101
|
Chen XS, Brown CM. Computational identification of new structured cis-regulatory elements in the 3'-untranslated region of human protein coding genes. Nucleic Acids Res 2012; 40:8862-73. [PMID: 22821558 PMCID: PMC3467077 DOI: 10.1093/nar/gks684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 01/14/2023] Open
Abstract
Messenger ribonucleic acids (RNAs) contain a large number of cis-regulatory RNA elements that function in many types of post-transcriptional regulation. These cis-regulatory elements are often characterized by conserved structures and/or sequences. Although some classes are well known, given the wide range of RNA-interacting proteins in eukaryotes, it is likely that many new classes of cis-regulatory elements are yet to be discovered. An approach to this is to use computational methods that have the advantage of analysing genomic data, particularly comparative data on a large scale. In this study, a set of structural discovery algorithms was applied followed by support vector machine (SVM) classification. We trained a new classification model (CisRNA-SVM) on a set of known structured cis-regulatory elements from 3'-untranslated regions (UTRs) and successfully distinguished these and groups of cis-regulatory elements not been strained on from control genomic and shuffled sequences. The new method outperformed previous methods in classification of cis-regulatory RNA elements. This model was then used to predict new elements from cross-species conserved regions of human 3'-UTRs. Clustering of these elements identified new classes of potential cis-regulatory elements. The model, training and testing sets and novel human predictions are available at: http://mRNA.otago.ac.nz/CisRNA-SVM.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Department of Biochemistry and Genetics Otago, University of Otago, Dunedin 9054, New Zealand.
| | | |
Collapse
|
102
|
Abstract
There are two RNA worlds. The first is the primordial RNA world, a hypothetical era when RNA served as both information and function, both genotype and phenotype. The second RNA world is that of today's biological systems, where RNA plays active roles in catalyzing biochemical reactions, in translating mRNA into proteins, in regulating gene expression, and in the constant battle between infectious agents trying to subvert host defense systems and host cells protecting themselves from infection. This second RNA world is not at all hypothetical, and although we do not have all the answers about how it works, we have the tools to continue our interrogation of this world and refine our understanding. The fun comes when we try to use our secure knowledge of the modern RNA world to infer what the primordial RNA world might have looked like.
Collapse
Affiliation(s)
- Thomas R Cech
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0215, USA.
| |
Collapse
|
103
|
van der Burgt A, Severing E, de Wit PJGM, Collemare J. Birth of new spliceosomal introns in fungi by multiplication of introner-like elements. Curr Biol 2012; 22:1260-5. [PMID: 22658596 DOI: 10.1016/j.cub.2012.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/12/2012] [Accepted: 05/03/2012] [Indexed: 11/25/2022]
Abstract
Spliceosomal introns are noncoding sequences that separate exons in eukaryotic genes and are removed from pre-messenger RNAs by the splicing machinery. Their origin has remained a mystery in biology since their discovery because intron gains seem to be infrequent in many eukaryotic lineages. Although a few recent intron gains have been reported, none of the proposed gain mechanisms can convincingly explain the high number of introns in present-day eukaryotic genomes. Here we report on particular spliceosomal introns that share high sequence similarity and are reminiscent of introner elements. These elements multiplied in unrelated genes of six fungal genomes and account for the vast majority of intron gains in these fungal species. Such introner-like elements (ILEs) contain all typical characteristics of regular spliceosomal introns (RSIs) but are longer and predicted to harbor more stable secondary structures. However, dating of multiplication events showed that they degenerate in sequence and length within 100,000 years to eventually become indistinguishable from RSIs. We suggest that ILEs not only account for intron gains in six fungi but also in ancestral eukaryotes to give rise to most RSIs by a yet unknown multiplication mechanism.
Collapse
Affiliation(s)
- Ate van der Burgt
- Laboratory of Phytopathology, Wageningen University, 6708PB Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
104
|
Völker J, Gindikin V, Klump HH, Plum GE, Breslauer KJ. Energy landscapes of dynamic ensembles of rolling triplet repeat bulge loops: implications for DNA expansion associated with disease states. J Am Chem Soc 2012; 134:6033-44. [PMID: 22397401 PMCID: PMC3318849 DOI: 10.1021/ja3010896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 11/30/2022]
Abstract
DNA repeat domains can form ensembles of canonical and noncanonical states, including stable and metastable DNA secondary structures. Such sequence-induced structural diversity creates complex conformational landscapes for DNA processing pathways, including those triplet expansion events that accompany replication, recombination, and/or repair. Here we demonstrate further levels of conformational complexity within repeat domains. Specifically, we show that bulge loop structures within an extended repeat domain can form dynamic ensembles containing a distribution of loop positions, thereby yielding families of positional loop isomers, which we designate as "rollamers". Our fluorescence, absorbance, and calorimetric data are consistent with loop migration/translocation between sites within the repeat domain ("rollamerization"). We demonstrate that such "rollameric" migration of bulge loops within repeat sequences can invade and disrupt previously formed base-paired domains via an isoenthalpic, entropy-driven process. We further demonstrate that destabilizing abasic lesions alter the loop distributions so as to favor "rollamers" with the lesion positioned at the duplex/loop junction, sites where the flexibility of the abasic "universal hinge" relaxes unfavorable interactions and/or facilitates topological accommodation. Another strategic siting of an abasic site induces directed loop migration toward denaturing domains, a phenomenon that merges destabilizing domains. In the aggregate, our data reveal that dynamic ensembles within repeat domains profoundly impact the overall energetics of such DNA constructs as well as the distribution of states by which they denature/renature. These static and dynamic influences within triplet repeat domains expand the conformational space available for selection and targeting by the DNA processing machinery. We propose that such dynamic ensembles and their associated impact on DNA properties influence pathways that lead to DNA expansion.
Collapse
Affiliation(s)
- Jens Völker
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
| | - Vera Gindikin
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
| | - Horst H. Klump
- Department
of Molecular and
Cell Biology, University of Cape Town,
Private Bag, Rondebosch 7800, South Africa
| | - G. Eric Plum
- IBET Inc., 1507 Chambers
Road, Suite 301, Columbus, Ohio 43212, United States
| | - Kenneth J. Breslauer
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
- The Cancer Institute
of New Jersey, New Brunswick, New Jersey 08901, United
States
| |
Collapse
|
105
|
Huang W, Kim J, Jha S, Aboul-Ela F. Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine. J Mol Biol 2012; 418:331-49. [PMID: 22425639 DOI: 10.1016/j.jmb.2012.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Riboswitches are promising targets for the design of novel antibiotics and engineering of portable genetic regulatory elements. There is evidence that variability in riboswitch properties allows tuning of expression for genes involved in different stages of biosynthetic pathways by mechanisms that are not currently understood. Here, we explore the mechanism for tuning of S-adenosyl methionine (SAM)-I riboswitch folding. Most SAM-I riboswitches function at the transcriptional level by sensing the cognate ligand SAM. SAM-I riboswitches orchestrate the biosynthetic pathways of cysteine, methionine, SAM, and so forth. We use base-pair probability predictions to examine the secondary-structure folding landscape of several SAM-I riboswitch sequences. We predict different folding behaviors for different SAM-I riboswitch sequences. We identify several "decoy" base-pairing interactions involving 5' riboswitch residues that can compete with the formation of a P1 helix, a component of the ligand-bound "transcription OFF" state, in the absence of SAM. We hypothesize that blockage of these interactions through SAM contacts contributes to stabilization of the OFF state in the presence of ligand. We also probe folding patterns for a SAM-I riboswitch RNA using constructs with different 3' truncation points experimentally. Folding was monitored through fluorescence, susceptibility to base-catalyzed cleavage, nuclear magnetic resonance, and indirectly through SAM binding. We identify key decision windows at which SAM can affect the folding pathway towards the OFF state. The presence of decoy conformations and differential sensitivities to SAM at different transcript lengths is crucial for SAM-I riboswitches to modulate gene expression in the context of global cellular metabolism.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
106
|
Love AC. Hierarchy, causation and explanation: ubiquity, locality and pluralism. Interface Focus 2012; 2:115-25. [PMID: 23386966 PMCID: PMC3262310 DOI: 10.1098/rsfs.2011.0064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/24/2011] [Indexed: 11/12/2022] Open
Abstract
The ubiquity of top-down causal explanations within and across the sciences is prima facie evidence for the existence of top-down causation. Much debate has been focused on whether top-down causation is coherent or in conflict with reductionism. Less attention has been given to the question of whether these representations of hierarchical relations pick out a single, common hierarchy. A negative answer to this question undermines a commonplace view that the world is divided into stratified 'levels' of organization and suggests that attributions of causal responsibility in different hierarchical representations may not have a meaningful basis for comparison. Representations used in top-down and bottom-up explanations are primarily 'local' and tied to distinct domains of science, illustrated here by protein structure and folding. This locality suggests that no single metaphysical account of hierarchy for causal relations to obtain within emerges from the epistemology of scientific explanation. Instead, a pluralist perspective is recommended-many different kinds of top-down causation (explanation) can exist alongside many different kinds of bottom-up causation (explanation). Pluralism makes plausible why different senses of top-down causation can be coherent and not in conflict with reductionism, thereby illustrating a productive interface between philosophical analysis and scientific inquiry.
Collapse
Affiliation(s)
- Alan C. Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, 831 Heller Hall, 271 19th Ave. S, Minneapolis, MN 55455-0310, USA
| |
Collapse
|
107
|
Cao S, Chen SJ. A domain-based model for predicting large and complex pseudoknotted structures. RNA Biol 2012; 9:200-11. [PMID: 22418848 DOI: 10.4161/rna.18488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pseudoknotted structures play important structural and functional roles in RNA cellular functions at the level of transcription, splicing and translation. However, the problem of computational prediction for large pseudoknotted folds remains. Here we develop a domain-based method for predicting complex and large pseudoknotted structures from RNA sequences. The model is based on the observation that large RNAs can be separated into different structural domains. The basic idea is to first identify the domains and then predict the structures for each domain. Assembly of the domain structures gives the full structure. The use of the domain-based approach leads to a reduction of computational time by a factor of about ~N ( 2) for an N-nt sequence. As applications of the model, we predict structures for a variety of RNA systems, such as regions in human telomerase RNA (hTR), internal ribosome entry site (IRES) and HIV genome. The lengths of these sequences range from 200-nt to 400-nt. The results show good agreements with the experiments.
Collapse
Affiliation(s)
- Song Cao
- Department of Physics and Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
108
|
Abstract
RNA is now appreciated to serve numerous cellular roles, and understanding RNA structure is important for understanding a mechanism of action. This contribution discusses the methods available for predicting RNA structure. Secondary structure is the set of the canonical base pairs, and secondary structure can be accurately determined by comparative sequence analysis. Secondary structure can also be predicted. The most commonly used method is free energy minimization. The accuracy of structure prediction is improved either by using experimental mapping data or by predicting a structure conserved in a set of homologous sequences. Additionally, tertiary structure, the three-dimensional arrangement of atoms, can be modeled with guidance from comparative analysis and experimental techniques. New approaches are also available for predicting tertiary structure.
Collapse
Affiliation(s)
- Matthew G Seetin
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
109
|
Mustoe AM, Bailor MH, Teixeira RM, Brooks CL, Al-Hashimi HM. New insights into the fundamental role of topological constraints as a determinant of two-way junction conformation. Nucleic Acids Res 2011; 40:892-904. [PMID: 21937512 PMCID: PMC3258142 DOI: 10.1093/nar/gkr751] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies have shown that topological constraints encoded at the RNA secondary structure level involving basic steric and stereochemical forces can significantly restrict the orientations sampled by helices across two-way RNA junctions. Here, we formulate these topological constraints in greater quantitative detail and use this topological framework to rationalize long-standing but poorly understood observations regarding the basic behavior of RNA two-way junctions. Notably, we show that the asymmetric nature of the A-form helix and the finite length of a bulge provide a physical basis for the experimentally observed directionality and bulge-length amplitude dependence of bulge induced inter-helical bends. We also find that the topologically allowed space can be modulated by variations in sequence, particularly with the addition of non-canonical GU base pairs at the junction, and, surprisingly, by the length of the 5′ and 3′ helices. A survey of two-way RNA junctions in the protein data bank confirms that junction residues have a strong preference to adopt looped-in, non-canonically base-paired conformations, providing a route for extending our bulge-directed framework to internal loop motifs and implying a simplified link between secondary and tertiary structure. Finally, our results uncover a new simple mechanism for coupling junction-induced topological constraints with tertiary interactions.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Departments of Chemistry & Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
110
|
Lerman YV, Kennedy SD, Shankar N, Parisien M, Major F, Turner DH. NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. RNA (NEW YORK, N.Y.) 2011; 17:1664-77. [PMID: 21778280 PMCID: PMC3162332 DOI: 10.1261/rna.2641911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/08/2011] [Indexed: 05/31/2023]
Abstract
The NMR solution structure is reported of a duplex, 5'GUGAAGCCCGU/3'UCACAGGAGGC, containing a 4 × 4 nucleotide internal loop from an R2 retrotransposon RNA. The loop contains three sheared purine-purine pairs and reveals a structural element found in other RNAs, which we refer to as the 3RRs motif. Optical melting measurements of the thermodynamics of the duplex indicate that the internal loop is 1.6 kcal/mol more stable at 37°C than predicted. The results identify the 3RRs motif as a common structural element that can facilitate prediction of 3D structure. Known examples include internal loops having the pairings: 5'GAA/3'AGG, 5'GAG/3'AGG, 5'GAA/3'AAG, and 5'AAG/3'AGG. The structural information is compared with predictions made with the MC-Sym program.
Collapse
Affiliation(s)
- Yelena V. Lerman
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Neelaabh Shankar
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Marc Parisien
- Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C CJ7, Canada
| | - Francois Major
- Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C CJ7, Canada
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
111
|
Moss WN, Priore SF, Turner DH. Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA (NEW YORK, N.Y.) 2011; 17:991-1011. [PMID: 21536710 PMCID: PMC3096049 DOI: 10.1261/rna.2619511] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Influenza A is a negative sense RNA virus of significant public health concern. While much is understood about the life cycle of the virus, knowledge of RNA secondary structure in influenza A virus is sparse. Predictions of RNA secondary structure can focus experimental efforts. The present study analyzes coding regions of the eight viral genome segments in both the (+) and (-) sense RNA for conserved secondary structure. The predictions are based on identifying regions of unusual thermodynamic stabilities and are correlated with studies of suppression of synonymous codon usage (SSCU). The results indicate that secondary structure is favored in the (+) sense influenza RNA. Twenty regions with putative conserved RNA structure have been identified, including two previously described structured regions. Of these predictions, eight have high thermodynamic stability and SSCU, with five of these corresponding to current annotations (e.g., splice sites), while the remaining 12 are predicted by the thermodynamics alone. Secondary structures with high conservation of base-pairing are proposed within the five regions having known function. A combination of thermodynamics, amino acid and nucleotide sequence comparisons along with SSCU was essential for revealing potential secondary structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | |
Collapse
|