101
|
Shi X, Mollova ET, Pljevaljcić G, Millar DP, Herschlag D. Probing the dynamics of the P1 helix within the Tetrahymena group I intron. J Am Chem Soc 2009; 131:9571-8. [PMID: 19537712 DOI: 10.1021/ja902797j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA conformational transformations are integral to RNA's biological functions. Further, structured RNA molecules exist as a series of dynamic intermediates in the course of folding or complexation with proteins. Thus, an understanding of RNA folding and function will require deep and incisive understanding of its dynamic behavior. However, existing tools to investigate RNA dynamics are limited. Here, we introduce a powerful fluorescence polarization anisotropy approach that utilizes a rare base analogue that retains substantial fluorescence when incorporated into helices. We show that 6-methylisoxanthopterin (6-MI) can be used to follow the nanosecond dynamics of individual helices. We then use 6-MI to probe the dynamics of an individual helix, referred to as P1, within the 400nt Tetrahymena group I ribozyme. Comparisons of the dynamics of the P1 helix in wild type and mutant ribozymes and in model constructs reveal a highly immobilized docked state of the P1 helix, as expected, and a relatively mobile "open complex" or undocked state. This latter result rules out a model in which slow docking of the P1 helix into its cognate tertiary interactions arises from a stable alternatively docked conformer. The results are consistent with a model in which stacking and tertiary interactions of the A(3) tether connecting the P1 helix to the body of the ribozyme limit P1 mobility and slow its docking, and this model is supported by cross-linking results. The ability to isolate the nanosecond motions of individual helices within complex RNAs and RNA/protein complexes will be valuable in distinguishing between functional models and in discerning the fundamental behavior of important biological species.
Collapse
Affiliation(s)
- Xuesong Shi
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
102
|
Börjesson K, Preus S, El-Sagheer AH, Brown T, Albinsson B, Wilhelmsson LM. Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems. J Am Chem Soc 2009; 131:4288-93. [PMID: 19317504 DOI: 10.1021/ja806944w] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair consists of tC(O), 1,3-diaza-2-oxophenoxazine, as an energy donor and the newly developed tC(nitro), 7-nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors distances covering up to more than one turn of the DNA duplex. Importantly, we show that the rigid stacking of the two base analogs, and consequently excellent control of their exact positions and orientations, results in a high control of the orientation factor and hence very distinct FRET changes as the number of bases separating tC(O) and tC(nitro) is varied. A set of DNA strands containing the FRET-pair at wisely chosen locations will, thus, make it possible to accurately distinguish distance- from orientation-changes using FRET. In combination with the good nucleobase analog properties, this points toward detailed studies of the inherent dynamics of nucleic acid structures. Moreover, the placement of FRET-pair chromophores inside the base stack will be a great advantage in studies where other (biomacro)molecules interact with the nucleic acid. Lastly, our study gives possibly the first truly solid experimental support to the dependence of energy transfer efficiency on orientation of involved transition dipoles as predicted by the Forster theory.
Collapse
Affiliation(s)
- Karl Börjesson
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
103
|
Sandin P, Stengel G, Ljungdahl T, Börjesson K, Macao B, Wilhelmsson LM. Highly efficient incorporation of the fluorescent nucleotide analogs tC and tCO by Klenow fragment. Nucleic Acids Res 2009; 37:3924-33. [PMID: 19401439 PMCID: PMC2709563 DOI: 10.1093/nar/gkp266] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Studies of the mechanisms by which DNA polymerases select the correct nucleotide frequently employ fluorescently labeled DNA to monitor conformational rearrangements of the polymerase-DNA complex in response to incoming nucleotides. For this purpose, fluorescent base analogs play an increasingly important role because they interfere less with the DNA-protein interaction than do tethered fluorophores. Here we report the incorporation of the 5'-triphosphates of two exceptionally bright cytosine analogs, 1,3-diaza-2-oxo-phenothiazine (tC) and its oxo-homolog, 1,3-diaza-2-oxo-phenoxazine (tC(O)), into DNA by the Klenow fragment. Both nucleotide analogs are polymerized with slightly higher efficiency opposite guanine than cytosine triphosphate and are shown to bind with nanomolar affinity to the DNA polymerase active site, according to fluorescence anisotropy measurements. Using this method, we perform competitive binding experiments and show that they can be used to determine the dissociation constant of any given natural or unnatural nucleotide. The results demonstrate that the active site of the Klenow fragment is flexible enough to tolerate base pairs that are size-expanded in the major groove. In addition, the possibility to enzymatically polymerize a fluorescent nucleotide with high efficiency complements the tool box of biophysical probes available to study DNA replication.
Collapse
Affiliation(s)
- Peter Sandin
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
104
|
Dyrager C, Börjesson K, Dinér P, Elf A, Albinsson B, Wilhelmsson LM, Grøtli M. Synthesis and Photophysical Characterisation of Fluorescent 8-(1H-1,2,3-Triazol-4-yl)adenosine Derivatives. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
105
|
Nucleic acid structure and sequence probing using fluorescent base analogue tCO. Biophys Chem 2009; 139:24-8. [DOI: 10.1016/j.bpc.2008.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 12/11/2022]
|
106
|
Butler RS, Cohn P, Tenzel P, Abboud KA, Castellano RK. Synthesis, Photophysical Behavior, and Electronic Structure of Push−Pull Purines. J Am Chem Soc 2008; 131:623-33. [DOI: 10.1021/ja806348z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roslyn S. Butler
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Pamela Cohn
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Phillip Tenzel
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Khalil A. Abboud
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Ronald K. Castellano
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| |
Collapse
|
107
|
Porterfield W, Tahmassebi DC. Synthesis of a fluorescent 2'3'-dideoxycytosine analog, tCdd. Bioorg Med Chem Lett 2008; 19:111-3. [PMID: 19026534 DOI: 10.1016/j.bmcl.2008.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/28/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
The pathway leading to the preparation of a novel tricyclic 2'3'-dideoxycytosine analog, tCdd (1) is reported. A protected 2'3'-dideoxyribose prepared from l-glutamic acid was coupled to a silylated fluorescent base to yield a mixture of the alpha- and beta-anomers of the 2'3'-dideoxyribonucleoside of 1,3-diaza-2-oxophenothiazine, tCdd (1). The fluorescent base analog retains a high fluorescence emission over a large pH range and should be useful in a variety of probe applications.
Collapse
Affiliation(s)
- William Porterfield
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | | |
Collapse
|
108
|
Cekan P, Smith AL, Barhate N, Robinson BH, Sigurdsson ST. Rigid spin-labeled nucleoside C: a nonperturbing EPR probe of nucleic acid conformation. Nucleic Acids Res 2008; 36:5946-54. [PMID: 18805908 PMCID: PMC2566876 DOI: 10.1093/nar/gkn562] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rigid spin-labeled nucleoside C, an analog of deoxycytidine that base-pairs with deoxyguanosine, was incorporated into DNA oligomers by chemical synthesis. Thermal denaturation experiments and circular dichroism (CD) measurements showed that C has a negligible effect on DNA duplex stability and conformation. Nucleoside C was incorporated into several positions within single-stranded DNA oligomers that can adopt two hairpin conformations of similar energy, each of which contains a four-base loop. The relative mobility of nucleotides in the alternating C/G hairpin loops, 5'-d(GCGC) and 5'-d(CGCG), was determined by electron paramagnetic resonance (EPR) spectroscopy. The most mobile nucleotide in the loop is the second one from the 5'-end, followed by the third, first and fourth nucleotides, consistent with previous NMR studies of DNA hairpin loops of different sequences. The EPR hairpin data were also corroborated by fluorescence spectroscopy using oligomers containing reduced C (C(f)), which is fluorescent. Furthermore, EPR spectra of duplex DNAs that contained C at the end of the helix showed features that indicated dipolar coupling between two spins. These data are consistent with end-to-end duplex stacking in solution, which was only observed when G was paired to C, but not when C was paired with A, C or T.
Collapse
Affiliation(s)
- Pavol Cekan
- University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
109
|
Wojciechowski F, Hudson RHE. Fluorescence and hybridization properties of peptide nucleic acid containing a substituted phenylpyrrolocytosine designed to engage Guanine with an additional H-bond. J Am Chem Soc 2008; 130:12574-5. [PMID: 18761442 DOI: 10.1021/ja804233g] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new pyrrolocytosine derivative has been designed to selectively interact with guanine and has been evaluated in peptide nucleic acid where it imparts increased selective binding affinity for complementary oligonucleotides. The modified nucleobase also possesses an exceptionally high fluorescence quantum yield that is responsive to hybridization.
Collapse
Affiliation(s)
- Filip Wojciechowski
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | | |
Collapse
|
110
|
Cekan P, Sigurdsson ST. Single base interrogation by a fluorescent nucleotide: each of the four DNA bases identified by fluorescence spectroscopy. Chem Commun (Camb) 2008:3393-5. [PMID: 18633500 DOI: 10.1039/b801833b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleoside C, which contains a rigid nitroxide spin label, is effectively reduced in DNA by sodium sulfide to the corresponding amine, yielding a fluorescent probe (Cf) that can report the identity of its base-pairing partner in duplex DNA.
Collapse
Affiliation(s)
- Pavol Cekan
- University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | | |
Collapse
|