E Ritchie
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas 77843-4474, USA
| | | | | |
Collapse
|
117
|
Abstract
Accurate diagnostic tests are essential for the correct identification of etiologic agents causing sepsis. Conventional microbiology cultures are time consuming and may even yield negative results in many cases of septic shock. In this manner, molecular-based technologies are emerging as promising tests for use into routine clinical laboratories. In this review, we discuss current available molecular methods for bacteremia diagnosis in adult and pediatric patients with suspected or confirmed sepsis. Results of studies using polymerase chain reaction, real-time polymerase chain reaction, and complementary DNA/oligonucleotide microarrays are described and discussed into the current scenario. These new methodologies are able to detect even small amounts of bacterial DNA directly from blood specimens and show increased sensitivity and specificity for detecting many infectious agents associated with sepsis. Despite some limitations presented by nucleic acid-based techniques, these genotypic tests can be useful along with traditional microbiology diagnostics.
Collapse
|
118
|
Manichanh C, Chapple CE, Frangeul L, Gloux K, Guigo R, Dore J. A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library. Nucleic Acids Res 2008; 36:5180-8. [PMID: 18682527 PMCID: PMC2532719 DOI: 10.1093/nar/gkn496] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/17/2022] Open
Abstract
The construction of metagenomic libraries has permitted the study of microorganisms resistant to isolation and the analysis of 16S rDNA sequences has been used for over two decades to examine bacterial biodiversity. Here, we show that the analysis of random sequence reads (RSRs) instead of 16S is a suitable shortcut to estimate the biodiversity of a bacterial community from metagenomic libraries. We generated 10,010 RSRs from a metagenomic library of microorganisms found in human faecal samples. Then searched them using the program BLASTN against a prokaryotic sequence database to assign a taxon to each RSR. The results were compared with those obtained by screening and analysing the clones containing 16S rDNA sequences in the whole library. We found that the biodiversity observed by RSR analysis is consistent with that obtained by 16S rDNA. We also show that RSRs are suitable to compare the biodiversity between different metagenomic libraries. RSRs can thus provide a good estimate of the biodiversity of a metagenomic library and, as an alternative to 16S, this approach is both faster and cheaper.
Collapse
Affiliation(s)
- Chaysavanh Manichanh
- Digestive System Research Unit, University Hospital Vall d'Hebron, Ciberehd, Bioinformatics and Genomics Program, Center for Genomic Regulation, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
119
|
Jany JL, Barbier G. Culture-independent methods for identifying microbial communities in cheese. Food Microbiol 2008; 25:839-48. [PMID: 18721671 DOI: 10.1016/j.fm.2008.06.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/30/2008] [Accepted: 06/04/2008] [Indexed: 10/22/2022]
Abstract
This review focuses on the culture-independent methods available for the description of both bacterial and fungal communities in cheese. Important steps of the culture-independent strategy, which relies on bulk DNA extraction from cheese and polymerase chain reaction (PCR) amplification of selected sequences, are discussed. We critically evaluate the identification techniques already used for monitoring microbial communities in cheese, including PCR-denaturing gradient gel electrophoresis (PCR-DGGE), PCR-temporal temperature gradient gel electrophoresis (PCR-TTGE) or single-strand conformation polymorphism-PCR (SSCP-PCR) as well as some other techniques that remain to be adapted to the study of cheese communities. Further, our analysis draws attention to the lack of data available on suitable DNA sequences for identifying fungal communities in cheese and proposes some potential DNA targets.
Collapse
Affiliation(s)
- Jean-Luc Jany
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne-ESMISAB, Parvis Blaise Pascal, Technopôle de Brest Iroise, Plouzané, France.
| | | |
Collapse
|
120
|
Jiang J, Zhang R, Cui Z, He J, Gu L, Li S. Parameters controlling the gene-targeting frequency at the Sphingomonas species rrn site and expression of the methyl parathion hydrolase gene. J Appl Microbiol 2007; 102:1578-85. [PMID: 17578423 DOI: 10.1111/j.1365-2672.2006.03184.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the key parameters controlling the exogenous methyl parathion hydrolase (MPH) gene mpd-targeting frequency at the ribosomal RNA operon (rrn) site of Sphingomonas species which has a wide range of biotechnological applications. METHODS AND RESULTS Targeting vectors with different homology lengths and recipient target DNA with different homology identities were used to investigate the parameters controlling the targeting frequency at the Sphingomonas species rrn site. Targeting frequency decreased with the reduction of homology length, and the minimal size for normal homologous recombination was >100 bp. Homologous recombination could succeed even if there were 3-4% mismatches; however, targeting frequency decreased with increasing sequence divergence. The Red recombination system could increase the targeting frequency to some extent. Targeting of the mpd gene to the rrn site did not affect cell viability and resulted in an increase of MPH-specific activity in recombinants. CONCLUSIONS Targeting frequency was affected by homology length, identity and the Red recombination system. The rrn site is a good target site for the expression of exogenous genes. SIGNIFICANCE AND IMPACT OF THE STUDY This work is useful as a foundation for a better understanding of recombination events involving homologous sequences and for the improved manipulation of Sphingomonas genes in biotechnological applications.
Collapse
Affiliation(s)
- J Jiang
- Department of Microbiology, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
121
|
Drake SL, DePaola A, Jaykus LA. An Overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci Food Saf 2007. [DOI: 10.1111/j.1541-4337.2007.00022.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
122
|
Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J Mol Biol 2007; 372:356-68. [PMID: 17655860 DOI: 10.1016/j.jmb.2007.06.085] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/18/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
The mitochondrial genome and the expression of the genes within it have evolved to be highly unusual in several lineages. Within alveolates, apicomplexans and dinoflagellates share the most reduced mitochondrial gene content on record, but differ from one another in organisation and function. To clarify how these characteristics originated, we examined mitochondrial genome form and expression in a key lineage that arose close to the divergence of apicomplexans and dinoflagellates, Oxyrrhis marina. We show that Oxyrrhis is a basal member of the dinoflagellate lineage whose mitochondrial genome has some unique characteristics while sharing others with apicomplexans or dinoflagellates. Specifically, Oxyrrhis has the smallest gene complement known, with several rRNA fragments and only two protein coding genes, cox1 and a cob-cox3 fusion. The genome appears to be highly fragmented, like that of dinoflagellates, but genes are frequently arranged as tandem copies, reminiscent of the repeating nature of the Plasmodium genome. In dinoflagellates and Oxyrrhis, genes are found in many arrangements, but the Oxyrrhis genome appears to be more structured, since neighbouring genes or gene fragments are invariably the same: cox1 and the cob-cox3 fusion were never found on the same genomic fragment. Analysing hundreds of cDNAs for both genes and circularized mRNAs from cob-cox3 showed that neither uses canonical start or stop codons, although a UAA terminator is created in the cob-cox3 fusion mRNA by post-transcriptional oligoadenylation. mRNAs from both genes also use a novel 5' oligo(U) cap. Extensive RNA editing is characteristic of dinoflagellates, but we find no editing in Oxyrrhis. Overall, the combination of characteristics found in the Oxyrrhis genome allows us to plot the sequence of many events that led to the extreme organisation of apicomplexan and dinoflalgellate mitochondrial genomes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- DNA, Complementary/genetics
- DNA, Mitochondrial/genetics
- Dinoflagellida/classification
- Dinoflagellida/cytology
- Dinoflagellida/enzymology
- Dinoflagellida/genetics
- Evolution, Molecular
- Gene Expression Regulation
- Genes, Protozoan/genetics
- Genome, Protozoan/genetics
- Mitochondria/enzymology
- Mitochondria/genetics
- Molecular Sequence Data
- Phylogeny
- RNA Caps/chemistry
- RNA Editing
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Transcription, Genetic
Collapse
|
123
|
Abstract
Understanding patterns of rRNA evolution is critical for a number of fields, including structure prediction and phylogeny. The standard model of RNA evolution is that compensatory mutations in stems make up the bulk of the changes between homologous sequences, while unpaired regions are relatively homogeneous. We show that considerable heterogeneity exists in the relative rates of evolution of different secondary structure categories (stems, loops, bulges, etc.) within the rRNA, and that in eukaryotes, loops actually evolve much faster than stems. Both rates of evolution and abundance of different structural categories vary with distance from functionally important parts of the ribosome such as the tRNA path and the peptidyl transferase center. For example, fast-evolving residues are mainly found at the surface; stems are enriched at the subunit interface, and junctions near the peptidyl transferase center. However, different secondary structure categories evolve at different rates even when these effects are accounted for. The results demonstrate that relative rates and patterns of evolution are lineage specific, suggesting that phylogenetically and structurally specific models will improve evolutionary and structural predictions.
Collapse
Affiliation(s)
| | | | - R. Knight
- *To whom correspondence should be addressed. Tel: 303-492-1984; Fax: 303-492-7744;
| |
Collapse
|
124
|
Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 2007; 69:330-9. [PMID: 17391789 PMCID: PMC2562909 DOI: 10.1016/j.mimet.2007.02.005] [Citation(s) in RCA: 678] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/31/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
Bacterial 16S ribosomal RNA (rRNA) genes contain nine "hypervariable regions" (V1-V9) that demonstrate considerable sequence diversity among different bacteria. Species-specific sequences within a given hypervariable region constitute useful targets for diagnostic assays and other scientific investigations. No single region can differentiate among all bacteria; therefore, systematic studies that compare the relative advantage of each region for specific diagnostic goals are needed. We characterized V1-V8 in 110 different bacterial species including common blood borne pathogens, CDC-defined select agents and environmental microflora. Sequence similarity dendrograms were created for hypervariable regions V1-V8, and for selected combinations of regions or short segments within individual hypervariable regions that might be appropriate for DNA probing and real-time PCR. We determined that V1 best differentiated among Staphylococcus aureus and coagulase negative Staphylococcus sp. V2 and V3 were most suitable for distinguishing all bacterial species to the genus level except for closely related enterobacteriaceae. V2 best distinguished among Mycobacterium species and V3 among Haemophilus species. The 58 nucleotides-long V6 could distinguish among most bacterial species except enterobacteriaceae. V6 was also noteworthy for being able to differentiate among all CDC-defined select agents including Bacillus anthracis, which differed from B. cereus by a single polymorphism. V4, V5, V7 and V8 were less useful targets for genus or species-specific probes. The hypervariable sequence-specific dendrograms and the "MEGALIGN" files provided online will be highly useful tools for designing specific probes and primers for molecular assays to detect pathogenic bacteria, including select agents.
Collapse
Affiliation(s)
- Soumitesh Chakravorty
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, New Jersey
| | - Danica Helb
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, New Jersey
| | - Michele Burday
- Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, New Jersey
| | - Nancy Connell
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, New Jersey
| | - David Alland
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, New Jersey
- *Corresponding author: Division of Infectious Disease, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, MSB A920C, Newark NJ 07103. E-mail: . Phone: (973) 972-2179. Fax: (973) 972-0713
| |
Collapse
|
125
|
Kamikawa R, Inagaki Y, Sako Y. Fragmentation of mitochondrial large subunit rRNA in the dinoflagellate Alexandrium catenella and the evolution of rRNA structure in alveolate mitochondria. Protist 2007; 158:239-45. [PMID: 17291829 DOI: 10.1016/j.protis.2006.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/02/2006] [Indexed: 11/22/2022]
Abstract
Extensive investigations on apicomplexan mitochondria, such as those of Plasmodium falciparum, revealed that ribosomal RNAs (rRNAs) are fragmented into multiple short pieces. In this study, we isolated three mitochondrial large subunit rRNA (mtLSU rRNA) fragments from the dinoflagellate Alexandrium catenella. A piece of mtLSU rRNA that possesses high sequence similarity to the P. falciparum LSU rRNA E fragment was identified in a 1.7-kbp mitochondrial (mt) DNA clone. We further confirmed that the A. catenella "E-like" fragment is indeed transcriptionally active and that the transcript could form appropriate RNA secondary structures. In addition, we identified expression of two additional rRNA fragments with sequence similarities to P. falciparum F and G fragments. Notably, the 1.7-kbp mt DNA clone contains only one of the three rRNA fragments identified in this study, suggesting that the rRNA fragments are separately encoded in the A. catenella mt genome. Given the sister relationship between apicomplexa and dinoflagellates in eukaryote phylogeny, it is most parsimonious to assume that the mt rRNA fragmentation was established prior to the separation of the two protist groups. However, current sequence data on dinoflagellate mitochondria are insufficient to reject the alternative scenario, in which the rRNA fragmentation evolved independently in apicomplexan and dinoflagellate mitochondria.
Collapse
MESH Headings
- Animals
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Dinoflagellida/genetics
- Evolution, Molecular
- Genome, Mitochondrial
- Genome, Protozoan
- RNA, Protozoan/genetics
- Ribosome Subunits, Large, Eukaryotic/chemistry
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Department of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
126
|
Ganley ARD, Kobayashi T. Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 2007; 17:184-91. [PMID: 17200233 PMCID: PMC1781350 DOI: 10.1101/gr.5457707] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeat families within genomes are often maintained with similar sequences. Traditionally, this has been explained by concerted evolution, where repeats in an array evolve "in concert" with the same sequence via continual turnover of repeats by recombination. Another form of evolution, birth-and-death evolution, can also explain this pattern, although in this case selection is the critical force maintaining the repeats. The level of intragenomic variation is the key difference between these two forms of evolution. The prohibitive size and repetitive nature of large repeat arrays have made determination of the absolute level of intragenomic repeat variability difficult, thus there is little evidence to support concerted evolution over birth-and-death evolution for many large repeat arrays. Here we use whole-genome shotgun sequence data from the genome projects of five fungal species to reveal absolute levels of sequence variation within the ribosomal RNA gene repeats (rDNA). The level of sequence variation is remarkably low. Furthermore, the polymorphisms that are detected are not functionally constrained and seem to exist beneath the level of selection. These results suggest the rDNA is evolving via concerted evolution. Comparisons with a repeat array undergoing birth-and-death evolution provide a clear contrast in the level of repeat array variation between these two forms of evolution, confirming that the rDNA indeed does evolve via concerted evolution. These low levels of intra-genomic variation are consistent with a model of concerted evolution in which homogenization is very rapid and efficiently maintains highly similar repeat arrays.
Collapse
|
127
|
Poplawski AB, Mårtensson L, Wartiainen I, Rasmussen U. Archaeal diversity and community structure in a Swedish barley field: Specificity of the EK510R/(EURY498) 16S rDNA primer. J Microbiol Methods 2006; 69:161-73. [PMID: 17289189 DOI: 10.1016/j.mimet.2006.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/15/2006] [Accepted: 12/15/2006] [Indexed: 11/27/2022]
Abstract
The aim of this study was to analyze a total euryarchaeal community at DNA and RNA levels in a Swedish barley field with relation to soil depth (0-10 and 20-30 cm layers), soil fraction (bulk soil and rhizosphere) and time (August and November sample collection). Amplification of 16S rRNA gene using the archaeal universal A2F and Euryarchaea specific EK510R/(EURY498) primer pair, combined with denaturing gradient gel electrophoresis (DGGE), revealed distinct differences between rDNA and rRNA DGGE profiles. The soil depth, time, or rhizosphere effects did not significantly influence Archaeal community structure. Surprisingly, sequence analysis of DGGE-derived amplicons revealed the presence of Euryarchaea as well as uncultured soil Crenarchaea affiliated with group 1. In agreement, sequence comparison analyses showed that the majority of uncultured Crenarchaea group 1 had almost 100% sequence complementarity to the 3' end of the EK510R/(EURY498) primer. Therefore, we propose that EK510R/(EURY498R) is a universal archaeal primer rather than a Euryarchaea specific SSUrRNA primer. Hence, considerable care should be taken during application of this primer in studies of euryarchaeal biodiversity in soil environments.
Collapse
|
128
|
Subbotin SA, Sturhan D, Vovlas N, Castillo P, Tambe JT, Moens M, Baldwin JG. Application of the secondary structure model of rRNA for phylogeny: D2-D3 expansion segments of the LSU gene of plant-parasitic nematodes from the family Hoplolaimidae Filipjev, 1934. Mol Phylogenet Evol 2006; 43:881-90. [PMID: 17101282 DOI: 10.1016/j.ympev.2006.09.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/25/2006] [Accepted: 09/26/2006] [Indexed: 11/24/2022]
Abstract
Knowledge of rRNA structure is increasingly important to assist phylogenetic analysis through reconstructing optimal alignment, utilizing molecule features as an additional source of data and refining appropriate models of evolution of the molecule. We describe a procedure of optimization for alignment and a new coding method for nucleotide sequence data using secondary structure models of the D2 and D3 expansion fragments of the LSU-rRNA gene reconstructed for fifteen nematode species of the agriculturally important and diverse family Hoplolaimidae, order Tylenchida. Using secondary structure information we converted the original sequence data into twenty-eight symbol codes and submitted the transformed data to maximum parsimony analysis. We also applied the original sequence data set for Bayesian inference. This used the doublet model with sixteen states of nucleotide doublets for the stem region and the standard model of DNA substitution with four nucleotide states for loops and bulges. By this approach, we demonstrate that using structural information for phylogenetic analyses led to trees with lower resolved relationships between clades and likely eliminated some artefactual support for misinterpreted relationships, such as paraphyly of Helicotylenchus or Rotylenchus. This study as well as future phylogenetic analyses is herein supported by the development of an on-line database, NEMrRNA, for rRNA molecules in a structural format for nematodes. We also have developed a new computer program, RNAstat, for calculation of nucleotide statistics designed and proposed for phylogenetic studies.
Collapse
Affiliation(s)
- Sergei A Subbotin
- Department of Nematology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
NIEHUIS OLIVER, NAUMANN CLASM, MISOF BERNHARD. Phylogenetic analysis of Zygaenoidea small-subunit rRNA structural variation implies initial oligophagy on cyanogenic host plants in larvae of the moth genus Zygaena (Insecta: Lepidoptera). Zool J Linn Soc 2006. [DOI: 10.1111/j.1096-3642.2006.00222.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
130
|
Mincer TJ, Fenical W, Jensen PR. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl Environ Microbiol 2005; 71:7019-28. [PMID: 16269737 PMCID: PMC1287694 DOI: 10.1128/aem.71.11.7019-7028.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salinispora is the first obligate marine genus within the order Actinomycetales and a productive source of biologically active secondary metabolites. Despite a worldwide, tropical or subtropical distribution in marine sediments, only two Salinispora species have thus far been cultivated, suggesting limited species-level diversity. To further explore Salinispora diversity and distributions, the phylogenetic diversity of more than 350 strains isolated from sediments collected around the Bahamas was examined, including strains cultured using new enrichment methods. A culture-independent method, using a Salinispora-specific seminested PCR technique, was used to detect Salinispora from environmental DNA and estimate diversity. Overall, the 16S rRNA gene sequence diversity of cultured strains agreed well with that detected in the environmental clone libraries. Despite extensive effort, no new species level diversity was detected, and 97% of the 105 strains examined by restriction fragment length polymorphism belonged to one phylotype (S. arenicola). New intraspecific diversity was detected in the libraries, including an abundant new phylotype that has yet to be cultured, and a new depth record of 1,100 m was established for the genus. PCR-introduced error, primarily from Taq polymerase, significantly increased clone library sequence diversity and, if not masked from the analyses, would have led to an overestimation of total diversity. An environmental DNA extraction method specific for vegetative cells provided evidence for active actinomycete growth in marine sediments while indicating that a majority of sediment samples contained predominantly Salinispora spores at concentrations that could not be detected in environmental clone libraries. Challenges involved with the direct sequence-based detection of spore-forming microorganisms in environmental samples are discussed.
Collapse
Affiliation(s)
- Tracy J Mincer
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0204, USA
| | | | | |
Collapse
|
131
|
Gevers D, Vandepoele K, Simillon C, Van de Peer Y. Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol 2004; 12:148-54. [PMID: 15116722 DOI: 10.1016/j.tim.2004.02.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dirk Gevers
- Bioinformatics and Evolutionary Genomics, Ghent University/Flanders Interuniversity Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | |
Collapse
|
132
|
Crump BC, Hopkinson CS, Sogin ML, Hobbie JE. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl Environ Microbiol 2004; 70:1494-505. [PMID: 15006771 PMCID: PMC365029 DOI: 10.1128/aem.70.3.1494-1505.2004] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([(14)C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and ACTINOBACTERIA: Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.
Collapse
Affiliation(s)
- Byron C Crump
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland 21613, USA.
| | | | | | | |
Collapse
|
133
|
Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2004; 55:541-55. [PMID: 14607398 DOI: 10.1016/j.mimet.2003.08.009] [Citation(s) in RCA: 1169] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Polymerase Chain Reaction (PCR) has facilitated the detection of unculturable microorganisms in virtually any environmental source and has thus been used extensively in the assessment of environmental microbial diversity. This technique relies on the assumption that the gene sequences present in the environment are complementary to the "universal" primers used in their amplification. The recent discovery of new taxa with 16S rDNA sequences not complementary to standard universal primers suggests that current 16S rDNA libraries are not representative of true prokaryotic biodiversity. Here we re-assess the specificity of commonly used 16S rRNA gene primers and present these data in tabular form designed as a tool to aid simple analysis, selection and implementation. In addition, we present two new primer pairs specifically designed for effective "universal" Archaeal 16S rDNA sequence amplification. These primers are found to amplify sequences from Crenarchaeote and Euryarchaeote type strains and environmental DNA.
Collapse
Affiliation(s)
- G C Baker
- Department of Biotechnology, University of the Western Cape, Bellville 7335, Cape Town, South Africa
| | | | | |
Collapse
|
134
|
Coenye T, Vandamme P. Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 2004; 228:45-9. [PMID: 14612235 DOI: 10.1016/s0378-1097(03)00717-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The availability of a large number of completely sequenced bacterial genomes allows the rapid and reliable determination of intragenomic sequence heterogeneity of 16S rRNA genes. In the present study we assessed the intragenomic sequence heterogeneity of 16S rRNA genes in 55 bacterial genomes, representing various phylogenetic groups. The total number of rRNA operons in genomes included ranged from 2 to 13. The maximum number of nucleotides that were different between any pair of 16S rRNA genes within a genome ranged from 0 to 19. The corresponding minimal similarity ranged from 100 to 98.74%. This indicates that the intragenomic heterogeneity between multiple 16S rRNA operons in these genomes is rather limited and is unlikely to have a profound effect on the classification of taxa. Among the multiple copies of the 16S rRNA genes present in the genomes included, 199 mutations were counted with transitions being the dominant type of mutations over the total length of the 16S rRNA gene. Most heterogeneity occurred in variable regions V1, V2, and V6.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratorium voor Microbiologie, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | | |
Collapse
|
135
|
Armando Sánchez J, Lasker HR, Taylor DJ. Phylogenetic analyses among octocorals (Cnidaria): mitochondrial and nuclear DNA sequences (lsu-rRNA, 16S and ssu-rRNA, 18S) support two convergent clades of branching gorgonians. Mol Phylogenet Evol 2003; 29:31-42. [PMID: 12967605 DOI: 10.1016/s1055-7903(03)00090-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gorgonian octocorals lack corroborated hypotheses of phylogeny. This study reconstructs genealogical relationships among some octocoral species based on published DNA sequences from the large ribosomal subunit of the mitochondrial RNA (lsu-rRNA, 16S: 524bp and 21 species) and the small subunit of the nuclear RNA (ssu-rRNA, 18S: 1815bp and 13 spp) using information from insertions-deletions (INDELS) and the predicted secondary structure of the lsu-rRNA (16S). There were seven short (3-10bp) INDELS in the 18S with consistent phylogenetic information. The INDELS in the 16S corresponded to informative signature sequences homologous to the G13 helix found in Escherichia coli. We found two main groups of gorgonian octocorals using a maximum parsimony analysis of the two genes. One group corresponds to deep-water taxa including species from the suborders Calcaxonia and Scleraxonia characterized by an enlargement of the G13 helix. The second group has species from Alcyoniina, Holaxonia and again Scleraxonia characterized by insertions in the 18S. Gorgonian corals, branching colonies with a gorgonin-containing flexible multilayered axis (Holaxonia and Calcaxonia), do not form a monophyletic group. These corroborated results from maternally inherited (16S) and biparentally inherited (18S) genes support a hypothesis of independent evolution of branching in the two octocoral clades.
Collapse
MESH Headings
- Animals
- Anthozoa/classification
- Anthozoa/genetics
- Anthozoa/ultrastructure
- Base Sequence
- DNA/genetics
- DNA, Mitochondrial/genetics
- Evolution, Molecular
- Microscopy, Electron, Scanning
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA/chemistry
- RNA/genetics
- RNA, Mitochondrial
- RNA, Nuclear/chemistry
- RNA, Nuclear/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Juan Armando Sánchez
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (The State University of New York), Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
136
|
Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 2003. [PMID: 12620873 DOI: 10.1007/s003740100343] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Degradation of agricultural land and the resulting loss of soil biodiversity and productivity are of great concern. Land-use management practices can be used to ameliorate such degradation. The soil bacterial communities at three separate arable farms in eastern England, with different farm management practices, were investigated by using a polyphasic approach combining traditional soil analyses, physiological analysis, and nucleic acid profiling. Organic farming did not necessarily result in elevated organic matter levels; instead, a strong association with increased nitrate availability was apparent. Ordination of the physiological (BIOLOG) data separated the soil bacterial communities into two clusters, determined by soil type. Denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism analyses of 16S ribosomal DNA identified three bacterial communities largely on the basis of soil type but with discrimination for pea cropping. Five fields from geographically distinct soils, with different cropping regimens, produced highly similar profiles. The active communities (16S rRNA) were further discriminated by farm location and, to some degree, by land-use practices. The results of this investigation indicated that soil type was the key factor determining bacterial community composition in these arable soils. Leguminous crops on particular soil types had a positive effect upon organic matter levels and resulted in small changes in the active bacterial population. The active population was therefore more indicative of short-term management changes.
Collapse
Affiliation(s)
- Martina S Girvan
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England, UK.
| | | | | | | | | |
Collapse
|
137
|
Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 2003; 69:1800-9. [PMID: 12620873 PMCID: PMC150080 DOI: 10.1128/aem.69.3.1800-1809.2003] [Citation(s) in RCA: 284] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of agricultural land and the resulting loss of soil biodiversity and productivity are of great concern. Land-use management practices can be used to ameliorate such degradation. The soil bacterial communities at three separate arable farms in eastern England, with different farm management practices, were investigated by using a polyphasic approach combining traditional soil analyses, physiological analysis, and nucleic acid profiling. Organic farming did not necessarily result in elevated organic matter levels; instead, a strong association with increased nitrate availability was apparent. Ordination of the physiological (BIOLOG) data separated the soil bacterial communities into two clusters, determined by soil type. Denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism analyses of 16S ribosomal DNA identified three bacterial communities largely on the basis of soil type but with discrimination for pea cropping. Five fields from geographically distinct soils, with different cropping regimens, produced highly similar profiles. The active communities (16S rRNA) were further discriminated by farm location and, to some degree, by land-use practices. The results of this investigation indicated that soil type was the key factor determining bacterial community composition in these arable soils. Leguminous crops on particular soil types had a positive effect upon organic matter levels and resulted in small changes in the active bacterial population. The active population was therefore more indicative of short-term management changes.
Collapse
Affiliation(s)
- Martina S Girvan
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England, UK.
| | | | | | | | | |
Collapse
|
138
|
Bertilsson S, Cavanaugh CM, Polz MF. Sequencing-independent method to generate oligonucleotide probes targeting a variable region in bacterial 16S rRNA by PCR with detachable primers. Appl Environ Microbiol 2002; 68:6077-86. [PMID: 12450831 PMCID: PMC134391 DOI: 10.1128/aem.68.12.6077-6086.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oligonucleotide probes targeting the small-subunit rRNA are commonly used to detect and quantify bacteria in natural environments. We developed a PCR-based approach that allows synthesis of oligonucleotide probes targeting a variable region in the 16S rRNA without prior knowledge of the target sequence. Analysis of all 16S rRNA gene sequences in the Ribosomal Database Project database revealed two universal primer regions bracketing a variable, population-specific region. The probe synthesis is based on a two-step PCR amplification of this variable region in the 16S rRNA gene by using three universal bacterial primers. First, a double-stranded product is generated, which then serves as template in a linear amplification. After each of these steps, products are bound to magnetic beads and the primers are detached through hydrolysis of a ribonucleotide at the 3' end of the primers. This ultimately produces a single-stranded oligonucleotide of about 30 bases corresponding to the target. As probes, the oligonucleotides are highly specific and could discriminate between nucleic acids from closely and distantly related bacterial strains, including different species of VIBRIO: The method will facilitate rapid generation of oligonucleotide probes for large-scale hybridization assays such as screening of clone libraries or strain collections, ribotyping microarrays, and in situ hybridization. An additional advantage of the method is that fluorescently or radioactively labeled nucleotides can be incorporated during the second amplification, yielding intensely labeled probes.
Collapse
Affiliation(s)
- Stefan Bertilsson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
139
|
Di Franco C, Beccari E, Santini T, Pisaneschi G, Tecce G. Colony shape as a genetic trait in the pattern-forming Bacillus mycoides. BMC Microbiol 2002; 2:33. [PMID: 12429070 PMCID: PMC138795 DOI: 10.1186/1471-2180-2-33] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Accepted: 11/13/2002] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bacillus mycoides Flügge, a Gram-positive, non-motile soil bacterium assigned to Bacillus cereus group, grows on agar as chains of cells linked end to end, forming radial filaments curving clock- or counter-clockwise (SIN or DX morphotypes). The molecular mechanism causing asymmetric curving is not known: our working hypothesis considers regulation of filamentous growth as the prerequisite for these morphotypes. RESULTS SIN and DX strains isolated from the environment were classified as B. mycoides by biochemical and molecular biology tests. Growth on agar of different hardness and nutrient concentration did not abolish colony patterns, nor was conversion between SIN and DX morphotypes ever noticed. A number of morphotype mutants, all originating from one SIN strain, were obtained. Some lost turn direction becoming fluffy, others became round and compact. All mutants lost wild type tight aggregation in liquid culture. Growth on agar was followed by microscopy, exploring the process of colony formation and details of cell divisions. A region of the dcw (division cell wall) cluster, including ftsQ, ftsA, ftsZ and murC, was sequenced in DX and SIN strains as a basis for studying cell division. This confirmed the relatedness of DX and SIN strains to the B. cereus group. CONCLUSIONS DX and SIN asymmetric morphotypes stem from a close but not identical genomic context. Asymmetry is established early during growth on agar. Wild type bacilli construct mostly uninterrupted filaments with cells dividing at the free ends: they "walk" longer distances compared to mutants, where enhanced frequency of cell separation produces new growing edges resulting in round compact colonies.
Collapse
Affiliation(s)
- Carmen Di Franco
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| | - Elena Beccari
- Centro di Studio per gli Acidi Nucleici CNR, c/o Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| | - Tiziana Santini
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| | - Giuseppe Pisaneschi
- Centro di Studio per gli Acidi Nucleici CNR, c/o Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| | - Giorgio Tecce
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
140
|
Hagström A, Pommier T, Rohwer F, Simu K, Stolte W, Svensson D, Zweifel UL. Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. Appl Environ Microbiol 2002; 68:3628-33. [PMID: 12089052 PMCID: PMC126765 DOI: 10.1128/aem.68.7.3628-3633.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All of the marine bacterioplankton-derived 16S ribosomal DNA sequences previously deposited in GenBank were reanalyzed to determine the number of bacterial species in the oceanic surface waters. These sequences have been entered into the database since 1990. The rate of new additions reached a peak in 1999 and subsequently leveled off, suggesting that much of the marine microbial species richness has been sampled. When the GenBank sequences were dereplicated by using 97% similarity as a cutoff, 1,117 unique ribotypes were found. Of the unique sequences, 609 came from uncultured environmental clones and 508 came from cultured bacteria. We conclude that the apparent bacterioplankton species richness is relatively low.
Collapse
Affiliation(s)
- Ake Hagström
- Marine Microbiology, BoM, Kalmar University, S-39182 Kalmar, Sweden.
| | | | | | | | | | | | | |
Collapse
|
141
|
von Wintzingerode F, Böcker S, Schlötelburg C, Chiu NHL, Storm N, Jurinke C, Cantor CR, Göbel UB, van den Boom D. Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc Natl Acad Sci U S A 2002; 99:7039-44. [PMID: 11983869 PMCID: PMC124524 DOI: 10.1073/pnas.102165899] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rapid approach to the 16S rRNA gene (16S rDNA)-based bacterial identification has been developed that combines uracil-DNA-glycosylase (UDG)-mediated base-specific fragmentation of PCR products with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). 16S rDNA signature sequences were PCR-amplified from both cultured and as-yet-uncultured bacteria in the presence of dUTP instead of dTTP. These PCR products then were immobilized onto a streptavidin-coated solid support to selectively generate either sense or antisense templates. Single-stranded amplicons were subsequently treated with uracil-DNA-glycosylase to generate T-specific abasic sites and fragmented by alkaline treatment. The resulting fragment patterns were analyzed by MALDI-TOF MS. Mass signals of 16S rDNA fragments were compared with patterns calculated from published 16S rDNA sequences. MS of base-specific fragments of amplified 16S rDNA allows reliable discrimination of sequences differing by only one nucleotide. This approach is fast and has the potential for high-throughput identification as required in clinical, pharmaceutical, or environmental microbiology. In contrast to identification by MS of intact whole bacterial cells, this technique allows for the characterization of both cultured and as-yet-uncultured bacteria.
Collapse
Affiliation(s)
- Friedrich von Wintzingerode
- Institut für Mikrobiologie und Hygiene, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Dorotheenstrasse 96, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Kaplan JB, Schreiner HC, Furgang D, Fine DH. Population structure and genetic diversity of Actinobacillus actinomycetemcomitans strains isolated from localized juvenile periodontitis patients. J Clin Microbiol 2002; 40:1181-7. [PMID: 11923328 PMCID: PMC140340 DOI: 10.1128/jcm.40.4.1181-1187.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phylogeny of 20 Actinobacillus actinomycetemcomitans strains isolated from patients with localized juvenile periodontitis (LJP) was investigated by using partial sequence analysis of 16S rRNA genes, arbitrarily primed PCR (AP-PCR), and four additional PCR assays that amplified polymorphic regions in the leukotoxin (lkt), cytolethal distending toxin (cdt), major fimbrial subunit (flp-1), and serotype-specific O polysaccharide gene clusters. Our analysis also included four strains isolated from healthy subjects and nine reference strains. We found that A. actinomycetemcomitans strains comprised three major phylogenetic lineages. One lineage consisted of serotype b strains, a second lineage consisted of serotype c strains, and a third lineage consisted of serotype a, d, e, and f strains. 16S rRNA sequences within each lineage were highly conserved (<1% base substitutions), whereas sequences between lineages were exceptionally divergent (1.9 to 5.0% substitutions). Two strains exhibited 16S rRNA sequences that were even more distantly related to those of the three major lineages (2.7 to 6.7% substitutions), indicating that additional minor lineages or variants exist. The distribution of 16S rRNA sequences and lkt, cdt, flp-1, and AP-PCR genotypes was consistent with a clonal population structure, with little evidence of assortative recombination between strains of different serotypes. Strains from all three major lineages were recovered from LJP patients, suggesting that phylogenetically diverse strains of A. actinomycetemcomitans carry pathogenic potential.
Collapse
Affiliation(s)
- Jeffrey B Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, New Jersey 07103-2714, USA
| | | | | | | |
Collapse
|
143
|
Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O'Hanlon JF. Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 2002; 68:1548-55. [PMID: 11916667 PMCID: PMC123900 DOI: 10.1128/aem.68.4.1548-1555.2002] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2001] [Accepted: 01/23/2002] [Indexed: 11/20/2022] Open
Abstract
Bacterial populations inhabiting ultrapure water (UPW) systems were investigated. The analyzed UPW systems included pilot scale, bench scale, and full size UPW plants employed in the semiconductor and other industries. Bacteria present in the polishing loop of the UPW systems were enumerated by both plate counts and epifluorescence microscopy. Assessment of bacterial presence in UPW by epifluorescence microscopy (cyanotolyl tetrazolium chloride [CTC] and DAPI [4',6'-diamidino-2-phenylindole] staining) showed significantly higher numbers (10 to 100 times more bacterial cells were detected) than that determined by plate counts. A considerable proportion of the bacteria present in UPW (50 to 90%) were cells that did not give a positive signal with CTC stain. Bacteria isolated from the UPW systems were mostly gram negative, and several groups seem to be indigenous for all of the UPW production systems studied. These included Ralstonia pickettii, Bradyrhizobium sp., Pseudomonas saccharophilia, and Stenotrophomonas strains. These bacteria constituted a significant part of the total number of isolated strains (>or=20%). Two sets of primers specific to R. pickettii and Bradyrhizobium sp. were designed and successfully used for the detection of the corresponding bacteria in the concentrated UPW samples. Unexpectedly, nifH gene sequences were found in Bradyrhizobium sp. and some P. saccharophilia strains isolated from UPW. The widespread use of nitrogen gas in UPW plants may be associated with the presence of nitrogen-fixing genes in these bacteria.
Collapse
Affiliation(s)
- Leonid A Kulakov
- The Questor Centre, The Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland.
| | | | | | | | | |
Collapse
|
144
|
Jonasson J, Olofsson M, Monstein HJ. Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. APMIS 2002; 110:263-72. [PMID: 12076280 DOI: 10.1034/j.1600-0463.2002.100309.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The rapid identification of the etiological agent of microbial infections can bring about both clinical and financial benefits. Thus, fast and generally applicable classification methods are needed that will enable us to rapidly distinguish pathogenic bacteria from commensals or saprophytic bacteria found in the same habitat. We here show that provisional classification of bacterial isolates can be performed on a large scale based on 16S rRNA sequence comparisons using Pyrosequencing, a recently described real-time DNA sequence analysis technique, and the concept of signature matching. The probes we have developed, together with the new technology, will enable early diagnosis of specific pathogens, which is critical for the rational use of antimicrobial therapy in clinical medicine.
Collapse
Affiliation(s)
- Jon Jonasson
- Laboratoriemedicin Ostergötland (LMO), Microbiology Unit, Department of Health and Environment, Faculty of Health Science, University of Linköping, Sweden.
| | | | | |
Collapse
|
145
|
Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF, Taylor CD. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 2002; 68:316-25. [PMID: 11772641 PMCID: PMC126556 DOI: 10.1128/aem.68.1.316-325.2002] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A coastal marine sulfide-oxidizing autotrophic bacterium produces hydrophilic filamentous sulfur as a novel metabolic end product. Phylogenetic analysis placed the organism in the genus Arcobacter in the epsilon subdivision of the Proteobacteria. This motile vibrioid organism can be considered difficult to grow, preferring to grow under microaerophilic conditions in flowing systems in which a sulfide-oxygen gradient has been established. Purified cell cultures were maintained by using this approach. Essentially all 4',6-diamidino-2-phenylindole dihydrochloride-stained cells in a flowing reactor system hybridized with Arcobacter-specific probes as well as with a probe specific for the sequence obtained from reactor-grown cells. The proposed provisional name for the coastal isolate is "Candidatus Arcobacter sulfidicus." For cells cultured in a flowing reactor system, the sulfide optimum was higher than and the CO(2) fixation activity was as high as or higher than those reported for other sulfur oxidizers, such as Thiomicrospira spp. Cells associated with filamentous sulfur material demonstrated nitrogen fixation capability. No ribulose 1,5-bisphosphate carboxylase/oxygenase could be detected on the basis of radioisotopic activity or by Western blotting techniques, suggesting an alternative pathway of CO(2) fixation. The process of microbial filamentous sulfur formation has been documented in a number of marine environments where both sulfide and oxygen are available. Filamentous sulfur formation by "Candidatus Arcobacter sulfidicus" or similar strains may be an ecologically important process, contributing significantly to primary production in such environments.
Collapse
Affiliation(s)
- C O Wirsen
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Wuyts J, Van de Peer Y, De Wachter R. Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res 2001; 29:5017-28. [PMID: 11812832 PMCID: PMC97625 DOI: 10.1093/nar/29.24.5017] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relative substitution rate of each nucleotide site in bacterial small subunit rRNA, large subunit rRNA and 5S rRNA was calculated from sequence alignments for each molecule. Two-dimensional and three-dimensional variability maps of the rRNAs were obtained by plotting the substitution rates on secondary structure models and on the tertiary structure of the rRNAs available from X-ray diffraction results. This showed that the substitution rates are generally low near the centre of the ribosome, where the nucleotides essential for its function are situated, and that they increase towards the surface. An inventory was made of insertions characteristic of the Archaea, Bacteria and Eucarya domains, and for additional insertions present in specific eukaryotic taxa. All these insertions occur at the ribosome surface. The taxon-specific insertions seem to arise randomly in the eukaryotic evolutionary tree, without any phylogenetic relatedness between the taxa possessing them.
Collapse
Affiliation(s)
- J Wuyts
- Departement Biochemie, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | |
Collapse
|
147
|
Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol 2001; 24:385-94. [PMID: 11822674 DOI: 10.1078/0723-2020-00042] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of our study was to obtain data for the molecular characterization of bdellovibrio bacteria, which were recently split into the genus Bdellovibrio and the newly designated genus Bacteriovorax. We determined the 16S rDNA sequences of five reference strains and performed a phylogenetic analysis including published 16S rRNA sequences of bdellovibrios. A comparison of the secondary structure showed significant differences in two regions of the 16S rRNAs of the species Bdellovibrio bacteriovorus, Bacteriovorax starrii, and Bacteriovorax stolpii. In addition, ribotyping techniques gave specific hybridization patterns and revealed that two rRNA operons are present in the investigated strains. A hybridization probe derived from the genetic locus hit, associated with the host independent (HI) phenotype of B. bacteriovorus, was found to be specific for this species. Sequence comparison of the hit locus revealed few base pair changes between host independent (HI) and host dependent (HD) strains. Ribotyping and hybridization experiments using the hit probe were applied to characterize bdellovibrio strains isolated from the gut of animals and humans and one isolate from sewage.
Collapse
Affiliation(s)
- D Schwudke
- Robert Koch-Institut, Projektgruppe Biologische Sicherheit, Berlin, Germany
| | | | | | | |
Collapse
|
148
|
Harmsen D, Singer C, Rothgänger J, Tønjum T, de Hoog GS, Shah H, Albert J, Frosch M. Diagnostics of neisseriaceae and moraxellaceae by ribosomal DNA sequencing: ribosomal differentiation of medical microorganisms. J Clin Microbiol 2001; 39:936-42. [PMID: 11230407 PMCID: PMC87853 DOI: 10.1128/jcm.39.3.936-942.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fast and reliable identification of microbial isolates is a fundamental goal of clinical microbiology. However, in the case of some fastidious gram-negative bacterial species, classical phenotype identification based on either metabolic, enzymatic, or serological methods is difficult, time-consuming, and/or inadequate. 16S or 23S ribosomal DNA (rDNA) bacterial sequencing will most often result in accurate speciation of isolates. Therefore, the objective of this study was to find a hypervariable rDNA stretch, flanked by strongly conserved regions, which is suitable for molecular species identification of members of the Neisseriaceae and Moraxellaceae. The inter- and intrageneric relationships were investigated using comparative sequence analysis of PCR-amplified partial 16S and 23S rDNAs from a total of 94 strains. When compared to the type species of the genera Acinetobacter, Moraxella, and Neisseria, an average of 30 polymorphic positions was observed within the partial 16S rDNA investigated (corresponding to Escherichia coli positions 54 to 510) for each species and an average of 11 polymorphic positions was observed within the 202 nucleotides of the 23S rDNA gene (positions 1400 to 1600). Neisseria macacae and Neisseria mucosa subsp. mucosa (ATCC 19696) had identical 16S and 23S rDNA sequences. Species clusters were heterogeneous in both genes in the case of Acinetobacter lwoffii, Moraxella lacunata, and N. mucosa. Neisseria meningitidis isolates failed to cluster only in the 23S rDNA subset. Our data showed that the 16S rDNA region is more suitable than the partial 23S rDNA for the molecular diagnosis of Neisseriaceae and Moraxellaceae and that a reference database should include more than one strain of each species. All sequence chromatograms and taxonomic and disease-related information are available as part of our ribosomal differentiation of medical microorganisms (RIDOM) web-based service (http://www.ridom.hygiene.uni-wuerzburg.de/). Users can submit a sequence and conduct a similarity search against the RIDOM reference database for microbial identification purposes.
Collapse
Affiliation(s)
- D Harmsen
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2, Bau 17, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
|
150
|
Wuyts J, De Rijk P, Van de Peer Y, Pison G, Rousseeuw P, De Wachter R. Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Res 2000; 28:4698-708. [PMID: 11095680 PMCID: PMC115172 DOI: 10.1093/nar/28.23.4698] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The secondary structure of V4, the largest variable area of eukaryotic small subunit ribosomal RNA, was re-examined by comparative analysis of 3253 nucleotide sequences distributed over the animal, plant and fungal kingdoms and a diverse set of protist taxa. An extensive search for compensating base pair substitutions and for base covariation revealed that in most eukaryotes the secondary structure of the area consists of 11 helices and includes two pseudoknots. In one of the pseudoknots, exchange of base pairs between the two stems seems to occur, and covariation analysis points to the presence of a base triple. The area also contains three potential insertion points where additional hairpins or branched structures are present in a number of taxa scattered throughout the eukaryotic domain.
Collapse
Affiliation(s)
- J Wuyts
- Departement Biochemie, Universiteit Antwerpen (UIA), Universiteitsplein 1, B 2610 Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|